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We show that the shift in the transition temperature of the dilute homogeneous Bose gas is nonanalytic
in the scattering amplitude a. The first correction beyond the positive linear shift in a is negative and of
order a2 lna. This nonuniversal nonanalytic structure indicates how the discrepancies between numerical
calculations at finite a can be reconciled with calculations of the limit a ! 0, since the linearity is
apparent only for anomalously small a.
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The shift of the critical temperature of the dilute ho-
mogeneous Bose gas, Tc, with interactions has had a long
and controversial history [1–12] (and further references
therein). The correction to the ideal gas critical tempera-
ture, T 0

c , is now established theoretically [7,8] (see also
[6]) to be linear in the scattering length a in leading order

DTc

T 0
c

�
Tc 2 T 0

c

T0
c

� can1�3, an1�3 ! 0 , (1)

where n is the particle density. The variation of Tc is
determined primary by large distance, or small momenta,
contributions. Because of infrared divergencies around the
transition point, pertubation theory is not applicable, and
the coefficent c cannot be obtained by simple perturbative
techniques. Except in special cases, e.g., a large number
of internal degrees of freedom, the constant c must be
evaluated numerically.

However, even numerical calculations have not settled
this issue. Whereas Ref. [6] provides c � 2.33 6 0.25
from a direct calculation of the coefficient first taking the
limit an1�3 ! 0, Ref. [4] predicts c � 0.34 6 0.06 after
numerical extrapolation of the calculation to the limit a !

0. In this paper we show that the difference in these two
results is attributable to a nonanalytic structure, �a2 lna,
of the transition temperature in a. This correction, which
is negative, does not introduce a new length scale beyond
n21�3, but because of its logarithmic character it gives
rise to a strong dependence on a even in the very dilute
limit, an1�3 ! 0. Very recently, Refs. [10,11] obtained
c � 1.3 from a classical f4 model on a lattice extrapolated
to the continuum, a result qualitatively consistent with the
larger value found in Ref. [6]. In these calculations the
logarithmic terms enter as corrections to the continuum
limit.

Equation (1) is only the beginning of an asymptotic ex-
pansion, as one might suspect, since for a , 0 the system
0031-9007�01�87(12)�120403(4)$15.00
is unstable. Inclusion of the a2 lna term, when one ex-
trapolates numerical data from finite a values to the limit
a ! 0, provides a first resolution of the apparent discrep-
ancies between numerical calculations done at finite a [4]
and those valid for a ! 0 [6,10,11]. To obtain a quantita-
tive estimate, we explicitly calculate the logarithmic cor-
rection in a model with N internal degrees of freedom, to
leading order in 1�N . The result suggests that the linear in-
crease of DTc at small but finite a is noticeably suppressed
for the physical case of N � 2.

We consider a uniform system of bosons of mass m
at temperature T , and assume that the two-body interac-
tion can be described by the s-wave scattering length a.
Above the critical temperature, the density n is given in
terms of a sum over Mastubara frequencies, zn � 2pinT
�n � 61, 62, . . .�, of the single particle Green’s function
G�k, z�:

n � 2T
X
n

Z d3k
�2p�3

G�k, zn� , (2)

where �h̄ � kB � 1�

G21�k, z� � z 1 m 2
k2

2m
2 S�k, z� , (3)

and m is the chemical potential; the condition m � S�0, 0�
determines the Bose-Einstein condensation point.

The shift of the critical temperature at fixed density is
more conveniently calculated in terms of the shift, Dnc �
nc�a, Tc� 2 nc�0, Tc�, in the critical density at fixed T ;
the two shifts are related, to the orders of interest (less
than a2), by DTc�Tc � 2�2�3�Dnc�nc. As shown in [7],
the leading linear shift DT

�1�
c is given solely by the zero

Matsubara frequency term:

DT
�1�
c

T0
c

�
2T0

c

3n

Z d3k
�2p�3

�G�k, 0� 2 G0�k, 0�� (4)
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0
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U�k�
k2 1 U�k�

, (5)

where l � �2p�mT �1�2 is the thermal wavelength,
z �3�2� � 2.612 . . . , G0 is the Green’s function of the
ideal Bose gas at T0

c , and

U�k� � 2m�S�k, 0� 2 S�0, 0�� . (6)

At the critical temperature, U�k� can be calculated to order
a2�l4 by considering only the n � 0 sector, which corre-
sponds to a classical field theory. At the transition, U�k�
has the scaling structure,

U�k� �
a2

l4 s �kl2�a� , (7)

from which the linearity of DT
�1�
c in a follows [7,8]. If

U�k� is calculated by classical field theory, DT
�1�
c is strictly

linear in a.
The next-to-leading order corrections, DT

�2�
c , arise in

terms with nonzero Matsubara frequencies, both explicitly
[Eq. (2)] and in internal loops, in the calculation of U�k�.
As we show below, the internal loop corrections begin at
order a2 and a3 lna; the a2 lna terms may be extracted
from

DT
�2�
c

Tc
�

2T 0
c

3n

X
nfi0

Z d3k
�2p�3

�G�k, zn � 2 G0�k, zn�� . (8)

Since the infrared behavior is regular for n fi 0, we expand
the denominator of G to first order in S�k,zn � 2 m, and
write

DT
�2�
c

Tc
�

2T0
c

3n

X
nfi0

Z d3k
�2p�3

3
S�k, zn� 2 S�k, 0� 1 U�k��2m

�zn 2 k2�2m�2 . (9)

From pertubation theory we know the functional form of
U�k� outside the critical region in k,

U�k� ~
a2

l4 ln
kl2

a
, k ¿

a
l2 ; (10)

this logarithmic behavior is valid to all orders of pertuba-
tion theory, as one can verify by power counting. Since
the dominant contribution to the integral in Eq. (9) comes
from momenta k � l21, the ultraviolet behavior of U�k�
generates a logarithmic shift in the critical temperature:

DT
�2�
c

Tc
~

a2

l2 ln
a

l
. (11)

Since S�k, zn� 2 S�k, 0� tends to zero for large momenta
k, the contribution of this term in Eq. (9) remains of or-
der a2�l2. Thus the next-to-leading order to the critical
temperature shift is proportional to a2 lna and is always
negative for small a.

In order to estimate the shift quantitatively, we calculate
it in the large N model. The n � 0 sector, equivalent to
120403-2
a classical f4 field theory in three spatial dimensions, is
described by the action [13],

S�f�r�	 �
Z

d3r

(
NX

i�1

1
2

�=fi�r��2 2 mmT
X

i

f2
i �r�

1
u
4!

∑X
i

f2
i �r�

∏2
)

, (12)

with u � 96p2a�l2. The classical field theory suffers
from ultraviolet divergencies, which can be regularized
by introducing a large momentum cutoff L. As shown
in Refs. [7,8], the leading order corrections to the critical
density are dominated by long distance properties, and
U�k� is independent of the cutoff. Therefore one can derive
U�k� with a fixed cutoff L in the action, take the limit L !

`, and determine the corrections to the critical density from
Eqs. (5) and (9).

Instead of this procedure we will obtain the next-to-
leading order corrections in an independent way, which has
the advantage of making contact with the numerical f4

lattice calculations. Starting from the finite temperature
quantum field action, one can derive the effective action
of the classical field theory by integrating pertubatively
over the nonzero frequency quantum modes, n fi 0, which
provides a large momentum cutoff L �

p
mT � 1�l and

renormalized effective coefficients of the Euclidean action
[13]. Following [8], the corrections to the transition tem-
perature are given in this effective field theory by

DTc

Tc
�

4l

3pz �3�2�

Z L

0
dk

UL�k�
k2 1 UL�k�

, (13)

where the subscript L indicates the explicit dependence on
the ultraviolet cutoff which incorporates the leading effects
of nonzero Matsubara frequencies.

In the large N limit UL�k� is given in terms of the
particle-hole bubble, B�q�, by

UL�k� � 2
Nu2

18

Z L

0

d3q
�2p�3

B�q�
1 1 NuB�q��6

3

∑
1

�k 2 q�2 2
1
q2

∏
; (14)

to leading order in 1�N in three dimensions [13],

B�q� �
1

8q
2

6
Ng�L

1 O �L22� , (15)

where g� � 48p2�N . Following Ref. [8], we obtain the
critical temperature shift

DTc

Tc
�

4l

3pz �3�2�

Z L

0
dk

UL�k�
k2 . (16)

As we see from the L dependence of the bubble, Eq. (15),
the L dependence of UL�k� gives rise to higher order
corrections in L21. These terms arise effectively from
the internal nonzero Matsubara frequencies, and lead to
corrections �L22 lnL in DTc�Tc, which we can neglect.
Thus
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DTc
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l
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0
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Z Lt�k

0
dx

1
k�xk 1 1�

3

∑
x

2
log

j1 1 xj

j1 2 xj
2 1

∏
, (17)

where t � �Nu�48�21. To obtain the leading order cor-
rections we differentiate with respect to Lt, which allows
us to isolate the contributions around Lt ! `. Integrat-
ing back we find

DTc

Tc
�

8p

3z �3�2�
a

l

Ω
1 1 16N

a

l2L
ln

Na

l2L
1 O

µ
Na

l2L

∂æ
.

(18)

The integration constant is given by the large N result for
the linear shift, Ref. [8]. In contrast to the linear correc-
tions in a, the next-order terms depend on the short length
scale properties of the system, modeled by the cutoff L,
and therefore are not universal.

To estimate the influence of the logarithmic terms we
take N � 2 and Ll � �2p�1�2 in Eq. (18). The cor-
rections to the linear behavior of Tc found in this way
are precisely those one finds for N � 2 by including the
particle-hole bubble sum in U�k�. The resulting depen-
dence of the transition temperature on a is shown in Fig. 1.
For a gas parameter na3 � 1026, corresponding to the ex-
perimental region of Bose-Einstein condensation in atomic
gases [14] and liquid 4He in Vycor [15], and to the lowest
density Monte Carlo data of Ref. [4], the nonlinear cor-
rections depress the linear shift by �50%; instead of the
a ! 0 result c � 2.33 in Eq. (1), one obtains a coefficient
c � 1.2 for an1�3 � 1022. Even if the extrapolation from
the large N expansion to N � 2 is unjustified, this calcula-
tion suggests that the logarithmic terms play an important
role for present numerical and experimental parameters.
The noticeable depression of DTc in this parameter regime
is also confirmed by self-consistent numerical model cal-
culations [12].

A qualitatively similar strong dependence on a is found
in the renormalization group calculations of Ref. [3],
which derives an a lna correction [16]. Such a result
would follow from Eq. (5) were U�k� to be linear in k up
to an ultraviolet cutoff. However, in the regime a�l2 ø

L, corresponding to the dilute limit, a�l ø 1, U�k� is
given by the perturbative result (10) for momenta in the
region a�l2 ø k ø L rather than being linear in k.

The next-to-leading order corrections are important for
classical f4 calculations as well [10,11]; in the univer-
sal region where the influence of the ultraviolet cutoff L

is unimportant (L ! `� , classical field theory provides
perfect scaling, implying a linear shift of Tc for all a. Vari-
ations in a of DTc in [10] are due to nonuniversal correc-
tions and are sensitive to the details of the scheme used to
regularize the classical f4 theory [17]. Extrapolation to
the universal small coupling region, a�l2L ! 0, together
120403-3
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FIG. 1. Dependence of the transition temperature of a dilute
homogeneous Bose gas on scattering length, from Eq. (18) for
N � 2. The falloff of DTc�an1�3 with increasing an1�3 arises
from the nonuniversal next-to-leading order logarithmic correc-
tions. In the regime where the curve is represented by a dashed
line, higher order corrections begin to become important. The
dark circle is the calculation of Ref. [6]; the points shown as
open circles are the lowest density data from the numerical cal-
culations of Ref. [4]. The data point shown by the cross in-
dicates the numerical results of Refs. [10,11] for a lattice f4

theory extrapolated to the continuum.

with finite size scaling to the thermodynamic limit allows
one not only to extract the coefficient c of the linear shift
in Tc, but should also provide the magnitude of the nonuni-
versal a2 lna corrections for the physical case N � 2.
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