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Magnetotactic swimmers tend to align along magnetic field lines against stochastic reorientations. We
show that the swimming strategy, e.g., active Brownian motion versus run-and-tumble dynamics, strongly
affects the orientation statistics. The latter can exhibit a velocity condensation whereby the alignment
probability density diverges. As a consequence, we find that the swimming strategy affects the nature of the
phase transition to collective motion, indicating that Lévy run-and-tumble walks can outperform active
Brownian processes as strategies to trigger collective behavior.
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Bacteria, spermatozoa, or algae have in common the
ability to propel themselves in low-Reynolds fluids in order
to explore space [1,2]. The directed motion of these
swimmers is always affected by stochastic impulses due
to noise in the propulsion mechanism. Swimmers under-
going white noise perturbations, which lead to persistent
small-amplitude fluctuations of the orientation [3,4], are
usually called active Brownian particles (ABPs). In con-
trast, bacteria like E. coli exhibit sudden reorientations of
their velocity vector (called tumbles) which are due to
stochastic switches in the direction of rotation of propelling
flagella [5]. Such dynamics are usually coined as run and
tumble (RT). Though ABPs and RTs correspond to two
different swimming strategies, in the absence of external
torques, their long-time dynamics are similar and lead in
both cases to an effective diffusion process [2].
Biological microswimmers can also orient themselves in

response to external stimuli, either of chemical or mechani-
cal nature. In particular, the RT walk is essentially thought
to provide a mean to move along chemical gradients, called
chemotaxis, in which the run duration is modulated with
respect to the direction of the stimulus. Other micro-
organisms have also developed the ability to orient their
propelling direction under external mechanical fields, for
example under gravity (gravitaxis) or shear or flow gra-
dients (gyro- and rheotaxis) [6–9]. Similar behaviors have
been recently reproduced with artificial catalytic swimmers
[10–13].
Here we consider the dynamics of swimmers driven

under magnetic torques, keeping in mind that results
generalize to a larger class of mechanical torques. A
representative example are magnetotactic bacteria (MB)
that behave as self-propelled compasses, due to iron-based
organelles orienting the propelling flagella along the
magnetic field lines. Since their discovery in 1975, theo-
retical studies of MB focused on the case of white noise
perturbations on the orientation [14,15]. Recent work also

demonstrated how superparamagnetic beads could be
attached to E. coli bacteria, making them reactive to
magnetic fields [16].
Here we show that in the presence of an external aligning

field, the orientation distribution strongly differs for the two
swimming strategies, ABPs and RTs. For RTs, we report a
velocity condensation phenomenon that is associated with a
divergence of the orientation distribution function in the
direction of the field and which occurs above a critical
magnetic field. We point out that the resulting behavior is
significantly different from a chemotactic response. In the
final paragraph, we consider the onset of the collective
phase of a swarm with nematic interactions. We show that
the nature of the alignment divergence shapes the phase
diagram of the isotrope-nematic transition.
The ABPs dynamic is a diffusion process on the

direction of the velocity vector V, with a fixed speed jVj ¼
V0 [3,4,14]; hence, the dynamics of the alignment angle θ is
described by an Ito equation: dθ ¼ fðθÞdt=τB þ ffiffiffiffiffiffiffiffiffiffiffiffi

2dtDr
p

ζ,
where ζ is a Gaussian white noise with hξðtÞξðt0Þi ¼ δt;t0
and Dr is a rotational diffusion coefficient, and fðθÞ ¼
− sinðθÞ is the magnetic torque. The magnetic relaxation
time τB can be expressed as τB ¼ ξ0=ðmBaÞ, wherem is the
magnetic moment and ξ0 is a rotational drag coefficient.
The stationary probability distribution for θ corresponds to
the Boltzmann statistics

P∞ðθÞ ¼ μðθÞ exp ½1=ðτBDrÞ cos θ�=Zd; ð1Þ
where Zd is a dimension dependent normalization factor
and μðθÞ is the uniform probability measure [μðθÞ ¼ 1=π in
two dimensions or sinðθÞ=2 in three dimensions]. In three
dimensions, the mean velocity Vz ¼ hcos θi reduces to
Vz ¼ V0f½1=ðτBDrÞ�, where fðxÞ ¼ coth x − x−1 is the
classical Langevin function [14]. Indeed, Eq. (1) corre-
sponds to the distribution of a passive magnet in a
thermal noise [15], with an effective temperature defined
as kBTeff ¼ Drξ0.
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From an experimental point of view, MB bacteria usually
behave as ABP particles in a standard chemical environ-
ment [see Refs. [17,18], and Figs. 1(a) and 1(c)]. However,
it has been recently reported that some specific environ-
ments can trigger non-Brownian reorientations of MB, as
demonstrated on the strains MO-1 [19] and MC-1 [18]. In
particular, it has been shown in Ref. [18] that the trajectory
of the bacteria presents sudden changes of direction when
the concentration in the growing medium is reduced [see
Fig. 1(b)]. These kinks are then detected by a tracking
algorithm, which shows that the run durations are expo-
nentially distributed (see Ref. [18]). Using the experimental
data reported in Ref. [18], we build the experimental
histogram presented in Fig. 1(d) from 500 trajectories.
The histogram is peaked in the direction of the magnetic
field (θ ¼ 0), while maintaining a substantial statistical
weight for the antiparallel orientation (θ ¼ π). These two
features cannot be consistently accounted for by an ABP
model, which fails to match the statistical weights both in
the parallel and in the antiparallel directions of the magnetic
field, as highlighted in Fig. 1(d). This inconsistency of the
ABP model to reproduce experimental results calls for a
shift from the classical Langevin paradigm [14], which can
only describe accurately the behavior of magnetotactic
bacteria in a medium favorable to growth. As indicated in
Ref. [18], this change in the behavior of magnetotactic
bacteria in a lesser favorable environment could be related
to an evolutionary advantage.
RT walk.—The RT dynamics is composed of runs at a

fixed speed V0 interrupted by instantaneous reorientations.
During runs under a magnetic field Ba, the evolution of the
alignment angle θ (between V and the applied magnetic

field Ba) is deterministic, with _θ ¼ fðθÞ=τB. Furthermore,
we assume that the duration of each run x (i) is drawn
according to a given probability density ρðx=τrÞ, (ii) is
independent of the previous runs, and (iii) is independent of
the alignment direction θ (in contrast to chemotaxis). After
a tumble, the alignment angle θ0 is drawn according to the
uniform probability measure μðθ0Þ. We finally define the
magnetotactic dimensionless parameter B as

B ¼ τr
mjBaj
ξ0

; ð2Þ

where τr is the mean run time, so that B ¼ τr=τB.
Remarkably, the estimated values for the magnetotactic
number B appear to be of the order unity for MB in typical
geomagnetic fields (see Refs. [15,18]).
Angular distribution and velocity condensation.—We

seek to obtain the expression for the stationary probability
P∞ðθÞ density for the RT walk, defined so that the pro-
bability that the angle θ belongs to the interval ½θ1; θ2� readsR θ2
θ1

P∞ðθÞdθ. Partitioning on successive events, we find
that P∞ðθÞ ¼

R∞
0 dtπðtÞ R π

0 dθ0μðθ0Þδ(θ − θtðθ0Þ), where
πðtÞ is the distribution of “run” time since the last tumble,
and which is to be determined from the distribution of run
duration ρðxÞ by renewal process theory [21]; θ0 is the
outgoing angle after the tumble, and θtðθ0Þ is the time-
dependent evolution operator. For a torque with angular
dependence fðθÞ, the latter is formally defined as θtðθ0Þ ¼
Fð−1Þ½F½θ0� þ Bt�, with F a primitive of 1=f and Fð−1Þ the
reciprocal function of F. Using that the function θ0 →
θ − θt½θ0� is canceled for θ0 ¼ θ�0ðθ; tÞ ¼ Fð−1Þ½F½θ� − Bt�,
one gets

P∞ðθÞfðθÞ ¼
Z

∞

0

dtπðtÞðμ:fÞ½θ�0ðθ; tÞ�: ð3Þ

Equation (3) holds for an arbitrary torque fðθÞ and spent
time distribution πðtÞ.
We first consider a magnetic torque fðθÞ ¼ − sinðθÞ and

ρðtÞ ¼ expð−tÞ (exponential RT). The spent time distribu-
tion is then πðtÞ ¼ ρðtÞ [21]. Following the previous
definition, we obtain θ�0 ¼ 2 arctan½tanðθ=2Þ expðBtÞ�. In
two dimensions, we apply Eq. (3) and we obtain

P∞ðθÞ ¼
1

B
ðtan θ=2Þ1=B

sin θ

Z
π

θ
dϕ

μðϕÞ
ðtanϕ=2Þ1=B : ð4Þ

A key feature which emerges from Eq. (4) is that the low-θ
behavior drastically differs above and below the critical
value Bc ¼ 1 [see Fig. 2(a)]. For B < Bc, P∞ðθÞ takes a
finite value at θ ¼ 0. However, for B > 1 we find that

P∞ðθÞ ∼
θ→0

γ−1d θ−ð1−1=BÞ; ð5Þ

where γ2 ¼ 21=BB cos ½π=ð2BÞ� in two dimensions
and γ3 ¼ 21=Bþ1B2 sin½π=ð2BÞ�=π in three dimensions.

(a) (b)

(c) (d)

FIG. 1. Trajectories of MB in (a) rich growing medium and (b)
poor growing medium environments. (c)–(d) Alignment angle
distribution at Ba ¼ 7 × 10−5 T in (c) rich growing medium and
(d) poor growing medium environments: (black crosses) exper-
imental histogram and (solid blue line) best ABP fit with (a)
B=D⊥ ¼ 11 and (b) B=D⊥ ¼ 4.5. In (d), there is a 10%
discrepancy between the experimental and fitted cumulative
distributions (i.e., Kolmogorov-Smirnov norm [20]). (insets)
The antiparallel response is enhanced in a poor environment
(see Ref. [18]).
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At B ¼ Bc a dynamical transition occurs above which the
probability density diverges—a property that we call the
velocity condensation.
Extension and robustness.—We first remark that the

condensation phenomenon is maintained for alternative
aligning torques, provided the torque is strong enough
around θ ¼ 0. Consider that fðθÞ ∼ −θn for θ ≪ 0, then (i)
if n > 1 and for exponential RT, the torque term is too weak
for the velocity condensation to occur, and (ii) if n < 1, the
condensation always occurs, as the θ ¼ 0 state can be
attained after a finite run time. Second, the strict math-
ematical divergence disappears in the presence of a rotary
Brownian noise on the velocity orientation during runs,
characterized by a diffusion coefficient D0

r. As θ → 0, the
diffusive noise eventually dominates over the vanishing
torque and the orientation probability scales as P∞ðθÞ ∝
exp½−θ2Bτr=ð2D0

rÞ� in the region θ ∈ ½0; D0
r=ðτrBÞ�).

However, provided that the rotary diffusion coefficient
noise is relatively small (D0

r=τr < 1), the probability
density of RTs is sharply peaked when B > 1.
RT fit of experiments.—We now compare the prediction

of the RT model to the experimental histogram presented in
Fig. 2(b). In contrast to the ABP model fit, which cannot
account for the sharp peak in the orientation distribution
without underestimating it in the antiparallel directions, the
RT walk provides the appropriate statistical weight to
both the parallel and the antiparallel directions. The
increase in the quality of the fit can be measured through
the Kolmogorov-Smirnov norm [20], which quantifies the
discrepancy between the cumulative distributions. The
quality of the fit is increased by considering a RT walk
in which runs are perturbed by a mild rotary noise
(D0

r=τr ¼ 0.15). We conclude that, in spite of this small
rotary diffusion that affects the orientation of bacteria, the
distribution in Fig. 2 is still very sharply peaked in the
direction of the magnetic field.

We conclude that the RT walk is more efficient than the
ABP process to sample both the parallel and antiparallel
directions to the magnetic field. Our intuitive explanation is
that, in contrast to a diffusion process, all orientations are
sampled after a tumble, and, in particular, the antiparallel
directions to the magnetic field.
Mean velocity and diffusion.—From the orientation

distribution, we can calculate the mean velocity of the
RTs. The averaged velocity in the direction of the magnetic
field is defined as Vz ¼ V0hcos θi. Using the previous
expressions for the distribution function, one gets

Vz ¼ V0

1

B

Z
1

0

dww1=B−1gdðwÞ: ð6Þ

In two dimensions, g2ðwÞ ¼ ð1 − wÞ=ð1þ wÞ and
Vz=V0 ¼ fψ ð0ÞðBþ 1=2BÞ − ψ ð0Þð1=2BÞg=B − 1, with
ψ0ðzÞ¼Γ0ðzÞ=ΓðzÞ and ΓðzÞ is the Gamma function [22].
In three dimensions, g3ðwÞ ¼ ð1 − w4 þ 4w2 logðwÞÞ=
ðw2 − 1Þ2 and Eq. (6) reads Vz=V0 ¼ ψ ð1Þ½1=ð2BÞ�=
ð2B2Þ − 1=B − 1, where ψ1ðzÞ stands for the derivative of
ψ0ðzÞ [22]. This result is plotted in Fig. 2 against the results
obtained for ABP in terms of the Langevin equation.
Interestingly, there is no strong signature of the onset of
the velocity condensation on the mean velocity.
Furthermore, while the expression for Vz differs from the
Langevin prediction for ABPs, we observe that for a general
B, the curve of the RT velocity lies in between those for
ABPs with Dr ¼ 1=ð2τrÞ and Dr ¼ 1=ðτrÞ [see Fig. 3(a)].
We obtain similar conclusions concerning the diffusion
coefficient D⊥ in the transverse direction ðxOyÞ (see
Ref. [23]), suggesting that, in spite of the velocity con-
densation, RTs are as efficient as ABPs in exploring their
environment.
Chemotaxis.—Chemotaxis refers to an angular depend-

ence in the mean duration of a run [5]. We first consider the

(a) (b)

FIG. 2. (a) Probability density P∞ðθÞ for RTs (2D) for (red
solid line) B ¼ 4 and (blue circle line) B ¼ 0.25. (Inset) The
distribution in the opposite direction to the magnetic field remains
comparable for both B ¼ 0.25 and B ¼ 4. (b) Fit of the experi-
ments by the RT model: (black crosses) experimental histogram;
(positive side, red solid line) RT fit with B ¼ 2.3; (negative side,
magenta solid line) RT fit with a mild rotary diffusion with
D0

r=τr ¼ 0.15 and B ¼ 3.2; (both sides, blue solid line) ABP fit
with B=D⊥ ¼ 4.5. The Kolmogorov-Smirnov error is of 7% for
the pure RT model and of 3% for the perturbed RT model.

(a) (b)

FIG. 3. Forward mean velocity Vz in three dimensions, nor-
malized by the velocity norm V0: (a) (red line) exact expression
for the velocity of a RT with an average step duration τr; (blue
solid line) ABP with Dr ¼ 1=τr; (blue dashed line) ABP with
Dr ¼ 1=ð2τrÞ. (b) RT Lévy walks case [ρðxÞ ∼ x−β, β ≤ 3]: (red
crosses) β ¼ 2.30 and (blue circles) β ¼ 3.30. Inset: log-scale
behavior at θ ≪ 1. Inset: in the limit B ≪ 1, Vz scales as Bξ

(black line), with ξ ¼ β − 2 ¼ 0.30 for β ¼ 2.30 < 3 and ξ ¼ 1
for β ¼ 3.30 ≥ 3.
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parallel chemotaxis case τrðθÞ ¼ 1þ χ cosðθÞ, which
favors runs in the direction of the magnetic field when
χ > 0. In units of τr, the Fokker-Planck equation reads [27]

B∂θðsin θPÞ − ð1þ χ sin θÞPðθÞ ¼ −ð1þ χhP sin θiÞ;
where hPj sin θi ¼ R

π
−π duPðϕÞ sinðϕÞ. We show that the

solution reads

PðθÞ ¼ γ
tanðθ=2Þ1=B
sinðθÞ1−ðχ=BÞ

Z
π

θ
dϕ

sinðϕÞ−χ=B
tanðϕ=2Þ1=B ; ð7Þ

for θ > 0, where γ ¼ 1þ χhpj sin θi. The constant
hpj sin θi is found as a solution of the self-consistency
equation: hpjsinθi¼hfpjci=ðλ0−ϵhfpjciÞ. From Eq. (7),
we find that a positive parallel chemotaxis lowers the value
of the critical magnetotatic constant above which the
velocity condensation occurs, as Bc ¼ 1 − χ. In contrast,
a transverse chemotactic field, as defined by τrðθÞ ¼
1þ χ sinðθÞ, will not change the value Bc ¼ 1 (see the
Supplemental Material [23]).
Lévy walks.—We show that the velocity condensation

phenomenon is further amplified for systems exhibiting a
Lévy statistics of the run period. Lévy walks are charac-
terized by heavy-tailed distribution of run duration: ρðxÞ ¼
1x>1ðβ − 1Þ=xβ with 2 < β < 3. The value β ¼ 2 corre-
sponds to a predicted optimal search strategy [28]. To apply
Eq. (3), we notice that πðtÞ ¼ ðβ − 2Þ=ðβ − 1Þt1−β, when
t > 1 [21], and that the function t → sinðθ⋆0Þ is sharply
peaked around t� ¼ − log½tanðθ=2Þ�=B. We find that the
velocity condensation occurs for any β > 2 as

P∞ðθÞ ∼
θ→0

γ
Bβ−1ðβ − 2Þ
ðβ − 1Þ

1

θ½logð1=θÞ�β−1 ; ð8Þ

where γ ¼ 0.46… both in two and three dimensions. This
expression corresponds to an enhanced condensation com-
pared to exponentially distributed runs. The mean velocity
is found in terms of an expression analogous to Eq. (6). We
truncate the functions gdðwÞ to its first order expansion at
w ¼ 1 to obtain,

Vz=V0 ∼
B→0

γd
Γð3 − βÞ
β − 1

Bβ−2; ð9Þ

where γ2 ¼ 1=2 and γ3 ¼ 2=3. The nonanalytical scaling
Bβ−2 in Eq. (9) corresponds to a highly sensitive directional
response at the onset of the stimulus detection (from B ¼ 0
to B > 0). In comparison, the velocity Vz is proportional to
B when B ≪ 1 for ABPs as well as for RTs with a finite
second moment for the run duration [e.g., β ≥ 3 in
Fig. 3(b)].
Collective behavior.—We finally consider the conse-

quence of the velocity condensation on the collective
behavior of a swarm [29–36]. We adapt the Maier-Saupe
mean-field treatment for a highly concentrated swarm of

interacting self-propelled rods [29] (see also Refs. [30–32]).
In contrast to previous results, which assumed a Boltzmann
distribution for the orientation distribution Eq. (1), we
use here the precise statistic of the orientation from
Eq. (3). Following Refs. [29,32], we consider that
interactions between bacteria result in an effective
torque acting uniformly on each bacterium: fðθÞ ¼
−U0A½P∞� sinð2θÞ, where U0 is the interaction strength
and A measures the local nematic order and is defined as
A½P∞� ¼

R
π
0 du cosð2uÞP∞ðuÞ in two dimensions and

A½P∞� ¼
R
π
0 duð3cos2u − 1ÞP∞ðuÞ in three dimensions.

Using Eq. (3), we compute the probability distribution
P∞ðSÞ that corresponds to an imposed value S ¼ A½P∞�.
The order parameter, denoted S⋆, is then found as the
solution of the following self-consistency equation:
S⋆ ¼ A½P∞ðS⋆Þ�. For RTs with exponential runs, the iso-
tropic phase (S⋆ ¼ 0) is destabilized above a critical value of

the interaction strength UðcÞ
0 > 1.87:τ−1r in favor of the

nematic phase. The phase diagram is alike for ABP
swimmers [32]. However, the probability distribution
diverges in both directions θ ¼ 0 and θ ¼ π for RTs within
the nematic phase (three dimensions). Within Onsager’s

theory, the quantity 1=UðcÞ
0 can be interpreted as an excluded

volume induced by steric interactions [37].
For RT Lévy walks, the phase diagram is drastically

changed due to destabilization of the isotrope phase (see
Fig. 4). Indeed, the order parameter should satisfy by the
following self-consistency equation:

S⋆ ¼ γd
Γð3 − βÞ
β − 1

ðU0S⋆Þβ−2; S⋆ ≪ 1; ð10Þ

where γ3 ¼ ð2β − 4Þ=5 in three dimensions. Because of the
behavior of the probability distribution in Eq. (10), Eq. (9)
displays an nonanalytical behavior with S⋆ ≪ 1. This Sβ−2

behavior implies that a solution S⋆ > 0 necessarily exists
for any value of the interaction strength U0 > 0. Hence, we
find that the isotropic phase is intrinsically unstable, as

UðcÞ
0 ¼ 0, which corresponds to a diverging excluded

(a) (b)

FIG. 4. Phase diagrams of the order parameter S� in three
dimensions in terms of the interaction strengthU0, and for several
values of B [see Eq. (2)]: (a) RTs with exponentially distributed
runs, (b) Lévy walks with β ¼ 2.6: S� > 0 for U0 > 0 even at
B ¼ 0 (blue circle curve); hence, the isotropic phase is intrinsi-
cally unstable.
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volume. Similar conclusions can be drawn in two dimen-
sions [γ2 ¼ 1=2 in Eq. (10)].
Experimentally, it appears that bacteria [38,39] and

immune cells [40] can perform Lévy walks with an
exponent β < 3, which is within our predicted regime of
a high sensitivity at the onset of the stimulus detection and
to collective motion [see Eqs. (9) and (10)].
Conclusion.— In this Letter, we exhibit a divergence in

the orientation response of the RT walk under torque. This
divergence is required to account the high directional
response of tumbling magnetotactic swimmer, even when
perturbed by a Brownian rotary noise [see Fig. 2(b)].
Experiments on MC–1 bacteria confirm the observation
that tumbling bacteria exhibit a stronger parallel or anti-
parallel response to the magnetic field, which cannot be
described by the standard ABP model. Based on our
analytical expressions for the orientation distribution, we
find that the noise statistic has a crucial impact on the onset
of collective motion. The fact that for Lévy runs, the
transition occurs in the limit of an infinite excluded volume
hints at a possible extension of Onsager’s theory [37] in
terms of a dynamical excluded volume that depends on the
noise statistic.

We thank J. Prost for suggesting the idea of a dynamical
excluded volume. We also thank François Detcheverry for
fruitful discussions. N.W. was supported by the AXA fund.
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