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In this paper, we explore various forms of osmotic transport in the regime of high solute concentration.
We consider both the osmosis across membranes and diffusio-osmosis at solid interfaces, driven by
solute concentration gradients. We follow a mechanical point of view of osmotic transport, which
allows us to gain much insight into the local mechanical balance underlying osmosis. We demon-
strate in particular how the general expression of the osmotic pressure for mixtures, as obtained
classically from the thermodynamic framework, emerges from the mechanical balance controlling
non-equilibrium transport under solute gradients. Expressions for the rejection coefficient of osmosis
and the diffusio-osmotic mobilities are accordingly obtained. These results generalize existing ones
in the dilute solute regime to mixtures with arbitrary concentrations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4982221]

I. INTRODUCTION

Osmotic transport is a subtle and non-trivial effect that
is harvested in numerous biological phenomena and appli-
cations, such as food processing in biological organisms,1,2

reverse osmosis for desalination, and energy generation from
salinity differences,3–6 to name a few. Traditionally, osmotic
transport is described as occurring across a semi-permeable
membrane, i.e., a membrane impermeable to the solute but
permeable to the solvent, often water, see Fig. 1. If two reser-
voirs with different solute concentrations are put in contact
via a semi-permeable membrane, an osmotic pressure builds
up between the compartments. This pressure drop is the driving
force for a flux of water from the low concentration reservoir
to the highly concentrated one, until the thermodynamic equi-
librium is reached. For low solute concentrations, the osmotic
pressure is expressed by the van ’t Hoff law,

∆Π = kBT∆c, (1)

where ∆c is the difference in the solute concentration between
the two reservoirs.3 The van ’t Hoff law is derived by equat-
ing the solvent chemical potential of the solvent across the
membrane.7–9 The osmotic pressure is accordingly defined in
terms of equilibrium thermodynamic properties of the sys-
tem. An interesting, and quite counterintuitive, remark is
that—provided it is semi-permeable—the membrane charac-
teristics do not appear in this thermodynamic expression for
the osmotic pressure. Now, when the membrane is only par-
tially impermeable to the solute, there is still a solvent flux
driven by the solute concentration imbalance.10–12 However
the driving osmotic pressure is usually assumed to be reduced
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by a (dimensionless) rejection factor, say σ. Determining
σ requires describing the detailed mass and solute transport
across the membrane, and this requires going beyond the ther-
modynamic description. From a general perspective, transport
across a membrane is characterized within the framework of
irreversible processes, via a transport matrix L, relating fluxes
to thermodynamic forces3,13,14(

Q
Js − cQ

)
= L ×

(
−∇p
−∇µ

)
, (2)

with Q and Js denoting, respectively, the volume flux (per
unit area) of the solution and of the solute through the mem-
brane; c is the solute concentration, p is the pressure, and
µ is the solute chemical potential. This matrix is symmetric
according to Onsager’s principle. The question then amounts
to characterizing the coefficients of this matrix associated
with osmotic gradients. Kedem and Katchalsky rewrote these
transport equations in a more explicit form as3,15

Q = −Lhyd (∆p − σkBT∆c) , (3)

Js = −LDω∆c + c(1 − σ)Q, (4)

where Lhyd = κ/(ηL) is the solvent permeance with κ the per-
meability (in units of a length squared), η the fluid viscosity,
and L the membrane thickness, and LD = D/L is the solute
permeability with D the diffusion coefficient of the solute.
The Onsager symmetry relations for Eq. (2) can be verified by
exploring two limiting cases: the situation where∆p= 0 yields
Q = σLhydc∆µ (using ∆µ = kBT∆c/c in the dilute case) and
the situation where ∆c = 0 yields Js − cQ = σLhydc∆p, as
expected. The Kedem–Katchalsky result introduces the reflec-
tion coefficient σ mentioned previously that is dependent in
particular on the relative permeability of the membrane to the
solvent and the solute.10,16 Interestingly, the non-dimensional
coefficients ω and σ are expected to be linearly related,3 as
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FIG. 1. Geometry of osmosis. A semi-permeable membrane allows transport
of water upon a solute concentration difference.

1 − σ ∝ ω, a result that we will recover below. Note that
the previous Kedem–Katchalsky equations are valid in the
regime of dilute solute concentration, where the van ’t Hoff
relationship applies. Generalizing them to mixtures with arbi-
trary volume fractions requires introducing the general ther-
modynamic expression for the osmotic pressure and its link to
non-equilibrium transport remains to be developed.

In this paper, our goal is to get some insight into the physi-
cal principles of osmosis, while exploring the high solute con-
centration regime. We will make use of a mechanical approach
to osmosis, which is particularly illuminating to identify the
force balance underlying the osmotic phenomenon. We will
consider the two situations of bare osmosis across membranes
and diffusio-osmosis at solid interfaces. Osmosis is expected to
occur under a solute imbalance across a semi-permeable mem-
brane, which is permeable to the solvent but not to the solute.
In contrast, diffusio-osmosis is a surface-driven flow occurring
under solute gradients. This form of transport has attracted
increasing attention in the context of recent developments in
micro- and nano-fluidic systems.11,12,17–20

To highlight the mechanical balance underlying osmotic
transport, we will consider a simplified model where the effect
of the membrane on the solute is described in terms of an
energy barrier, see Fig. 2(a). Such an energy barrier is a crude
but convenient description for the membrane, avoiding enter-
ing into the details of the interaction of the solute with the
membrane. It reduces the description to its minimal ingredi-
ents of partial or semi-permeability and makes it amenable to
explicit calculations. As we show below, it allows us to explore
in detail how osmotic pressure builds up, even in the absence

FIG. 2. From the hydrodynamic picture to the mechanical approach. (a)
Geometry of osmosis: from the membrane type approach to the mechanical
approach describing the membrane as a potential on the solute. (b) Geometry
of diffusio-osmosis: from a zoomed surface-solute interaction to a description
with a potential on the solute.

of a full semi-permeability of the membrane to the solute.
We note furthermore that such a barrier potential can also be
physically achieved; for example, it can be generated from a
nonuniform electric field acting on a polar solute in a nonpolar
solvent,21 or it can represent the nonequivalent interactions of
solute and solvent particles with a permeable membrane, e.g.,
charge interactions.22,23 In the case of osmosis, this approach
was first introduced by Manning13 in the low concentration
regime and generalized more recently by Picallo et al. to
explore the osmotic transport across permselective charged
nanopores.23

On the basis of this mechanical approach, a further objec-
tive of our study is to explore osmotic phenomena in the
regime of high solute concentration, where the “solute” and
the “solvent” are two components of a mixture with arbitrary
molar fraction. In this case, thermodynamics predicts that the
thermodynamic force driving motion is a generalized osmotic
pressure taking the formal expression24

Π(c) = c
∂f
∂c
− f [c] + f [c = 0], (5)

with f the free energy density (see Appendix A for a reminder).
However, how this osmotic pressure is expressed in terms of
mechanical balance across a membrane (osmosis) or along
an interface (diffusio-osmosis) has not been explored up to
now. Our goal in the present work is accordingly to highlight
how this thermodynamic expression connects to the (local)
mechanical balance for osmosis and diffusio-osmosis.

II. FROM A THERMODYNAMIC TO A MECHANICAL
APPROACH TO OSMOSIS

We consider a membrane separating two sub-volumes,
containing a solvent and a solute. The concentration difference
between the two volumes is ∆c = c+ − c−. As introduced
above, we assume that the membrane behaves as an external
potentialU on the solute only, but not on the solvent molecules.
It varies only along the x axis. We denote L the lateral range
of the potential U, so that U(−L/2) = U(L/2) = 0 and vanishes
outside of this domain, see Fig. 2(a). Still we consider that the
membrane is permeable to the solvent, with a permeance Lhyd,
relating the flux Q to the pressure drop ∆p in the absence of a
concentration difference: Q = −Lhyd∆p.

We first recall results for the dilute solute regime and then
extend the results to the high concentration case.

A. Dilute solute concentration

Before considering the general case of the high solute
concentration, we first revisit the case of the dilute solute
concentration, as explored in Refs. 13 and 23, which allows
us to give the flavor of the approach. In the 1D geometry
described above, the stationary solute concentration c(x) obeys
a Smoluchowski equation

0 = ∂tc = − ∂xJs

= − ∂x (−D∂xc + λc (−∂xU) + vc) , (6)

where D is the diffusion coefficient and λ =D/kBT the mobil-
ity, with kB and T being the Boltzmann constant and the tem-
perature, respectively. We further assume a low Péclet number
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limit, Pe = vL/D � 1, such that the convective term of Eq. (6)
is negligible. This is valid for low permeability (nanoporous)
membranes. Since the solute current across the membrane Js

is constant in time and spatially uniform, Eq. (6) is explicitly
solved with respect to the concentration,

c(x) = −∆c e−βU(x) ∫
L/2
x dx′ exp[+βU(x′)]

∫
L/2
−L/2 dx′ exp[+βU(x′)]

, (7)

where β = 1/kBT .
Now let us focus on the force balance. It is crucial to

remark that the membrane will act on the fluid as an external
force,−∂xU, exerted on the solute molecules. But due to action-
reaction, this force acts on the fluid volume globally. This is,
for example, highlighted in the force balance on the fluid, as
represented by the Stokes equation along the x direction,

0 = −∂xp + c(x)(−∂xU) + η∇2v , (8)

where p is the fluid pressure and v is the flow velocity of
the fluid in the x direction. The driving force inducing the
solvent flow is accordingly written in terms of an apparent
pressure drop, −∂xP = −∂xp + c(x)(−∂xU). The membrane,
via its potential U, will therefore create an average force on
the fluid, which writes per unit surface as

−∆P = −∆p +
∫ L/2

−L/2
dx c (−∂xU), (9)

where ∆ means the difference of quantity between two
sides. The second term of Eq. (9) can be interpreted as the
osmotic contribution; one can calculate it explicitly using the
concentration profile given in Eq. (7), to obtain

−∆P = −∆p + σ∆Π. (10)

This leads to the classical van ’t Hoff law of the osmotic
pressure, ∆Π = kBT∆c, and the expression of the reflection
coefficient σ is obtained as

σ = 1 −
L

∫
L/2
−L/2 dx′ exp[+βU(x′)]

. (11)

Equation (10) is often referred to as the Starling equation in
the physiology literature, see, e.g., Ref. 25.

The above result correctly recovers the case of a com-
pletely semi-permeable membrane (no solute flux across the
membrane), i.e., βU � 1 in this limit, and thus σ → 1, yield-
ing −∆P = −∆[p − Π]. In the intermediate cases, although
the membrane is permeable, a flow arises due to the solute
concentration gradient even in the absence of a pressure gra-
dient. When the potential is repulsive and small U ∼ kBT , then
0 < σ < 1; the flow is in the direction of increasing concen-
tration. When the potential is attractive, then σ < 0 and the
flow reverses. Integrating Eq. (8) over the membrane area (A)
and thickness (L) allows us to express the total flux Q as

Q = −Lhyd (∆p − σkBT∆c) . (12)

Here one may formally define the permeability κ in terms of
the averaged flow as (1/AL) ∫ ∫ dx dA∇2v ≡ −Q/κ, and the
corresponding permeanceLhyd = κ/(ηL). These parameters, κ
and Lhyd, take into account the detailed geometric specificities

of the pores in the membrane. Overall Eq. (12) agrees with the
Kedem–Katchalsky result in Eq. (3).

We recall that according to Ref. 3 the reflection coefficient
σ and the factor ω are linked by a linear relationship in the
form 1 − σ ∝ ω, for diffusion through the membrane. The
origin of this symmetry relationship is easily apparent from
the general expression of the solute flux Js. From the steady
state condition of Eq. (6), the solute flux is expressed as

Js = −λc ∂x (µid[c] + U) , (13)

where µid[c] = kBT ln(c/c∗) is the chemical potential of the
ideal (dilute) solution with the solute concentration c, with
c∗ being a reference concentration. The first term can be
rewritten as −λ∂xΠ, with Π = kBTc. The flux Js is spatially
homogeneous (∂xJs = 0), so that one deduces

Js = −λ

(
∆Π

L
−

1
L

∫ L/2

−L/2
dx c(x)(−∂xU)

)
= −

λ

L
(1 − σ)∆Π, (14)

and in the present case, 1 − σ = ω. Note that the contribution
of the total flux Q to the solute flux Js is recovered when the
convective term of Eq. (6) is accounted for.13

B. High solute concentration

We now generalize the mechanical approach to the case
of a mixture with a high solute concentration. As stated earlier,
the osmotic pressure is expected in this regime to deviate from
its van ’t Hoff limit Π = kBTc and is now defined in terms
of the general thermodynamic expression given in Eq. (5) (as
recalled in Appendix A).24

In this regime, the solute flux Js entering the Smolu-
chowski equation for the solute now writes as

Js = −λ[c(x)] c(x)∂x (µ[c(x)] + U(x)) , (15)

where µ[c] is the chemical potential of the solute and λ[c]
the solute mobility, possibly depending on the concentration.
The fluid equation of motion remains similar as above, in
Eq. (8), with the membrane acting on the fluid in the form of
an external force c(x)(−∂xU), leading to an average force as in
Eq. (9).

At equilibrium, fluxes are vanishing and the equilibrium
concentration c0(x) thus obeys

µ[c0(x)] + U(x) = µres, (16)

where c0(�L/2) = c0(L/2) = cres, such that µ[cres] = µres. Now
when there is a concentration difference δc0 of the solute
between the reservoirs, solvent and solute fluxes build up. In
contrast to the dilute case above, one cannot solve exactly
the previous equations for c(x). However, one may explore the
case of a small concentration difference between the reservoirs
and compute the perturbation from equilibrium. This leads to
a change in the concentration profile c(x), which we write as
c(x) = c0(x) + δc(x). At the boundaries, one has δc(−L/2) = 0
and δc(L/2)= δc0. Equivalently, this can be expressed in terms
of a chemical potential difference of the solute between the
reservoirs, ∆µ = µ′[cres] × δc0, where µ′ = ∂µ/∂c.
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To lowest order in δc(x), the flux in Eq. (15) now writes
as

Js = −λ[c0(x)] c0(x)∂x

(
∂µ

∂c
[c0(x)] δc(x)

)
. (17)

Since ∂xJs = 0 in the stationary state, this equation is solved
with respect to δc(x),

δc(x) = −
Js

µ′[c0(x)]

∫ x

−L/2

dx′

λ[c0(x′)] c0(x′)
. (18)

Using the boundary condition δc(L/2) = δc0, we obtain the
following expression for the flux,

Js = −
1

∫
L/2
−L/2

dx′
λ[c0(x′)] c0(x′)

∆µ, (19)

and deduce the concentration profile δc(x) as

δc(x) =
∆µ

µ′[c0(x)]

∫
x
−L/2

dx′

λ[c0(x′)] c0(x′)

∫
L/2
−L/2

dx′
λ[c0(x′)] c0(x′)

. (20)

Using this solution for the density profile, we can now compute
the corresponding driving force due to the solute acting on the
fluid, according to Eq. (9),∫ L/2

−L/2
dx δc(x)(−∂xU)= c0(L/2)µ′[c0(L/2)]δc(L/2)

− µ′[c0(L/2)]δc(L/2)
∫

L/2
−L/2

dx′

λ[c0(x′)]

∫
L/2
−L/2

dx′
λ[c0(x′)] c0(x′)

,

(21)

where we used the equilibrium condition ∂x(µ[c0(x)] +U) = 0
to simplify the expressions.

This expression can be rewritten in terms of the thermo-
dynamic osmotic pressure in Eq. (5), noting that

∆Π = Π(cres + δc0) − Π(cres) = cresµ
′[cres]δc0. (22)

The average force on the membrane in Eq. (21) can accordingly
be re-expressed as∫ L/2

−L/2
dx δc(x)(−∂xU) = σ∆Π, (23)

where the reflection coefficient σ is now defined as

σ = 1 −
∫

L/2
−L/2

dx′

λ[c0(x′)]

∫
L/2
−L/2

dx′
λ[c0(x′)]

cres
c0(x′)

. (24)

Equation (24) takes into account the non-linearities that arise
from the deviation from the simple Boltzmann distribution
and the dependence of mobility on concentration. The driving
force is formally the same as in Eq. (10), and the solvent flux
takes accordingly the form

Q = −Lhyd (∆p − σ∆Π) , (25)

with Π the general thermodynamic expression in Eq. (5).
Similarly to the discussion leading to Eq. (14), we also

find

Js = −
1

∫
L/2
−L/2

dx′
λ[c0(x′)]

(1 − σ)∆Π, (26)

showing that the coefficients σ and ω are again related as
1 − σ = ω.

Altogether, this derivation unifies the thermodynamic and
the mechanical perspectives on the osmotic pressure.

III. DIFFUSIO-OSMOTIC TRANSPORT AT HIGH
SOLUTE CONCENTRATIONS

We now explore similar questions for diffusio-osmotic
transport. Diffusio-osmosis corresponds to the generation of
the solvent flow under a salinity gradient, close to a solid sur-
face, see Fig. 3. It is an interfacially driven phenomenon, which
takes its origin within the diffuse interfacial layer close to the
surface where the solute interacts specifically with the sur-
face.14,26,27 Its effects were explored in various experimental
works.5,11,12,20 However only the regime of dilute solutes has
been considered up to now, and we generalize the concepts to
mixtures with a high volume fraction of the “solute” versus the
“solvent” (solute and solvent being actually two components
of a mixture). This will allow us to highlight the links between
diffusio-osmosis and the generalized thermodynamic osmotic
pressure, as introduced in Eq. (5), and how it builds up.

The geometry is described in Fig. 3. We consider a flat
surface with a solute gradient along the membrane. We denote
by x the coordinate parallel to the surface and by z the one
orthogonal to the surface. The solute concentration gradient
far from the surface is ∂xc∞ and is assumed to be uniform
along x. Similarly to the mechanical approach for osmosis
across a membrane, we introduce an external potential U(z)
from the surface, which acts only on the solute; one noticeable
difference to the previous membrane case is that it now acts
perpendicular to the solid surface and solute gradient (i.e.,
depending on z but not on x). Typically, U is strong near the
surface within a thin layer and vanishes far from the surface.

We first focus on the solute distribution. We assume a thin
diffusive layer, i.e., the equilibrium along z is fast, so that the
gradient along the surface (along x) is small compared with
the gradient orthogonal to the surface (along z). In this case,
local equilibrium establishes,

µ[c(x, z)] + U(z) ' µ[c∞(x)]. (27)

In the dilute regime where µ[c]= kBT ln(c/c∗), we find
c(x, z)= c∞(x) exp(−U(z)/kBT ), as discussed above. It can be
more complex for a high concentration c of the solute. In
general, depending on the interaction potential U, a surface
excess or a surface depletion of the solute will occur at the
surface.

This equation may be interpreted in terms of a mechan-
ical balance introducing the generalized osmotic pressure.
Indeed, using the local equilibrium condition Eq. (27), one

FIG. 3. Geometry of diffusio-osmosis only. Far from the surface, there is
a uniform gradient of the solute ∇xc∞ parallel to the surface. The solute
undergoes an external potential U(z).
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gets c(−∂zU) = c∂zµ = c∂z (∂f /∂c) ≡ ∂zΠ[c] (the latter two
equalities being also a consequence of the Gibbs-Duhem rela-
tionship). Accordingly, one deduces that the local force (along
z) acting on the fluid due to the wall can be interpreted in terms
of the osmotic pressure as

c(−∂zU) = ∂zΠ[c]. (28)

Let us now turn to the fluid transport equation. It is
described again by the Stokes equation

0 = −∇p + c(−∇U) + η∇2~v . (29)

First, the projection along the z direction (with a vanishing
component of the velocity vz) yields 0=−∂zp + c(−∂zU). Using
the previous result of Eq. (28), one can rewrite this pressure
balance as ∂z(p − Π) = 0 and obtain

p(x, z) − p∞ = Π[c(x, z)] − Π[c∞(x)]. (30)

Note that here, Π[c] indeed takes the full expression of the
osmotic pressure described in Eq. (5).

This result then allows us to obtain the solvent velocity
profile. Indeed, injecting the pressure from Eq. (30) into the
Stokes equation projected along x gives

0 = η∂2
z vx − ∂x(Π[c(x, z)] − Π[c∞(x)]). (31)

One then obtains the velocity field in terms of the osmotic
pressure,

vx(x, z) =
1
η

∫ z

0
dz′

∫ ∞
z′

dz′′∂x(Π[c∞(x)] − Π[c(x, z′′)]). (32)

Here the no-slip boundary condition at the surface and a
vanishing velocity gradient at infinity have been assumed.

This expression can be rearranged using again the Gibbs-
Duhem relation, dΠ = cdµ (see Eq. (5)), leading to

vx(x, z) =
1
η

∫ z

0
dz′

∫ ∞
z′

dz′′
(
c∞(x) − c(x, z′′)

)
∂xµ[c∞(x)].

(33)

Note that we used ∂xµ[c(x, z)] = ∂xµ[c∞(x)] resulting from the
local equilibrium in Eq. (27). Finally, using c∞(x)∂xµ[c∞(x)]
= ∂xΠ[c∞(x)] in the bulk, one obtains a more transpar-
ent expression for the diffusio-osmotic velocity far from the
surface as

v∞ = KDO∂xΠ[c∞(x)], (34)

with the diffusio-osmotic mobility KDO given as

KDO = −
1
η

∫ ∞
0

dz′ z′
(

c(x, z′)
c∞(x)

− 1

)
. (35)

Note that η can also be assumed to depend on the concentra-
tion c. In this case, 1/η in KDO has to be integrated along z as
well. The effect of hydrodynamic slippage on the surface can
also be taken into account, along the same lines as in Ref. 14,
leading to an enhancement factor (1 + b/Ls), where b is the slip
length and Ls is the typical width of the diffuse interface. The
results for diffusio-osmosis in Eqs. (34) and (35) are analogous
to electro-osmosis and other surface-driven flows, with the
mobility defined in terms of the first spatial moment of a den-
sity profile (solute concentration profile for diffusio-osmosis
and charge density profile in the case of electro-osmosis).

To sum up, a solute gradient generates an interfacial flow
of the fluid. As highlighted in Eq. (34), this flow takes its origin
in an osmotic pressure gradient occurring within the diffuse
layer close to the surface. Quantitatively, this flow is quantified
by the value of the diffusio-osmotic mobility KDO, which is
non-zero only if there is surface excess or surface depletion
of the solute. As a rule of thumb, its sign will be dominantly
determined by the adsorption Γ = ∫

∞
0 dz′ (c(x, z′)/c∞(x) − 1).

If there is a surface excess (Γ > 0), the flow of water goes
towards the low concentrated area (KDO < 0). Respectively, if
there is a surface depletion, the flow of water reverses. But in
the case of a complex concentration profile, for instance, with
an oscillatory spatial dependence on z due to layering, the sign
of KDO may be expected to differ from the adsorption Γ. In
this case, no obvious conclusion can be made for the direction
of the diffusio-osmotic velocity and a full calculation has to
be made.

The general expression for the diffusio-osmotic veloc-
ity, in Eqs. (34) and (35), is very similar to the correspond-
ing expression for the dilute solution,14,26,27 but the result in
Eq. (34) makes it very clear that the diffusio-osmotic flux is
indeed driven by the thermodynamic osmotic pressure gradient
∂xΠ[c∞(x)].

IV. DISCUSSION AND CONCLUSIONS

We conclude with a few words on possible extensions and
implications of the results derived here.

A. Coupling osmosis and diffusio-osmosis

First, while the previous derivations considered osmosis
and diffusio-osmosis separately, one may consider a coupled
situation in which both phenomena act jointly. Let us con-
sider accordingly a general situation of a partially permeable
membrane, similar to Fig. 2(b), now with a membrane inter-
face interacting with solute particles. In full generality, the
two transport phenomena are intimately coupled in the force
balance and the situation is complex to disentangle. How-
ever some conclusions can be drawn in the limit where the
pore size is large as compared to the interaction range of the
surface potential, i.e., a small diffuse layer. In this case, one
may decompose the interaction potential into two contribu-
tions: U(x, z) = U∞(x) + U0(x, z), where U0(x, z) is the surface
interaction inside the membrane, which vanishes beyond the
diffuse layer close to the surfaces; and U∞(x) is independent
of z and describes a global energy barrier associated with the
membrane, see Fig. 4. Under this assumption, this situation is
amenable to a full calculation, which we report in Appendix B.
As shown, the flow across the membrane still obeys a general
Kedem–Katchalsky formula as in Eq. (25), with Π the gen-
eral osmotic force, but with a reflection coefficient which now
contains the coupled effects of osmosis and diffusio-osmosis,

σ = σO + σDO − σOσDO, (36)

whereσO is the osmotic reflection coefficient given by Eq. (24)
and the diffusio-osmotic reflection coefficient is defined as
σDO = ηKDO/κ, where KDO given in Eq. (35) is the diffusio-
osmotic reflection coefficient and κ the permeability.
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FIG. 4. Geometry of a membrane pore, in which com-
bined osmotic and diffusio-osmotic transport across the
membrane takes place. (a) Interaction potential expressed
asU(x, z) = U∞(x)+U0(x, z), whereU0(x, z) vanishes out-
side the diffuse layers. (b) Illustration of the decomposed
velocity profiles vx = vosm + δvx within the pore. The
typical thickness of the diffuse layer is denoted by a and
the typical size of the pore by H.

The last term in Eq. (36) accounts for a negative
feedback coupling between osmosis and diffusio-osmosis.
Although obtained in the limit of the small diffuse layer, it
exhibits a proper symmetry, as can be verified by consid-
ering various limiting situations. If the membrane is com-
pletely semi-permeable withσO = 1, then no solute flux occurs
through the membrane and the diffusio-osmotic contribution in
σDO(1 − σO) vanishes. Reversely one also obtains σ = 1
when σDO = 1. A second note is that this coupled con-
tribution hints to numerous possibilities to tune the flux
through the membrane. With a given σO < 1, it is possible to
enhance (respectively, diminish) σ—and thus the flux through
the membrane—with a slight surface depletion (respectively,
excess) on the surface. How this result may be generalized to
any geometry remains to be explored.

B. Outlook

In summary, we have explored various forms of osmotic
transport in the regime of a high solute concentration. Both
osmosis across model membranes and diffusio-osmosis at
the interface with solid substrates were considered. We have
specifically focused our approach on the mechanical balance
leading to a solvent flow under solute concentration gradients
and explored the regime of a high solute concentration. We
demonstrate in particular how the general expression of the
osmotic pressure for mixtures, as obtained classically from
the thermodynamic framework, emerges from the mechani-
cal balance controlling non-equilibrium transport under solute
gradients. The van ’t Hoff expression for the osmotic pressure,
Π = kBTc, is accordingly replaced by its general thermody-
namic counterpart, Π = c ∂cf − f [c] + f [c= 0] (with f the free
energy density), which is valid for arbitrary composition of
the “solvent”/“solute” mixture. This generalizes the existing
results obtained in the dilute solute regime. In the second paper
in this series, we will provide a numerical validation of the
present results by means of molecular dynamic simulations.28

An interesting consequence of the result in Eq. (34) is
that a non-linear “sensing” may originate from non-linearities
of the osmotic pressure versus the solute concentration. This
may occur, e.g., for dense colloidal or polymer suspensions,
as well as from a concentration dependent mobility KDO (e.g.,
in ionic cases where KDO scales as the square of the concen-
tration dependent Debye length). Finally let us discuss again
the ingredients required to describe our osmotic membrane.
In the case of osmosis, we considered a model membrane,
where the details of the membrane are reduced to its minimal
ingredients and modeled as an external potential acting on the

solute. As shown above, this simplified picture is extremely
fruitful to gain insight into the mechanical balance at play.
But it also points to the fact that osmosis does not require
per se a solid membrane to be expressed. One may con-
sider experimental situations where such a potential is built
on the basis of optical or electrical forces, using, e.g., optical
tweezers to repel “solute” particles or dielectrophoretic poten-
tial traps. Such “osmosis without a membrane” configuration
would be highly interesting to develop, as it would simplify
many aspects of clogging and pore blocking which occur for
standard porous membranes. However designing such non-
solid wells for molecular solutes, such as salts, remains a
considerable challenge.
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APPENDIX A: GENERAL EXPRESSION
OF THE OSMOTIC PRESSURE

We recall below the general expression of the osmotic
pressure given in Eq. (5). The derivation is directly inspired
by the presentation in Ref. 24.

Consider two compartments separated by a perfectly
semi-permeable membrane. We consider one side solvent with
density ρA and solute with density ρB. On the other side, there
are a solvent with density ρ′A and solute with density ρ′B. It is
convenient to write the Helmholtz free energy of the mixture

F(T , V , NA, NB) = −pV + µANA + µBNB, (A1)

where V is the system volume, and NA and NB are the number
of solvent and solute particles, respectively. We used Euler’s
theorem with F = U � TS, with U the internal energy and S
the entropy.

The osmotic pressure is the difference in pressure between
both sides,

Π = P − P′ = µA(ρA − ρ
′
A) + µBρB − µ

′
Bρ
′
B

+ f (T , ρ′A, ρ′B) − f (T , ρA, ρB), (A2)
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where f = F/V is now the free energy density. We also used the
fact that the chemical potentials of the solvent at equilibrium
are equal on both sides of the membrane,

µA =
∂f (T , ρ′A, ρ′B)

ρ′A
=
∂f (T , ρA, ρB)

ρA
. (A3)

Now we define ρ= ρA + ρB and c= ρB in each compartment.
As a result (considering constant ρ), we have in this new space
variable

µA =
∂f
∂c

∂c
∂ρA

= 0 and µB =
∂f
∂c

∂c
∂ρB

=
∂f
∂c

. (A4)

We can thus express the osmotic pressure directly as

Π =
∂f
∂c

c −
∂f
∂c′

c′ + f (c′) − f (c), (A5)

which is exactly Eq. (5), with c′ = 0. In the low density
regime, we recall that f (c) = ckBT ln c + (1− c)kBT ln(1− c)
and thus we recover the limit of dilute systems, in which
Π = kBT (c− c′).

APPENDIX B: COUPLED OSMOTIC
AND DIFFUSIO-OSMOTIC FLOWS

Here we examine the case of a membrane with pores of a
finite size interacting with the solute. Typically, the geometry
under consideration is that of Fig. 4. To simplify calculations,
we assume a slit geometry with a planar pore of length L
and width H (and invariant by translation in the perpendic-
ular direction). We make also a further hypothesis and assume
here that the interaction potential of the membrane with the
solute can be decomposed as

U(x, z) = U∞(x) + U0(x, z), (B1)

where U(x, z) is non-zero only between �L/2 and L/2, U∞(x)
describes the global energy barrier associated with the mem-
brane, and U0(x, z) describes the specific interaction with the
membrane pore surface and vanishes for large z. We write a
as the typical range of the surface potential, fixing the size of
the diffuse layer near the membrane pore surfaces (see Fig. 4).
The potential U∞(x) is responsible for the osmotic transport
and U0(x, z) is responsible for the diffusio-osmotic transport.
Here we consider the case where no external pressure differ-
ence is applied between the two sides of the membrane; this
can be simply superimposed on the driving force as shown in
Sec. II. To simplify the derivation, we make several additional
simplifications. We assume that the deviation of the concen-
tration profile to the equilibrium rest state is small. Further, we
assume that the thickness of the diffusive layer is sufficiently
small as compared to the pore size, a � H. In the follow-
ing, we show how the reflection coefficients associated with
osmotic and diffusio-osmotic transports are combined.

We write the thermodynamic equilibrium along the z
direction as

µ[c(x, z)] + U(x, z) = µ[c∞(x)] + U∞(x). (B2)

Here we have used the fact that the potential U0(x, z) vanishes
for large z. We derive first the osmotic current, following the
steps of Sec. II B. We focus on the solute current out of the

boundary layer, z > a, and compute there the solute profile
starting from the Smoluchowski equation

Jx
s = −λ[c∞(x)]c∞(x)∂x (µ[c∞(x)] + U∞(x)) . (B3)

In parallel with the discussion in Sec. II B, we readily obtain
the solute profile and then compute the osmotic driving force
as ∫ L/2

−L/2
dx δc∞(x)(−∂xU∞) = σO∆Π, (B4)

with ∆Π = c∞,resµ
′[c∞,res]δc∞. The reflection coefficient of

the osmotic transport here is defined as

σO = 1 −
∫

L/2
−L/2

dx′

λ[c∞,0(x′)]

∫
L/2
−L/2

dx′
λ[c∞,0(x′)]

c∞,res
c∞,0(x′)

, (B5)

where c∞,0 is the stationary concentration (see Sec. II B).
Turning to the diffusio-osmotic part, one deduces the pres-

sure profile from the Stokes equation along z, similarly to
Sec. III as

p(x, z) − Π[c(x, z)] = p∞ − Π[c∞(x)]. (B6)

The velocity profile is obtained from the Stokes equation along
x,

η∂2
z vx = −∂x(Π[c∞(x)] − Π[c(x, z)]) − c(x, z)(−∂xU0)

− c(x, z)(−∂xU∞). (B7)

Let us separate the flow into a bulk, pressure-driven, and
a surface-driven contribution. We introduce accordingly a
velocity profile vosm(z) verifying

η∂2
z vosm = −c∞(x)(−∂xU∞), (B8)

so that the remaining contribution to the velocity profile, δvx

= vx − vosm, verifies the equation,

η∂2
z δvx = −∂x(Π[c∞(x)] − Π[c(x, z)]) − c(x, z)(−∂xU0)

− (c(x, z) − c∞(x))(−∂xU∞), (B9)

and only contains surface-driven contributions.
The bulk contribution can be calculated following the very

same steps as in Sec. II B. This leads to a Poiseuille-like flow
under the osmotic driving and, as in Eq. (25) (with ∆p = 0),
the corresponding averaged flux Qosm writes in terms of the
permeability κ of the pore as

Qosm =
κ

η
σO
∆Π

L
. (B10)

Here κ scales typically as H2 (in general, the exact expression
for κ will depend on the specific pore geometry).

The surface-driven contribution can be integrated as

η δvx(x, z) =
∫ z

0
dz′ z′

(
1 −

c(x, z′)
c∞(x)

)
∂xΠ[c∞(x)]

+
∫ z

0
dz′ z′ (c(x, z′) − c∞(x))(−∂xU∞), (B11)

where we made use of the local equilibrium of Eq. (B2)
as ∂xµ[c(x, z)] + ∂xU0 = ∂xµ[c∞(x)]. We assumed the no-
slip boundary condition at z = 0 and a vanishing velocity
gradient for any z � a, see Fig. 4(b). We rewrite the previ-
ous velocity profile using the diffusio-osmotic mobility KDO
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defined in Eq. (35),

δvx(x, z ≥ a) = KDO (∂xΠ[c∞(x)] − c∞(x)(−∂xU∞)) . (B12)

To go further and to simplify calculations, we consider
now a situation where the (potential) dependence of KDO on
x can be neglected. In the dilute regime, it depends on x as
c(x, z)/c∞(x) = exp(−U0(x, z)/kBT ), so that it is sufficient to
require that the surface potential U0 is weakly dependent on x
along the pore surface. Note also that typically KDO ∼ Γ × a
with Γ the adsorption. One can then calculate the correspond-
ing averaged flux across the membrane thickness (along x) and
over its area A, using the assumption a � H. Interestingly,
using Eq. (B4), the last contribution in Eq. (B12) averages to
the osmotic driving forces, σO∆Π/L,

Qsurf =
1

AL

∫
dA

∫ L/2

−L/2
dx δvx(z)

= KDO(1 − σO) ×
∆Π

L
. (B13)

Note that we assumed here to simplify that the diffusio-osmotic
mobility does not depend on x.

Now, adding the two contributions to the flux, Qosm and
Qsurf , one gets the total flux as

Q = Qosm + Qsurf

=
κ

η
σO
∆Π

L
+ KDO(1 − σO) ×

∆Π

L
. (B14)

Defining a diffusio-osmotic reflection coefficient as

σDO =
ηKDO

κ
=

1
κ

∫ a

0
dz′ z′

(
c(x, z′)
c∞(x)

− 1

)
, (B15)

(where again the dependence on x in the integral is not con-
sidered here for simplification), we then rewrite Eq. (B14)
as

Q = Lhyd (σDO + σO − σDOσO)∆Π, (B16)

where, as before, the permeance is defined as Lhyd = κ/(ηL).
This equation highlights the introduction of a global reflection
coefficient σ =σDO +σO −σDOσO. This gives the expression
for the total reflection coefficient of Eq. (36) in the main text.
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