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Abstract. We study the effects of repulsive interactions on the critical density for the Bose-Einstein tran-
sition in a homogeneous dilute gas of bosons. First, we point out that the simple mean field approximation
produces no change in the critical density, or critical temperature, and discuss the inadequacies of vari-
ous contradictory results in the literature. Then, both within the frameworks of Ursell operators and of
Green’s functions, we derive self-consistent equations that include correlations in the system and predict
the change of the critical density. We argue that the dominant contribution to this change can be obtained
within classical field theory and show that the lowest order correction introduced by interactions is linear
in the scattering length, a, with a positive coefficient. Finally, we calculate this coefficient within various
approximations, and compare with various recent numerical estimates.

PACS. 05.30.Jp Boson systems – 05.30.-d Quantum statistical mechanics – 03.75.Fi Phase coherent atomic
ensembles; quantum condensation phenomena

1 Introduction

A precise description of the role of interparticle corre-
lations on the Bose-Einstein transition is indispensable
to understanding its physical nature; indeed, correlations
are expected to play an essential role in the very exis-
tence of superfluidity and related properties, vortices, flow
metastability, etc. In general, dilute systems offer the pos-
sibility of accurate microscopic treatments. The study of
the Bose-Einstein transition in very dilute gases could pro-
vide experimental tests of the theory. A large portion of
the literature on the modification of the transition tem-
perature is based on a simple transposition of one of the
most popular method of condensed matter physics, mean
field theory in various guises, where the correlations are
unmodified by the interactions and remain purely statis-
tical (as in an ideal gas). Mean field theories, for instance
Gross-Pitaevskii, successfully describe a broad variety of
interesting phenomena observable in experiments, for ex-
ample the spatial distribution of the gas in a harmonic
trap [1,2]; for a recent review of numerous successful ap-
plications of mean field theories in Bose-Einstein conden-
sation in atomic gases, see [3]. Our purpose in this paper is
to go beyond mean field theories and to explore the effects
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of correlations on the properties of the transition, studying
in particular how they modify the transition temperature.

We assume that the interparticle interaction can be
described by a positive scattering length a, equivalent to
the interaction of hard spheres of diameter a. We shall also
consider a dilute gas, i.e., work in the regime where a is
much smaller than the interparticle distance, an1/3 � 1,
where n is the particle density. The critical number den-
sity, n0

c , of an ideal gas is given by

n0
cλ

3 = ζ(3/2) ' 2.612, (1)

where λ is the thermal wavelength

λ =
h√

2πmkBT
, (2)

ζ the Riemann zeta function; m the particle mass and kB

Boltzmann’s constant. Note that since at the transition
λ ∼ n−1/3, the diluteness condition is equivalent to a� λ.

In an interacting gas, the critical value of the degen-
eracy parameter, ncλ

3, is modified; the first order change
in the critical temperature is related to that in the degen-
eracy parameter by

∆Tc

T 0
c

= −2
3
∆(ncλ

3)
n0

cλ
3
· (3)

Because mean field theories effectively treat physical sys-
tems as ideal gases with modified parameters, the di-
mensionless degeneracy parameter keeps exactly the same
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value as in an ideal gas1. To calculate its change as a
function of the interactions it is necessary to go beyond
mean field theories and include correlations arising from
the interactions.

One might expect repulsive interactions to increase the
degeneracy parameter – equivalently, to decrease the crit-
ical temperature, Tc, at constant density; in general, the
presence of hard cores tends to impede the motion of the
particles necessary for quantum exchange effects, therefore
reducing the influence of quantum statistics and the crit-
ical temperature. For example, the superfluid transition
temperature of liquid 4He is below that of an ideal gas
of the same density. Moreover, applying pressure to liquid
4He effectively increases the role of the repulsive core of
the potential, and decreases the critical temperature2.

Studies on the effect of interactions on the transition
began in the 1950’s with the work of Huang, Yang, and
Luttinger [5], who concluded that the phase transition of
the interacting Bose gas “more closely resembles an ordi-
nary gas-liquid transition than the Bose-Einstein conden-
sation,” but they did not make a specific prediction for the
change in Tc. Shortly thereafter Lee and Yang [6] predicted
an increase of Tc proportional to a1/2; later, in reference [7]
they corrected this result and concluded that the shift of
the critical temperature is linear in a, with no prediction
for the magnitude or even the sign of the effect. In 1960,
Glassgold et al. predicted again a positive temperature
shift proportional to a1/2 [8]. Later, Huang predicted an
increase ∼ a3/2 [9], and recently [10], he predicted that Tc

increases as a1/2, using the same virial expansion as that
of reference [6]. Despite the lack of qualitative agreement
among these many solutions of the problem, these studies
showed that the changes in question were not merely due
to excluded volume effects (proportional to the cube of
the hard core diameter a) but to more interesting quan-
tum effects, proportional to a smaller power of a.

The problem lay dormant for two decades until it was
revisited by Toyoda [11], who studied the transition in
the Bogoliubov approximation in the condensed phase.
This work predicted a decrease of the critical tempera-
tures at constant density proportional to a1/2. As the sign
agreed with the measurements in liquid 4He, the ques-
tion appeared settled. Toyoda’s result was reinforced by
numerical Path-Integral Quantum Monte Carlo calcula-
tions showing that the effect of interparticle repulsion was
indeed to decrease the critical temperature [12,13]. Never-
theless, at the time of these calculations, the issue did not
have the same experimental interest as it has now, and
it was not fully appreciated that these calculations were
limited to relatively high densities and did not explore the
region of dilute systems.

1 Mean field theories can lead to a change of the effective
mass [4], which in turn affects the value of the thermal wave-
length in (1); with this effect included, the critical value of the
degeneracy parameter remains the same as for the ideal gas.

2 In liquid 3He, the repulsive cores similarly reduce the effect
of quantum statistics, so that the magnetic susceptibility is
significantly higher than in an ideal Fermi system with the
same density.

With the prospect of experimental realization of
Bose-Einstein condensation in dilute gases, Stoof [14,15]
carried out many-body and renormalization group analy-
ses concentrating on the dilute regime. Stoof’s work con-
tains interesting precursors to the present work, e.g., ref-
erence [14] predicts a linear positive shift in the critical
temperature about twice that of our estimate in [16]. Ref-
erence [15] predicts more structure in the a dependence of
the effect, ∼ a ln a, [17], qualitatively similar to the a2 ln a
we describe below [18].

A surprise came when the Monte Carlo calculations
for hard sphere bosons were extended to lower densities
and showed, in addition to the depression of Tc at high
densities, the existence of a low density regime where the
critical temperature is indeed increased by the interac-
tion [19]. At very low densities the shift of the critical
temperature was found to be

∆Tc

T 0
c

= c n1/3a, (4)

with c ' 0.34, determined by a numerical extrapolation
to the limit a→ 0. However, a more recent explicit Monte
Carlo calculation [20] of the leading correction to the ideal
gas behavior predicts a prefactor c ' 2.3. One source of
the discrepancy lies in the non-analytic dependence of Tc

on a, discussed below, which gives rise to non-linear cor-
rections at the densities where the Monte Carlo calculation
of reference [19] was performed.

In the past several years, the problem was attacked
by analytic approaches based on self-consistent non-linear
equations derived both in the Ursell operator formal-
ism [21], and the Green’s function formalism [16]. One
finds in both approaches that the effect of repulsive in-
teractions is to decrease the degeneracy parameter, thus
increasing the critical temperature at constant density.
Moreover, reference [16] proves the linearity of ∆Tc in a.
This was done by observing that the dominant contribu-
tion to the shift in the critical density can be calculated
by restricting the propagators to their zero Matsubara fre-
quency sector, thereby reducing the quantum many-body
problem to a classical field theoretical problem in three
spatial dimensions. An alternative proof of the linearity
in a based on renormalization group arguments is pre-
sented in [22]. While references [16,21,22] all agree on the
functional form, they do not provide definitive quantita-
tive predictions for the prefactor; reference [21] provides
c ∼ 1, and an estimate in reference [16] of an exact for-
mula for ∆Tc/T

0
c predicts c ∼ 2−3. In the limit of a large

number N of components [22], c = 8π/3ζ(3/2)4/3 ' 2.33;
interestingly, this exact result for N →∞ agrees with the
numerical result c = 2.33±0.25 of reference [20] for N = 2.
The reduction of the problem to classical field theory has
been exploited in the recent calculations of the transition
in classical φ4 field theory on the lattice extrapolated to
the continuum [23,24], which give c ' 1.3.

The linearity in a is a non-trivial, non-perturbative re-
sult. Since the interaction is itself linear in a, one might
imagine deriving this result in some form of simple per-
turbation theory. However, the first order term in a, for
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fixed density, vanishes identically, while all higher order
terms have infrared divergences. Nonetheless, various au-
thors have attempted to skirt the infrared problems. For
example, reference [25] unjustifiably “regularizes” diver-
gences in sums that appear at the transition with an an-
alytic continuation of the Riemann zeta function3. Sim-
ilarly, reference [10] uses a virial expansion, unjustified
at the critical point, as we discuss below. In another ap-
proach, reference [26] attempts to exploit differences in
first order perturbation theory between the canonical and
grand-canonical ensembles in finite volume; this perturba-
tive approach necessarily fails in the thermodynamic limit,
preventing a direct determination of the critical tempera-
ture. In reference [27] finite-size-scaling is used to reconcile
this approach with the grand-canonical calculations. Ref-
erence [28] calculates Tc with the help of an “optimized
linear delta expansion, which avoids infrared divergences
and operates for anyN ; forN = 2 the authors find c ∼ 3.0,
but the validity of the method is difficult to assess, and
the accuracy of this result may be affected by uncontrolled
errors.

The aim of this paper is to summarize current under-
standing of the problem of the transition temperature. We
provide a more detailed account of our earlier analytical
calculations, and in addition compare the Green’s function
and Ursell calculations. The paper is organized as follows:
In the next section we recall features of the Bose-Einstein
transition in an ideal gas and show how the addition of
a mean repulsive field does not alter the critical value of
the degeneracy parameter. Then in Section 3 we include
correlations and obtain, using alternatively the Ursell and
Green’s function formalisms, simple self-consistent equa-
tions which reveal the physical origin of the change in the
critical temperature. In Section 4 we show that the dom-
inant contribution to the change in the critical tempera-
ture can be calculated using a classical field approxima-
tion, and we show that the resulting change is linear in the
scattering length. Section 5 is devoted to numerical calcu-
lations of the coefficient c, and to a numerical exploration
of the range of validity of the linear behavior. We focus
throughout on a spatially uniform system; a discussion of
the transition temperature of a dilute gas in a trap can
be found in references [2,29,30]. For experimental data in
the 4He-Vycor system, see [31].

2 Ideal gas, mean field and related
calculations

In a homogeneous system, the number density of a non-
condensed ideal Bose gas is given by

n =
∫

d3k

(2π)3

1
eβ(ε0k−µ) − 1

=
1
λ3
g3/2(z) (5)

3 Indeed, the method of reference [25] applied to the simplest
case of the non-interacting Bose gas implies that as µ goes to
zero ∂n/∂µ = λ3

T ζ(1/2)/T , which is finite and negative, in
contradiction to the divergence of the compressibility of the
ideal gas.

with β = 1/kBT , µ is the chemical potential, z = exp(βµ)
the fugacity, and (~ = 1)

ε0
k = k2/2m; (6)

the Bose (polylogarithmic) function gp(z) is defined by

gp(z) ≡
∞∑
j=1

zj

jp
· (7)

As µ tends to zero from negative values g3/2(z) →
ζ(3/2) corresponding to the maximum density for a non-
condensed gas at a given temperature given by equa-
tion (1).

The simplest way to include repulsive interactions is
in mean field. Assuming that all the effects of interactions
can be described by an s-wave scattering length, one can
generalize equation (5) by writing:

n =
1
λ3
g3/2(eβ(µ−∆µ)) (8)

where the shift of the chemical potential ∆µ is propor-
tional to the number density:

β∆µ = 2gnβ = 4aλ2n, (9)

and g = 4π~2a/m. Equation (8) is a simple consequence of
the Hartree-Fock approximation, using a pseudopotential
proportional to a, in which the shift of the single particle
energies is given by

ΣHF = 2gn; (10)

the factor of two comes from exchange. Since ΣHF is inde-
pendent of momentum we have to increase the chemical
potential by ∆µ = ΣHF to keep the same particle density
as the ideal gas. The same results are obtained in Section 4
of reference [21].

Because the Hartree-Fock self-energy depends on the
density, the relation between the chemical potential at
the transition and the critical density is more compli-
cated than in the non-interacting case, and the equation
µ−∆µ = 0 is non-linear. Its solution is conveniently ob-
tained with the geometrical method of [21], illustrated in
Figure 1. At fixed µ and β, with β∆µ as a variable, the
density is obtained through (8); then a simple construc-
tion provides the value of ∆µ corresponding to the tran-
sition. Finally, the density as a function of µ varies as
shown in Figure 2 (full line); it behaves similarly to that
of the ideal gas. However, the transition now occurs at a
positive value of the chemical potential and the compress-
ibility (1/n2)∂n/∂µ is finite, in contrast to the ideal gas
where it diverges. As mentioned in the introduction, the
critical density remains exactly the same as for the ideal
gas, because at the transition µ = ∆µ and thus the crit-
ical density is given by the same integral as for the ideal
gas.

It is instructive to use this simple mean field model
to test the limit of simple approximations in an exactly
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Fig. 1. Plot of the density nλ3 as a function of the shift of
the chemical potential β∆µ, for different values of the chem-
ical potential βµ. For a given value of βµ, the self-consistent
solution is given by the intersection point (circle) of this curve
with the straight line β∆µ = 4aλ2n.

n

0
µ

λ

µ

3

c

2.61

Fig. 2. Variations of the density nλ3 as a function of the
chemical potential predicted in mean field (full line), for small
constant value of the interaction parameter a/λ. The dotted
line corresponds to the ideal gas. The mean field solution curve
shows no maximum, but a constantly increasing density as a
function of the chemical potential. On the other hand, any
finite expansion in orders of a/λ leads to divergences around
µ = 0 and may introduce spurious extrema (dashed line).

soluble case. Expanding the right side of equation (8) in
powers of a/λ we find the virial expansion:

nλ3 = g3/2(z)− 4
a

λ
g1/2(z)g3/2(z)

+ 8
(a
λ

)2

g3/2(z)
{

2
[
g1/2(z)

]2 + g3/2(z)g−1/2(z)
}

+ . . . .

(11)

Now, if as reference [10] we consider only the first two
terms of the expansion we find that the density (the bro-
ken lines in Fig. 2) develops a maximum for a negative
value of µ; since the density must always be an increasing
function of µ, it then becomes tempting to infer that a
phase transition should take place at this point. As seen
in the figure, this point corresponds to a smaller density
than for the ideal gas; this reasoning would then predict an
increase of the critical temperature, at constant density,

proportional to
√
a, precisely the result obtained in [10].

But one should keep in mind that in this simple model
the density maximum is just an artefact of the first or-
der virial expansion, as illustrated by the absence of any
maximum in the full curve of Figure 2; in fact, inclusion of
second order terms in a of (11) makes the maximum disap-
pear4. From the original equation (7), the critical density
cannot change. Similar arguments were already given in
references [32] and [21]; sufficiently close to µ = 0, higher
order terms diverge faster and, eventually, dominate the
lower order terms in any viral expansion5.

The simple example above illustrates the dangers of
truncating an expansion in a, even within the mean field
approximation. The physical origin of the difficulty is sim-
ple: the very essence of Bose-Einstein condensation is the
appearance of long exchange cycles over the system, which
cluster together all particles that they contain [35]; there-
fore, the phenomenon is not easily captured within any
formalism containing a limitation on the size of clusters;
further discussion of the effect of long exchange clusters on
the position of the Bose-Einstein transition can be found
in [19]. One must be very careful in truncating pertur-
bative expansions in which nominally higher-order terms
turn out to be of comparable order; rather it is necessary
in general to sum an infinite number of terms.

In the calculation of Toyoda [11], the only mean field
taken into account is that due to the condensed particles
below the transition temperature. His approximation is in
fact lowest order Bogoliubov theory. While this theory de-
scribes correctly the ground state at zero temperature and
its elementary excitations, its extension near the critical
temperature meets several difficulties; in particular it pre-
dicts a first order phase transition [33], a point not taken
into account. In fact, above Tc, Toyoda’s calculation of the
free energy is just that of an ideal gas, with no shift in the
critical temperature.

3 Self-consistent equations

In this section, as well as in the rest of this paper, we
concentrate on the non-condensed state and approach the
critical temperature from above. As we have seen in the
previous section, mean field effects which produce merely
a constant shift in the single particle energies around Tc

do not affect the value of the critical temperature. A mod-
ification of Tc thus requires the inclusion of correlations;
whose effect of such correlations is to lower the single par-
ticle occupation at small k. Thus, as the temperature is

4 The second order terms given in reference [10] differ from
those of equation (11); nevertheless they do not change our
argument.

5 The end of the discussion of Section 3.3 of reference [32]
was given specifically for the case of attractive interactions;
then, instead of a density maximum, the naive first order virial
correction model predicts the disappearance of the transition,
which is replaced by a simple crossover between two regimes.
For repulsive interactions, the sign of the first order correc-
tion is opposite, and the density maximum occurs as in refer-
ence [10].
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lowered, the chemical potential reaches the lowest single
particle energy for a value smaller than in mean field, re-
sulting in a decrease of nc.

It is instructive at this stage to consider the highly
oversimplified model in which correlations push down only
the level k = 0 and all other levels are treated within
mean field. Then, at the transition, when the k = 0 level
hits the chemical potential, the other particles experience
a constant energy shift µ̄ > 0 with respect to the level
k = 0, and the critical density is given by:

nc =
∫

d3k

(2π)3

1
eβ(ε0k+µ̄) − 1

=
1
λ3

g3/2

(
e−βµ̄

)
. (12)

Since µ̄ is small, one can expand the Bose function
g3/2

(
e−βµ̄

)
:

g3/2

(
e−βµ̄

)
= ζ(3/2)− 2

√
πβµ̄. (13)

In fact, in calculating the change in the critical density
∆nc = nc−n0

c , one can equivalently expand the statistical
factor in (12) at small k:

1
eβ(ε0k+µ̄) − 1

→ 1
β(ε0

k + µ̄)
(14)

and arrive at the result:

∆nc = nc − n0
c ≈

∫ ∞
0

dk
π2

m

β
k2

(
1

k2 + 2mµ̄
− 1
k2

)
= − 2

λ3

√
πβµ̄. (15)

We shall often use the approximation (14) in the following.
We note here that it is valid provided only momenta k �
λ−1 contribute significantly to the integral (15), which
requires

√
2mµ̄� λ−1. Since we expect the first correction

beyond mean field to be βµ̄ ∼ (a/λ)2, this condition is
satisfied if a� λ.

As anticipated, the correlations that push down the
level k = 0 lead to a decrease of the critical density, and
hence to an increase of the critical temperature. Further-
more, the magnitude of the effect is not necessarily ana-
lytic in the small change µ̄ of the chemical potential, and
hence in the interaction strength a. In fact, the expected
result βµ̄ ∼ (a/λ)2 together with equation (15) lead to
∆nc/nc ∼ a/λ. To include correlations more generally we
consider two approaches, that of Ursell operators used al-
ready for this problem in [21], and that of finite temper-
ature field theory. Before deriving detailed results, let us
spend a moment comparing the two approaches.

Within finite temperature field theory one typically
carries out a systematic expansion of the properties of
a many-body system, e.g., the pressure, in powers of
the interaction V , using either unperturbed Green’s func-
tions G0 or self-consistent ones, G. Ursell operators pro-
vide a different approach to calculating thermodynamic
properties of an interacting many-particle system, and
lead naturally to expansions in terms of correlations of
higher and higher orders. The Ursell operator of rank n,

Un, describes the correlations of a system of n interact-
ing Boltzmann particles. For example, the operator U2,
defined by

U2 = e−β(p2
1/2m+p2

2/2m+V (r1−r2)) − e−β(p2
1/2m+p2

2/2m),
(16)

accounts for two-body correlations. One expects that ma-
trix elements of Un vanish between states in which one
of the particles is far away from the others, and, in the
tradition of cluster expansions, one writes expansions of
thermodynamic functions in powers of the Ursell opera-
tors Un. Every term of such an expansions is expected
to be finite, even for highly singular potentials such as
hard spheres. Inclusion of the specific bosonic or fermionic
statistics gives rise to exchange cycles.

Solved exactly, both formalisms give in principle iden-
tical results for static thermodynamic properties, and de-
tailed comparisons of how specific approximations can be
formulated in either approach can be found in [34]. In the
following we study the effects of correlations by means of a
simple self-consistent approximation which can be derived
in either formalism. This simple self-consistent approxi-
mation leads to a nonanalytic change in the spectrum at
small k.

3.1 Ursell operators

We briefly summarize the principal results obtained in [21]
with the Ursell method, reformulated here in a way to
make a ready comparison with the Green’s function ap-
proach. More details are given in the Appendix.

Reference [21] provides the general diagrammatic rules
to obtain the reduced one-body density operator in mo-
mentum space, ρk, as a function of the ideal gas Bose dis-
tribution, fk, and the Ursell operators Un (n ≥ 2). Quite
generally, above the critical point the single particle den-
sity operator has the form of a Bose distribution, but with
modified single particle energies6,

ρk = fk(µ− δµk) =
1

eβ(ε0k+δµk−µ) − 1
· (17)

The particle number density is given in terms of ρk by

n =
∫

d3k

(2π)3 ρk. (18)

When looking for leading order corrections one can
safely ignore Ursell operators, Un, with n ≥ 3. The re-
sulting topological structure of the diagrams of the Ursell
perturbation series then becomes equivalent to that of the

6 Since δµk is real and plays the role of correcting the ideal
gas energy in the Bose distribution, the energies k2/2m+ δµk
may be regarded as those of statistical quasiparticles, in the
sense of reference [36] for the Fermi liquid. Such statistical
quasiparticles are not equivalent to those obtained from the
Green’s functions.
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(a)

(b)

(c)

(d)

Fig. 3. (a) First order Ursell diagrams; the double line cor-
responds to one operator U2. Here we slightly change the rep-
resentation of reference [21] and replace the dotted segments
there (corresponding to a summation over all exchange cycle
lengths) by closed curves; in this way, the U2 diagrams become
very similar to the usual Green’s function diagrams. Despite
this close graphical similarity, the physical interpretation of the
diagrams is different: for instance, exchange cycles do not ap-
pear at all in Green’s function diagrams. (b) Simplest examples
of the diagrams included in the iteration. (c) Diagrams leading
to equations (24) and (106). (d) Bubble diagrams leading to
equation (109).

perturbative expansion using Green’s functions with two-
body interactions. Furthermore, by treating the matrix
elements of U2 as momentum independent, one quanti-
tatively recovers the perturbation theory of the Green’s
function approach with a momentum-independent cou-
pling constant related to the s-wave scattering length a.
Finally, as we shall see below, at the critical point the den-
sity operator ρk becomes large at small momenta, ρk � 1
for k → 0, so that the approximation

1 + ρk ' ρk ' [β(ε0
k + δµk − µ)]−1 (19)

can be used systematically (as in (29) below). These re-
marks explain why the results that we obtain using Ursell
operators will eventually be identical to those obtained
within the Green’s function approach in the particular
limit of a� λ.

To obtain the mean field result, equation (32) of ref-
erence [21], we iterate the first order diagrams shown in
Figure 3a (examples of iterated diagrams are shown in
Fig. 3b); this leads to:

ρk = fk(µ−∆µ), (20)

with

β∆µ ' 4aλ2

∫
d3k

(2π)3
ρk = 4aλ2n. (21)

In this approximation the only effect of the interactions
is to produce a momentum independent shift of the single
particle energies which, as discussed in the previous sec-
tion, can be absorbed in a shift of the chemical potential:

µ′ = µ−∆µ, (22)

leaving the critical density identical to that of the ideal
gas.

To go beyond mean field, we include in the self-
consistent equation for ρ the corrections displayed in Fig-
ure 3c. These are formally of second order in a/λ and read
(Sect. 5 of [21]):

ρk = fk(µ′ − δµk), (23)

with

βδµk ' −8
(a
λ

)2

λ6

∫
d3k′

(2π)3

∫
d3q

(2π)3
ρk′ ρk′−q ρk+q .

(24)

Note how the integral (24), in which momentum conser-
vation appears explicitly (q is the momentum transfer in a
binary collision), introduces a k-dependence of the energy
shift, as opposed to the result of the simple mean field
approximation.

We assume that the single particle state with k = 0
still has the lowest energy, so that the phase transition
occurs when

µ′ − δµk=0 = 0. (25)

The critical density is then given by

nc =
∫

d3k

(2π)3
ρk =

∫
d3k

(2π)3
fk(δµk=0 − δµk), (26)

which, because of the k-dependence of δµk, does not coin-
cide with the critical density of the ideal gas obtained for
constant δµ. Instead

∆nc = nc − n0
c =
∫

d3k

(2π)3
[fk(δµk=0 − δµk)− fk(δµk=0)].

(27)

In general, δµk − δµk=0 is an increasing function of k, so
that ∆nc is negative.

The variable appearing in equation (26),

δµk − δµk=0 ' −
8
β

(a
λ

)2

λ6

∫
d3k′

(2π)3

×
∫

d3q

(2π)3
ρk′ ρk′−q [ρk+q − ρq] , (28)
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can be simplified if we notice that when the critical condi-
tion (25) is fulfilled the dominant contribution to the inte-
grals comes from small momenta for which the statistical
factors fk diverge. In fact, if the fk’s are evaluated with
the free particle spectrum, the integral in (24) becomes
logarithmically divergent in the infrared. To see that, we
expand the fk’s as in (14),[

eβ(ε0k−µ′+δµk) − 1
]−1

' 1
β(ε0

k + δµk − µ′)
· (29)

Setting

εk = ε0
k + δµk − δµk=0, (30)

we obtain the self-consistent relation valid at small k,

εk = ε0
k − 8

(
aλ2

β2

)2 ∫ d3k′

(2π)3

×
∫

d3q

(2π)3

1
εk′

1
εk′−q

[
1

εk+q
− 1
εq

]
· (31)

A simple power counting argument indicates the integral is
logarithmically divergent if we replace the self-consistent
energies ε by the free ε0

k. For the self-consistent spectrum,
however, no infrared divergences occur, as we shall see in
Section 3.3.

3.2 Green’s functions

In the normal state the single particle Green’s function
G(k, zν) is given

G−1(k, zν) = zν + µ− ε0
k −Σ(k, zν), (32)

where k is the single particle momentum, and zν = 2πiν/β
is a Matsubara frequency, with ν = 0,±1,±2, . . . The
self-energy Σ(k, z), which describes the effect of the in-
teractions, can be obtained as a series in powers of the
interaction strength a by standard diagrammatic tech-
niques [4,37–39]. The single particle density matrix is re-
lated to G by

ρk = −T
∑
ν

ezν0+
G(k, zν). (33)

The criterion for condensation is that the chemical po-
tential µ reaches the bottom of the single particle exci-
tation spectrum, and we again assume, as in Section 3.1,
that the lowest single particle state is that with k = 0. The
transition point is then determined by the condition [40]:

G−1(0, 0) = 0 or Σ(0, 0) = µ . (34)

At that point,

G−1(k, zν) = zν − ε0
k − [Σ(k, zν)−Σ(0, 0)] . (35)

(a)

(b)
Fig. 4. (a) Green’s function diagrams leading to equation (36),
similar to Figure 3c. (b) Green’s function bubble diagrams
leading to equation (97), similar to Figure 3d.

To first order in the interaction strength, the self-
energy is given by the Hartree-Fock approximation7, lead-
ing to a contribution ΣHF (see Eq. (10)) independent of
both k and z which can then be eliminated by a redefini-
tion of the chemical potential, as discussed above.

The structure of Σ(k, z) in next order is described by
the two diagrams in Figure 4a. The second is the exchange
term of the first, and within the present approximation
in which the matrix elements of the interaction do not
depend on momenta, the two contributions are equal. Re-
placing the free propagators by their Hartree-Fock version,
we have

Σ(k, zν) = 2g2

∫
d3k′

(2π)3

d3q

(2π)3

× fk′(1 + fk′+q)(1 + fk−q)− (1 + fk′)fk′+qfk−q
zν + µ′ + ε0

k′ − ε0
k′+q − ε0

k−q
· (36)

Because the condensation condition (34) involves only the
Matsubara frequency zν = 0, we concentrate from now
on this contribution. Furthermore, as before, we isolate
the dominant contribution by expanding the statistical
factors, so that fk ∼ T/ε0

k, and

Σ(k, 0)−Σ(0, 0) ' −2g2T 2

∫
d3k′

(2π)3

d3q

(2π)3

× 1
(ε0
k′ − µ′)(ε0

k′−q − µ′)

(
1

ε0
k−q − µ′

− 1
ε0
q − µ′

)
· (37)

7 Implicit in this expression is the summation of two-body
collisions via the t-matrix, which relates the two-body poten-
tial to the scattering length a at low energies. The summa-
tion is made with diagrams where the intermediate propaga-
tors are free, corresponding to two particles interacting in the
vacuum [41].
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Replacing the bare energies ε0
k by the dressed energies

ε0
k+Σ(k, 0), observing that µ′ = Σ(0, 0) at the transition,

and setting

εk = ε0
k +Σ(k, 0)−Σ(0, 0), (38)

we recover equation (31). Note that the earlier δµk−δµk=0

is simply Σ(k, 0)−Σ(0, 0).

3.3 Discussion

The change of the critical density is intrinsically related to
δµk (or equivalently Σ(k, 0)) by equation (26). In terms of

U(k) = 2m [δµk − δµk=0] = 2m [Σ(k, 0)−Σ(0, 0)] , (39)

the change of the critical density introduced by the inter-
action is

∆nc =
∫

d3k

(2π)3

{
1

eβ[k2+U(k)]/2m − 1
− 1

eβk2/2m − 1

}
(40)

or

∆nc ' −
2
πλ2

∫ ∞
0

dk
U(k)

k2 + U(k)
, (41)

where in the second line we have used the approxima-
tion (14).

The heart of the calculation of the critical density is
then to determine the function U(k), a non-trivial task,
since the evaluation of this function by naive perturbation
expansion fails because of infrared divergences. However,
higher order iterations lead to an instability in the en-
ergy spectrum at small momenta, as in reference [21]. In
the limit of an infinite number of iterations, the spectrum
around k = 0 hardens: the self-consistent solution of (24)
leads indeed to εk ∼ k3/2, as predicted by Patashinskii
and Pokrovskii [42] using the following argument.

For free particles, the integral in equation (37) contains
six powers of momentum in both the numerator and de-
nominator, and is thus logarithmically divergent. In order
to ensure that the self-consistent solution, εk, converges in
the infrared limit, εk must behave (modulo possible log-
arithmic corrections) as ∼ kα with α < 2, so that the
free particle energies, ε0

k ∼ k2, can be neglected at small
k with respect to Σ(k, 0) − Σ(0, 0). With this behavior,
Σ(k, 0)−Σ(0, 0) ∼ k6−3α, so that we find a self-consistent
energy spectrum, εk ∼ Σ(k, 0)−Σ(0, 0) ∼ kα, for α = 3/2.

The modification of the spectrum occurs only for small
momenta k � kc, where kc is a scale that will be specified
below. We note here only that since U(k) is of order a2/λ4,
one expects kc to be of order a/λ2. For momenta kc �
k → ∞, perturbation theory becomes applicable leading
to U(k)/k2 → 0. The typical momenta involved in the
integral (41) are of order kc. The validity of equation (41)
for k � λ−1 requires kc � λ−1, which is satisfied in the
dilute limit.

We later present numerical self-consistent solutions of
equation (31). Here we reconsider the simple analytical

model calculation of reference [16] which provides an es-
timate for the scale kc, and acts as a reference for the
numerical results presented later. In this analytical model
we construct a self-consistent energy spectrum at the crit-
ical point:

εk =
~2k2

2m
+Σ(k, 0)−Σ(0, 0) (42)

within the approximation (37) for the self-energy, which
we write as

Σ(k, 0)−Σ(0, 0) = −2g2T

∫
d3q

(2π)3
B(q)

(
1

εk−q
− 1
εq

)
,

(43)

where the bubble diagram contributes

B(q) = T

∫
d3p

(2π)3

1
εpεp+q

· (44)

To extract the low momentum structure, below the
scale kc, we evaluate the most divergent terms of equa-
tion (43) using the following ansatz:

εk = k1/2
c

~2k3/2

2m
Θ(kc − k) +

~2k2

2m
Θ(k − kc). (45)

With this spectrum, equation (44) becomes

B(q) ' 4m
π~2λ2kc

[
ln
(
kc

q

)
+ c

]
, (46)

where c ≈ 2 + 2 ln 2− π/2 =1.816, and in the limit k → 0
the self-energy is

Σ(k, 0)−Σ(0, 0) =
1024π~2

15m

( a
λ2

)2
(
k

kc

)3/2

· (47)

Identifying the right side of this equation with
k

1/2
c ~2k3/2/2m, the self-consistency condition, equa-

tion (45), in the limit k → 0 implies that

kc = 32
(

2π
15

)1/2
a

λ2
≈ 20.7

a

λ2
· (48)

As expected, the scale of the low momentum structure is
a/λ2. However, one should note that the large value of the
numerical factor implies that the range of validity of the
calculation is limited to very small values of a/λ (so that
the condition kc � λ−1 is fulfilled).

The energy spectrum obtained with this analytical
model is only self-consistent for wavevectors k � kc. In
the limit k � kc we assume that εk goes over to the free
particle spectrum εk ' ~2k2/2m, ignoring here a loga-
rithmic correction (see Sect. 5). We smoothly interpolate
between these limits, writing

U(k) =
2m
~2

(Σ(k, 0)−Σ(0, 0)) =
k

1/2
c k3/2

1 + (k/kc)3/2
· (49)
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Thus we estimate the critical temperature as

∆Tc

Tc
=

4λ
3πζ(3/2)

∫ ∞
0

U(k)
k2 + U(k)

' 3 an1/3. (50)

While the precise coefficient is sensitive to the details
of the interpolation between the low and high k limits,
e.g., (49), the result remains of order unity in any case.

The k3/2 spectrum is only an approximation and is
not stable if higher order corrections are included; from
the general theory of phase transitions, at Tc, εk ∼ k2−η,
where η = ε2/54 ' 0.02 in an ε = 4 − D expansion
or η = 8/(3π2N) ' 0.14 in the large N limit (with
N = 2) [43]. This model provides too strong a modifica-
tion of the spectrum at small momenta.

The model calculation illustrates however the basic
mechanism behind the change of the degeneracy parame-
ter, the modification of the single particle energy spectrum
at small momentum. This may be understood as a result
of correlations among particles caused by their repulsive
interactions: particles minimize their repulsion by avoid-
ing each other in space, i.e., by correlating their positions;
the physical origin of the effect is therefore a spatial rear-
rangement that affects the atoms with low momentum. By
contrast, atoms with high momenta have too much kinetic
energy to develop significant correlations. The modifica-
tion of the spectrum translates into a modification of the
population of the various levels. In particular the low mo-
mentum levels at momentum scale ∼kc are less populated
than they would in a mean field approximation at the
same density, and the overall result is a decrease of the
critical density.

The hardening of the spectrum obtained as a solution
of the self-consistent equations, which is responsible for
the decrease of the critical density, also provides a cure
for the infrared divergences which occur in the perturba-
tive calculation in second order. However, as we shall see
in the next section, such divergences appear in all orders
in perturbation theory, so that we need a more general
scheme to approach the problem.

4 Classical field approximation

In this section we extend the discussion of the previous
section in a way that is at the same time more general, in
that it is not restricted to any particular class of diagrams,
and less general, in that only the linear corrections to the
density are investigated.

4.1 Breakdown of perturbation theory

Our main goal is the calculation of the critical density.
As an intermediate step, we distinguish in equation (33)
for ρk the contribution of zero and non-zero Matsubara
frequencies:

ρk = −TG(k, 0)− T
∑
ν 6=0

G(k, iων). (51)

The density is obtained by integrating over momentum k
(see Eq. (18)). The terms with ν 6= 0 are regular at small
momentum since a non-vanishing Matsubara frequency
provides an infrared cutoff. They provide corrections to
the density, that are analytic in the self-energy, and there-
fore of the same order as Σ, starting at order a2 (modulo
possible logarithmic corrections). On the other hand, the
integral for ν = 0 is singular for small k, and the infrared
divergences introduce non-analyticity in a. Since, we are
interested here in the dominant correction to the critical
density, we will retain only this term in ρk. Note that the
resulting expression for the density is ultraviolet diver-
gent, a problem bypassed by calculating the change in the
critical density.

As illustrated by the example of the previous section,
infrared divergences also occur in the calculation of self-
energies Σ(k, 0); we now use simple power counting argu-
ments to analyze these divergences. Let us first consider
diagrams in which all the internal lines carry zero Matsub-
ara frequencies. It is convenient here to introduce a new
notation and set

ε0
k − µ′ = (k2 + ζ−2)/2m. (52)

The quantity ζ, a the mean field correlation length, is
given by

~2

2mζ2
= −µ′ = −(µ−ΣHF); (53)

ζ plays the role of an infrared cutoff in the integrals. Note
that ζ →∞ (µ′ → 0) when T → T 0

c . In the perturbation
series, we take the intermediate propagators to be neither
free, nor fully self-consistent as in the previous section,
but containing the mean field contributions. All the func-
tions that are integrated in the diagrams then appear as
products of fractions of the form[

K2 + ζ−2
]−1

, (54)

where K denotes a generic combination of momenta; it is
then natural to use the dimensionless products Kζ as new
integration variables. Consider then a diagram of order an.
The lowest order n = 2 has been already explicitly written
in (37), and it is proportional to (a/λ)2 ln(kζ), where k is
the external momentum. For n > 2, every additional order
brings in one factor a from the vertex, one integration over
three-momenta, a factor T , and two Green’s functions (the
internal lines). The contribution of the diagram can thus
be written as:

T
(a
λ

)2
(
aζ

λ2

)n−2

F (kζ), (55)

where F is a dimensionless function, which we do not ex-
plicitly need here. The main point is that when one ap-
proaches the critical temperature, the coherence length
becomes large so that the summation of terms (55) di-
verges. In the critical region, ζ is ∼ λ2/a, so that all the
terms in the perturbative expansion are of the same order
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of magnitude. Therefore, at the critical point, perturba-
tion theory is not valid.

Let us now assume that in a given diagram some prop-
agators carry non-zero Matsubara frequencies so that one
momentum integration will be altered. For that integra-
tion, the presence of an additional imaginary term 2iπνT
in the denominators of the propagators ensures that no
singularity at k = 0 can take place. Essentially, in the
corresponding propagators, ζ is replaced by a term pro-
portional to λ, so that one factor aζ/λ2 in (55) is now
replaced by a/λ. Compared to the diagram with only van-
ishing Matsubara frequencies, this diagram is down by a
factor a/λ, and thus negligible in a leading order calcula-
tion of Σ.

4.2 Classical field approximation

The diagrams where all Matsubara frequencies vanish are
those of an effective theory for static fields. Ignoring the
non-zero Matsubara frequencies is indeed equivalent to ig-
noring the (imaginary) time dependence of the field oper-
ators. In this approximation the many-body problem re-
duces to a classical field theory in three space dimensions.

The energy of a classical field configuration is given by

H =
∫

d3r

(
|∇ϕ(r)|2

2m
− µ′|ϕ(r)|2 +

2πa
m
|ϕ(r)|4

)
. (56)

The zero Matsubara component of the density is given by
〈|ϕ(r)|2〉. By assumption, the wavenumbers of the classical
field are limited to k less than an ultraviolet cutoff Λ ∼
λ−1. As one approaches the critical region, k <∼ kc, all the
terms in the integrand of (56) become of the same order
of magnitude:

k2
c

2m
∼ µ′ ∼ a

m

T

µ′
k3

c , (57)

where (T/µ′)k3
c is the contribution to the density of the

modes with k ∼ kc. From equation (57) we see that
kc ∼ a/λ2. For k ' kc perturbation theory in a makes
no sense, and in fact all terms in the perturbative expan-
sion are infrared divergent. For kc � k � λ−1, perturba-
tion theory is applicable. Note that, in the critical region,
ζ ∼ 1/kc ∼ λ2/a.

By a simple rescaling of the fields ϕ→
√
mTφ, one can

write the effective action for the classical field theory as

−H/T=
∫

d3r

(
1
2
|∇φ(r)|2 −mµ′|φ(r)|2+

4π2a

λ2
|φ(r)|4

)
.

(58)

The rescaled fields φ have the dimensions of an inverse
length. The classical theory contains ultraviolet diver-
gences, which spoil simple dimensional arguments for the
linear change of Tc.

4.3 Linear dependence of the density correction

We now consider a diagrammatic expansion of Σ in terms
of the full zero frequency Green’s function, defined by:

−2mG−1(k) = k2 − 2mµ+ 2mΣ(k, a,G,Λ), (59)

from here on we omit the explicit index ν = 0 in Σ and G.
In this self consistent expression the self-energyΣ depends
on µ only through its dependence on G. Instead of µ, we
use the dimensionless parameter α defined by

−2mµ+ 2mΣ(0) = α
a2

λ4
· (60)

The parameter α controls the distance to the critical point;
it vanishes exactly at the transition, as opposed to µ. In
terms of α the Green’s function is now given by:

−2mG−1(k) = k2 + α
a2

λ4
+ U(k), (61)

where

U(k) = 2mΣ(k, a,G,Λ)− 2mΣ(0, a,G,Λ). (62)

Since Σ depends only on the full Green’s function, U(k)
depends only on α and not on Σ(0); moreover, the ul-
traviolet divergence in Σ(k) is only logarithmic, and the
difference U(k) is independent of the cutoff Λ in the
limit Λ→∞.

If we assume that Λ→∞, the power counting analysis
of Section 4.1 implies that

U(k) =
a2

λ4
σ̃

(
kλ2

a
, α

)
. (63)

Inserting this result into (41) and making the change of
variable x = kλ2/a, one finds

∆nc = − 2a
πλ4

lim
α→0

∫
dx

σ̃(x, α)
x2 + σ̃(x, α)

, (64)

showing that the change in the critical density is indeed
linear in a.

This result assumes that the limit σ̃(x, α → 0) is well
defined. This is the case in the self-consistent schemes that
we discussed above; they avoid the infrared problem of
perturbative calculations, and lead to well defined values
of ∆nc. Similarly, in calculations involving resummations
of bubbles or ladder diagrams the cutoff is provided by an
effective screening explicitly generated by the infinite re-
summations. Large N techniques lead to a similar screen-
ing, with the advantage of also providing an expansion
parameter [22,44].

On the other hand, situations where the limit σ̃(x, α→
0) is problematic are encountered in perturbation theory
where, for reasons discussed above, an infrared cutoff is
needed; determination of this cutoff through the conden-
sation condition can lead to spurious a dependence (an ex-
plicit example is worked out in detail in the next section).
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The linearity of the shift in the critical density does not
depend on the ultraviolet cutoff and is thus an universal
quantity. Nevertheless, the universal behavior implicity as-
sumes that the limit Λ→∞ has been taken and is strictly
valid only in the limit a→ 0. If a is not sufficiently small,
the classical field approximation ceases to be valid and
non-linear corrections appear. The classical field approxi-
mation requires that all momenta involved in the various
integrations are small in comparison with Λ ∼ λ−1 or, in
other words, that the integrands are negligibly small for
momenta k ∼ λ−1. Only then, for instance, can we use
the approximate form of the statistical factors (29). This
requires in particular that k ∼ kc � Λ, yielding a/λ� 1.
In fact, because, as we shall see, the relation between kc

and a/λ involves a large number, this regime is reached
only for very small values, a/λ <∼ 10−2 − 10−3.

5 Explicit calculations

Our goal in this section is to provide specific illustrations
of the discussions of the previous sections. We first present
analytical calculations which shed light on the difficulties
encountered when attempting to calculate the shift in the
critical temperature using perturbation theory. Then we
show how partial resummations of the perturbative ex-
pansion generate screening of long range correlations and
allow an explicit calculation of the self-energy, and then of
the transition temperature. Finally we present results of
numerical self-consistent calculations, which we compare
with the analytical counterparts, and evaluate the limi-
tations of the classical field theory. The accuracy of such
approximative schemes is difficult to gauge a priori. An
alternative is to use lattice calculations to solve the three-
dimensional classical field theory. Results of such calcula-
tions have been presented recently [23,24].

5.1 Second order perturbation theory

In order to illustrate the difficulties that one meets in per-
turbative calculation near Tc, let us return for a moment
to the second order self-energy diagram, which is the low-
est order diagram that introduces correlations and there-
fore corrections to the critical density. The value of this
diagram for vanishing Matsubara frequencies is given by
equation (37)

Σ(k)−Σ(0) = −2g2T 2

∫
d3k′

(2π)3

d3q

(2π)3

× 1
(ε0
k′ − µ′)(ε0

k′−q − µ′)

[
1

ε0
k+q − µ′)

− 1
ε0
q − µ′

]
, (65)

where g = 4πa/m.
We note that Σ(k) is the convolution of three factors

of the form 1/(k2 + ζ−2), with ζ defined in equation (53).
Using the Fourier transform∫

d3k

(2π)3

eikr

k2 + ζ−2
=

1
4πr

e−r/ζ , (66)

we obtain

2mΣ(k) = −128π2
( a
λ2

)2
∫
r2drj0(kr)

(
e−r/ζ

r

)3

,

(67)

where j0(x) ≡ sinx/x. This expression contains, as antici-
pated, a logarithmic divergence at small distances. Let us
isolate this divergence by separating the Bessel function
j0(x) into its value at the origin and a correction term:

j0(x) = j0(0) +
(

sinx
x
− 1
)
· (68)

The first term gives a momentum independent contribu-
tion, given by Σ(0). Introducing a cutoff 1/Λ to control
the ultraviolet divergence, we obtain

2mΣ(0) = 128π2
( a
λ2

)2

Ei
(
− 3
Λζ

)
≈ −128π2

( a
λ2

)2
[
ln(

Λζ

3
)− γ

]
, (69)

where γ = 0.577 . . . is Euler’s constant, and Ei the ex-
ponential integral function. The last approximate equal-
ity is valid when Λζ � 1, which we assume to be the
case. The second term, which is regular and equal to
2m(Σ(k)−Σ(0)) = U(k), does not require a cutoff. The
result is

U(k)=− 128π2
( a
λ2

)2
∫ ∞

0

(j0(kr) − 1)
e−3r/ζ

r
dr

=128π2
( a
λ2

)2
{

3
kζ

arctan
kζ

3
+

1
2

ln

(
1+
(
kζ

3

)2)
− 1

}
·

(70)

This equation implies that U(k) is a monotonically in-
creasing function of k, ∼ k2 at small k, and growing loga-
rithmically at large k. This logarithmic behavior, obtained
in perturbation theory, remains in general the dominant
behavior of U(k) at large k, i.e., for ζ−1 � k <∼Λ.

Our result for U(k) can now be used in equation (41) in
order to determine the change in the critical density from
equation (41). Because U(k) > 0, this change is negative.
We get:

∆nc = − 2
πλ2

∫ ∞
0

dk
U(k)

k2 + U(k)

= − 2
πλ2

kc

∫ ∞
0

dx
Jσ(x)

x2 + J2σ(x)
, (71)

where we have set

x = kζ kc = 8π2 a

λ2
, U(k) ≡ k2

c σ(x), J = ζkc.

(72)

Note that for small x, σ(x) ∼ x2/27π2 while at
large x, σ(x) ∼ 2 (ln(x/3) − 1)/π2. The function
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σ(x)/x2 ∝ ∆εk/εk gives an indication, independent of the
specific values of the parameters, of the range of values of
x over which the single particle spectrum is significantly
modified, and hence of the range of momenta contribut-
ing to ∆nc: this function monotonically decreases with x,
reaching half its maximum value for x ≈ 7, and about
1/10 of its maximum when x ≈ 20 − 30. Comparison of
this momentum scale with the characteristic momentum
scale of higher Matsubara frequencies (1/λ ∼ 1/Λ) gives
a constraint on the values of a for which the calculation is
meaningful. In particular, a has to be small enough that
a/λ� 1

30 (J/8π2).
As noted earlier, the momentum dependence of Σ(k)

is essential for ∆nc to be non-vanishing. In this second
order calculation, the (statistical quasiparticle) spectrum
remains quadratic at small k, and is given by

εk →
k2

2m

(
1 +

J2

27π2

)
, for k → 0. (73)

As expected, the spectrum of the interacting system is
harder than the free spectrum. In the present approxi-
mation, it is identical to the spectrum of non-interacting
particles with an effective mass m∗ < m.

The final result for ∆nc depends on the infrared cutoff
ζ, which can be determined by the condensation condition
µ′ = Σ(0):

1
ζ2

=
2
π2

k2
c

[
ln
(
Λζ

3

)
− γ
]
. (74)

In principle the ultraviolet cutoff Λ could be eliminated by
an appropriate counterterm calculable in the full theory.
Alternatively, one could calculate Σ(0) from the expres-
sion (36) involving the complete statistical factors. The
result of such a calculation would be to replace the term
ln(Λζ) in equation (69) by ln(ζ/λ), up to a numerical ad-
ditive constant. Here we shall simply choose an ultraviolet
cutoff Λ = 1/λ, keeping in mind that there is arbitrari-
ness in the procedure which affects the final result, since
for a/λ� 1, then ζ � λ, and ln(ζ/λ) will eventually dom-
inate. Nevertheless, it is instructive to solve the equation
above for ζ as a function of a with this choice of cutoff.
Typical values are given in the table below:

a/λ ζ/λ J c

0.01 6.5 5.1 2.4
0.001 23 1.8 0.90
10−4 153 1.2 0.60
10−5 1208 0.95 0.47
· · · · · · · · · · · ·

10−9 7.5106 0.59 0.29
10−10 7.0107 0.55 0.27
10−11 6.5108 0.51 0.25

The behavior of ζ with a is understandable: if a is large,
condensation takes place far from the mean field value,
hence the small ζ. If a is small, condensation takes place

near the mean field value for which ζ →∞. In fact equa-
tion (74) shows that ζ ∼ λ2/a up to a logarithmic correc-
tion. The last column of the table gives the coefficient c in
equation (4) for ∆Tc. The variation of ∆Tc with a follows
closely that of J

∫
dxσ(x)/x2 = J/6π; that is, the term

in J2 in the denominator plays almost no role8.
This simple calculation also illustrates the limits of

a perturbative approach. The infrared cutoff introduces
a new scale in the problem which spoils the argument
leading to the linearity of the a-dependence of ∆Tc (c is
not a constant). The condensation condition (74) which
relates the infrared cutoff to the microscopic length λ,
induces a spurious logarithmic correction which does not
vanish as a→ 0.

5.2 Non self-consistent bubble sums

The previous calculation illustrates how the mixing of ul-
traviolet and infrared divergences in perturbation theory
can produce spurious a dependences. It is therefore desir-
able to find approximations in which the infrared cutoff
is internally generated. One such approximation was al-
ready presented in Section 3.3. We turn now to another,
the resummation of bubble diagrams, as illustrated in Fig-
ure 4b. Again, the quality of such an approximation can
only be gauged by a comparison with an exact calcula-
tion, except in large N limit where the bubble summation
becomes exact itself [22,44].

The one bubble diagram can be calculated explicitly.
Keeping an infrared cutoff, we have

B(q) = T

∫
d3p

(2π)3

1
(ε0
p − 1/2mζ2)(ε0

p+q − 1/2mζ2)

=
4π
λ4Tq

arctan
qζ

2
· (75)

In the infinite cutoff limit (ζ →∞) this simplifies into

B(q) =
2π2

λ4T

1
q
· (76)

The Fourier transform of B(q) is nothing but the leading
contribution to the density-density correlation function.
At the critical point this correlations behaves as 1/r2, so
that density fluctuations are correlated over very large
distances; this is the physical origin of the infrared di-
vergences of perturbative calculations. Nevertheless, these
fluctuations can be screened, for instance by summing the
bubble or ladder diagrams. The respective contributions
of the two classes of diagrams actually differ only by the
number of exchange diagrams. For the bubble sum, the
correlation function reads

B(q)
1 + 2gB(q)

=
2π2

λ4T

1
q + kc

, (77)

8 Note that these second order results are closely related to
the perturbative calculation of [21] where c ∼ 1 was obtained
by looking at values 0.001 ≤ a/λ ≤ 0.01.
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and is now regular at small q. The screening wave number
kc is given by

kc = 8π2 a

λ2
· (78)

In the ladder approximation the factor of 2 in the de-
nominator of (77) is absent, and, correspondingly, kc =
4π2a/λ2.

Now, an infrared cutoff is no longer needed in the cal-
culation of U(k), and the limit ζ →∞ can be taken. One
finds

U(k) = − 2
π2
k2

c κ

∫ ∞
0

dx
1

1 + xκ

[
x

2
ln
∣∣∣∣1 + x

1− x

∣∣∣∣− 1
]
,

(79)

where κ ≡ k/kc. To study the limiting behavior of U(k)
at large and small k, it is convenient to transform this
expression as follows. First we integrate twice by parts to
obtain

U(k) = − 2
π2

k2
c

κ

∫ ∞
0

dx
2(1 + xκ)[ln(1 + xκ)− 1]

(1− x2)2
· (80)

Taking the derivative of the integrand with respect to κ
which obtain

d
dκ

∫ ∞
0

dx
2(1 + xκ)[ln(1 + xκ)− 1]

(1− x2)2
=

1
2

∫
dx ln(1 +xκ)

×
(

1
(1− x)2

− 1
(1 + x)2

)
=

κ2

1− κ2
lnκ. (81)

The κ integral can now be expressed in terms of the poly-
logarithmic function gp(x), defined in equation (7); the
integration constant is chosen to make U(k = 0) = 0.
Thus,

U(k) = − 2
π2

k2
c

κ

{
κ[1− lnκ] +

1
2

lnκ ln(1 + κ)

+
1
2

[g2(1− κ) + g2(−κ)]− π2

12

}
· (82)

However, to derive the limiting behavior of U(k) it is more
convenient to take the limits in equation (81) and integrate
afterwards.

For small κ (κ = k/kc
<∼ 0.1), U(k) is well approxi-

mated by its small k behavior:

U(k) = − 2
3π2

k2

(
ln
k

kc
− 1

3

)
, k � kc. (83)

As expected from perturbation theory, U(k) grows loga-
rithmically for large momenta, k, and for k/kc

>∼ 50, U(k)
is well approximated by:

U(k) =
2k2

c

π2

(
ln
k

kc
− 1
)
, k/kc � 1. (84)

From the small k behavior of k2 + U(k) one can es-
timate the critical index η. The logarithmic term in-
dicates a modified power law in the low momentum

limit ∼ k2−η ∼ k2(1 − η ln k + ...). Comparing the co-
efficients of the logarithmic terms we obtain

η =
2

3π2
≈ 0.068. (85)

Due to the exchange contributions this value differs by a
factor of 2 from the usual large N results9.

The change in the critical density is now

∆nc = − 2kc

πλ2

∫ ∞
0

dκ
σ(κ)

κ2 + σ(κ)
· (86)

Let us first estimate the range of κ0 = k0/kc where σ(κ)
dominates over κ2. Using the small k asymptotics of U(k)
we estimate κ0

<∼ exp[−3π2/2] � 1. Therefore, we can
again ignore the term in σ(κ) in the denominator of (86)
without making a significant error; it only brings in an
harmless singularity at small κ. We get then:

∆nc

nc
=

4kcλ

π3ζ(3/2)

∫ ∞
0

dκ
κ

∫ ∞
0

dx
1 + xκ

(
x

2
ln
∣∣∣∣1 + x

1− x

∣∣∣∣− 1
)
.

(87)

In order to calculate the integral, we want to exchange
the orders of the κ and x integrals. Since the integrals,
however, are not absolutely convergent, before we do so
we need to introduce a regularization, inserting a factor
κε in the κ integral, and taking the limit ε → 0+. With
this factor we may exchange the orders of integration. The
κ integral becomes∫ ∞

0

dκ
κε−1

1 + xκ
=

1
εxε
· (88)

The remaining x integral becomes∫
dxx−ε

(
x

2
ln
∣∣∣∣1 + x

1− x

∣∣∣∣− 1
)
. (89)

For ε = 0 this integral vanishes identically. Thus we may
replace x−ε by x−ε − 1 which goes to −ε lnx as ε → 0.
The remaining integral is∫

dx lnx
(
x

2
ln
∣∣∣∣1 + x

1− x

∣∣∣∣− 1
)

= −π
2

8
· (90)

9 Note however that the expansion in powers of η is mean-
ingful only if the magnitude of η is controlled by a small pa-
rameter, such as in the ε-expansion or the 1/N-expansion. The
estimate presented here should therefore not be viewed as a
particular prediction for the critical index η; it gives neverthe-
less an indication of how the spectrum is modified at small k by
the resummation of particle-hole bubbles. Another estimate of
the effect of bubble summation was presented in reference [16];
there we tried to estimate the change of the spectrum with re-
spect to the k3/2 self-consistent solution. Once the bubble sum
is included however, self-consistency does not further alter the
spectrum at low momentum, as later in this section. As a re-
sult, the exponent η that one finds here is much smaller than
the crude estimate in reference [16].
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The factors of ε cancel out, and we find

∆nc

nc
= − kcλ

2πζ(3/2)
= − 4π

ζ(3/2)
a

λ
· (91)

We finally obtain the changes in the transition density and
the transition temperature:

∆nc

nc
= − 4π

ζ(3/2)4/3
an1/3

∆Tc

Tc
= −2

3
∆nc

nc
' 2.33 an1/3, (92)

this result for the bubble sum agrees with the leading or-
der result of the 1/N expansion. It is interesting to observe
that the leading order 1/N result is independent of N .
Since aN is kept constant in the 1/N expansion, kc is ef-
fectively independent of N (kc = 2π2aN/λ2), while U(k)
is of order 1/N . Therefore, the approximation of neglect-
ing U(k) in the denominator of equation (86) is justified
in the 1/N expansion.

In the bubble sum, we can keep U(k) in the denomina-
tor and calculate the integral in equation (86) numerically,
and find a reduction the linear coefficient of the critical
temperature shift from c = 2.33 to c = 2.20 for N = 2. In
this approximation the condensation condition reads

2mΣ(0) = −2k2
c

π2

∫ Λ/kc

0

dx
1

1 + x2
=

2k2
c

π2
ln

kc

Λ+ kc
,

(93)

which gives the mean field correlation length,

1
ζ2

=
2k2

c

π2
ln

1
λkc
· (94)

As before we have taken Λ = 1/λ and assumed that
λkc � 1. As opposed to the second order calculation,
equation (74), the condition (93) does not mix the in-
frared and ultraviolet cutoff, and does not introduce any
spurious a dependence in the final result for the shift in
the critical temperature.

The condensation condition (93) is the only place
where the microscopic scale λ enters explicitly. However,
the classical field theory result for ∆Tc assumes implicitly
that the contributions of momenta k ∼ λ−1 are vanish-
ingly small. Alternatively, if we were to cut the integra-
tion in (86) off at k ∼ Λ, one should find a result inde-
pendent of the specific value of Λ >∼ λ−1. In fact we have
seen that the momenta important in the determination of
∆Tc are k ∼ kc. The validity of the classical field approx-
imation requires that kc � λ−1, or, since kc = 8π2aλ2,
a/λ� 1/8π2; thus, the linear regime is attained only for
anomalously small a. When a is not so small, non-linear
corrections ∼ a2 ln(a/λ) appear, which tend to decrease
the value of ∆Tc, as discussed in reference [18] (see also
below).

In reference [14], Stoof examines the appearance of
Bose-Einstein condensation, calculating the shift of the
critical density within a real time formalism. The ap-
proach includes not only the mean field contributions

but also sums of ladder graphs within the many-body
T -matrix-approximation. He derives an analytical formula
for the modification of the energy spectrum, from which
he derives a relative increase of the critical temperature,
4.66 an1/3, exactly twice the value of the large-N calcu-
lation [22]. Summing ladders, and neglecting U(k) in the
denominator of equation (86) we indeed reproduce this
result. Evaluating the entire integral numerically, one ob-
tains c = 3.90.

5.3 Self-consistent calculations

We now solve numerically the self-consistent calculations
discussed in Section 3.3. We quantitatively compare three
different approximations for the self-energy, the one bub-
ble approximation, equation (43),

Σ(k)−Σ(0) = −2g2T

∫
d3q

(2π)3
B(q)

(
1

εk−q
− 1
εq

)
,

(95)

and, to compare with previous calculations, the ladder
summation of particle-particle scattering processes

Σ(k)−Σ(0) = −2g2T

∫
d3q

(2π)3

B(q)
1 + gB(q)

(
1

εk−q
− 1
εq

)
·

(96)

And, finally, the bubble summation of particle-hole scat-
tering processes

Σ(k)−Σ(0) = −2g2T

∫
d3q

(2π)3

B(q)
1 + 2gB(q)

(
1

εk−q
− 1
εq

)
,

(97)

the energy spectrum εk in the denominators are deter-
mined self-consistently using equation (42); B(q) is given
in equation (44).

Although the integrals in equations (95–96) giving the
difference of the self-energies, U(k) = 2m[Σ(k) − Σ(0)],
are convergent, we introduce a large momentum cutoff Λ
for their numerical evaluation (U(k ≥ Λ) ≡ 0). Only in
the limiting case Λ → ∞, will U(k) become independent
of Λ; for any finite cutoff, the energy spectrum depends
weakly on Λ. The cutoff enters only through the dimen-
sionless parameter Λλ2/a. For the numerical calculation
the value Λλ2/a ' 800 was used. For the self-consistent
bubble calculation we further studied the influence of the
cutoff to extrapolate numerically to the limit Λ→∞.

Figure 5 summarizes the numerical results of this sec-
tion in terms of the self-energies Σ(k)−Σ(0) correspond-
ing to the three different approximations. The various
curves in Figure 5 display the logarithmic growth of U(k)
at large k. Note however that within the present approx-
imations the overall magnitude of U(k) is determined
by the behavior of the spectrum at small k: the harder
the spectrum, the larger U(k), and the larger the value
of c. Nevertheless, the values of the shifts in the criti-
cal temperature remain comparable. For instance, for the



G. Baym et al.: Bose-Einstein transition in a dilute interacting gas 121

U

x

(a)

(b)

(c)

0

400

800

1200

1600

2000

0 100 200 300 400 500

Fig. 5. Self-energy U(k) in units of a2/λ4 plotted as a function of x = kλ2/a for the three approximations discussed in the
text: (a) self-consistent one bubble approximation, (b) self-consistent ladder summation, and (c) self-consistent bubble sum.
These result are obtained with an ultraviolet cutoff of Λλ2/a ' 800. The dashed line shows the analytical (not self-consistent)
calculation of U(k) in the bubble approximation, equation (82).

value of the cutoff given above, the shifts of the criti-
cal temperature that we obtain from equation (41) are:
∆Tc/T

0
c ' 3.8 an1/3 for the self-consistent one bubble cal-

culation, ∆Tc/T
0
c ' 1.6 an1/3 for the self-consistent bub-

ble sum, and ∆Tc/T
0
c ' 2.5 an1/3 for the self-consistent

ladder sum. These values still depend weakly on the value
of the ultraviolet cutoff Λ, and still contain logarithmic
corrections ∼ a2 ln(a/λ), as we shall see below.

We now compare in more detail these results with our
analytical calculations and discuss briefly the extrapola-
tion Λ → ∞, i.e. the extrapolated result of the bubble
summation is ∆Tc/Tc ' 2.0an1/3.

5.3.1 Self-consistent one-bubble calculation

In the limit k → 0, we expect to recover the k3/2 behav-
ior of the analytical model of Section 3.3. By fitting the
numerical data to the following functional form

2m(Σ(k)−Σ(0)) =

k
1/2
c k3/2

1 + a1/2(k/kc)1/2 + a1(k/kc) + a3/2(k/kc)3/2 + ...
, (98)

we extract a momentum scale kc, which agrees quantita-
tively with that of the analytical calculation, kc ∼ 20 a/λ2.
However, the spectrum very soon deviates from this be-
havior, due to the large value of the coefficient a1/2 ' 0.9.
At intermediate wavevectors, around kc, U(k) is roughly
linear, and eventually grows logarithmically for k � kc,
as expected from perturbation theory.

5.3.2 Self-consistent bubble sum

As we have seen in a previous example the main effect
of self-consistency is to modify the spectrum at low mo-
mentum, avoiding infrared divergencies. Since, however,
the bubble sum already provides a screening of the long
range correlations leading to the infrared divergences, we
do not expect qualitative changes in U(k) in going from
the non self-consistent result of Section 5.2, to the fully
self-consistent calculations. This behavior can be seen in
Figure 5: deviations occur only at high momenta, mainly
due to the influence of the finite cutoff in the numerical
solution.

To study more quantitatively the influence of a large
but finite cutoff Λ we have performed a self-consistent cal-
culation of U(k) numerically for several values of Λλ2/a.
As explained in reference [18] we expect a logarithmic de-
pendence on Λλ2/a; therefore we have used this functional
form to fit our numerical data, which provides

∆Tc

Tc
' 1.95 an1/3

[
1 + 32

an1/3

Λλ
ln
(

21
an1/3

Λλ

)]
,

Λ/a� 1. (99)

Extrapolating to Λ → ∞ we obtain c ' 2.0, which is
slightly smaller than the shift obtained for the non self
consistent bubble sum. Alternatively, taking a finite value
forΛλ that is independent of a, e.g. Λλ ∼ 1, provides a log-
arithmic correction which limits the linear regime to very
small values of an1/3. The precise value of this correction
is model dependent, as we see in the following subsection.
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Fig. 6. Dependence of the transition temperature, Tc/T
0
c , of a dilute homogeneous Bose gas on scattering length a/λ, calculated

by solving equations (100, 101) self-consistently. The dashed line is a fit to the data points, given by equation (102). The
asymptotic linear behavior extracted from this fit is shown for comparison. The linear behavior is seen only at very small values
of a/λ.

5.3.3 Influence of non-zero Matsubara frequencies

Non-linear corrections to the critical temperature shift
cannot be obtained within the zero Matsubara frequency
sector. One possibility would be to use an effective field
theory which includes the effects of non-zero frequencies,
e.g., as new vertices in the effective action. Here, we use a
different approach, solving the following pair of non-linear
equations,

εk =
~2k2

2m
+Σ(k)−Σ(0),

Σ(k)−Σ(0) = −2g2T

∫
d3q

(2π)3

B(q)
1 + 2gB(q)

(
1

εk−q
− 1
εq

)
,

(100)

where the cutoff in the bubble diagram integral

B(q) ' β
∫

d3p

(2π)3
fpfp+q (101)

is no longer a simple step function, but rather the
smoother Bose function fk = (exp(βεk) − 1)−1. We cal-
culate the shift in the transition temperature using equa-
tion (40). Although this does not correspond to a system-
atic approximation, it provides an illustration of the effect
of keeping the full statistical factors in the calculation (in-
stead of using their classical limit).

In Figure 6 we show the calculated critical tempera-
ture in the dilute region. The Bose functions in (40) lead
to a2 ln a corrections in ∆Tc/Tc. On the other hand, the
Bose functions in the bubble diagram, equation (101) lead
to less singular corrections. We ignore them here and fit
the the numerical data to the same functional form of
equation (99) as in the last subsection, and find,

∆Tc

Tc
' 1.9an1/3

[
1 + 2.6an1/3 ln

(
3.1an1/3

)]
. (102)

Even in the very dilute region, n1/3a ∼ 0.01, the logarith-
mic corrections are noticeable and reduce the temperature
shift with respect to the linear prediction. This provides
a possible explanation for the discrepancy of the different
Monte Carlo results [20,23,24] and [19]; whereas refer-
ences [20,23,24] calculated the linear corrections directly
in the limit n1/3a → 0, reference [19] performed several
calculations in the density regime 10−6 < na3<∼0.1 find-
ing a shift of the critical density much smaller than ex-
pected from the linear formula of references [20,23,24].
Although the logarithmic corrections tend to decrease
this linear shift, the approximations underlying equa-
tions (100) and (101) are too crude to allow quantitative
comparison.

In [15] Bijlsma and Stoof, using renormalization group
techniques, obtained an increase of the critical temper-
ature. A peculiar feature of their results is that the de-
pendence of the critical temperature on the dimensionless
parameter an1/3 is given by an unusual curve, going as
a lna in the limit of vanishing interaction [17]. The inter-
pretation of such an unexpected dependence is discussed
in reference [18].

6 Conclusion

In this paper, we have studied the effects of particle in-
teractions and correlations on the transition temperature
for Bose Einstein condensation, and derived the leading
effects beyond mean field in dilute systems. Our study is
general and not limited to any particular approximation,
for instance an arbitrary selection of class of diagrams in a
perturbation expansion. We have shown that the leading
term in the change of the critical density is first order in
the scattering length a, and can be derived by solving
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the corresponding classical field theory. Estimating an-
alytically the coefficient requires in general uncontrolled
approximations. Among the various approximations that
we have tried, our preferred result is the self-consistent
calculation of the sum of bubble diagrams, which gives a
coefficient 2.0. However this number should not be trusted
at a 10% level. Our value is compatible with the most re-
cent numerical results of references [23,24], c ' 1.3; the
complexity of the mathematical problem does not permit
one to make a definitive prediction of the prefactor of the
linear term from an analytic analysis.

It is remarkable, that, despite this complexity, all ap-
proximations that we have used lead to comparable re-
sults: to get the right order of magnitude of the critical
density or temperature change a precise determination of
the energy shift U(k) is not required. The contribution of
this function to ∆Tc is actually close to “all or nothing”
for extreme k values: for small k, the function is larger
than the free particle energy and the corresponding mo-
menta are completely depopulated, the precise value of
U(k) is not relevant; for large k, the free particle energy
dominates and the value of U(k) is also irrelevant. The im-
portant features of U(k) are the crossover value at which
it is comparable to the free particle energy spectrum, and
the way this region is crossed by the function.

We have limited ourselves to an homogeneous gas con-
tained in a box, ignoring the influence of a possible ex-
ternal potential, for example magnetic traps and optical
lattices. In both such systems, the dimensionality can vary
continuously from three to two or smaller, and, therefore,
affects the nature of the transition. We will discuss them
in future publications.
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Appendix

Since the formalism of Ursell operators is less common
than that of Green’s functions, we give in this appendix a
few more technical details concerning the equations writ-
ten in Section 3.1; this will allow the interested reader to
make contact with the calculations of reference [21] more
easily. For instance, the right side of equation (21) can be
obtained from equations (58, 53) and (55) of this reference,
which provide:

Xk = eβ∆µρk, (103)

so that (55) becomes:

− log

[
1− 4a

λ

(
λ

2π

)3 ∫
d3k ρk eβ∆µ

]
. (104)

Equation (21) is then nothing but the first order term in
an expansion of this result in powers of a.

Similarly, equation (24) can be obtained as the low-
est order expansion of a relation obtained from equa-
tions (55, 81) of [21],

β δµk = − log
[
1 + 8

(a
λ

)2

e3β∆µJ2

]
(105)

with

J2 = λ6

∫
d3k

′

(2π)3

∫
d3q

(2π)3 ρk′ ρk′−q ρk+q eβ∆(k,k′,q),

(106)

and

∆(k, k′, q) == δµk′ + δµk′−q + δµk+q . (107)

We note that we have changed the sign convention of [21]
by introducing a minus sign in the right hand side of (24);
in this way, positive ∆µ as well as positive δµk correspond
to positive corrections to the self-energies. This convention
makes more straightforward the comparison between δµk
and the self-energy Σ(k) introduced in the Green’s func-
tion formalism.

The exact form of the δµ’s is not important for the dis-
cussion of Section 3.1. In the context of mean field, what
matters actually is only the existence of some k indepen-
dent form of ∆µ, and one could use expression (104) as
well; nevertheless, it would not improve the accuracy ei-
ther, since it , but it is actually just a consequence of the
simplest approximation used for the self-consistent equa-
tion for ρ. As for correlations effects, the only essential
property is the momentum conservation rule that appears
in (24) as well as in (106).

Higher orders can be readily incorporated into the self-
consistent equation [21]; for instance, a summation of bub-
ble diagrams shown in Figure 3d leads to the generaliza-
tion of equation (24):

β(δµk − δµ0) = −4
a

λ
λ3

∫
d3q

(2π)3

A(q)
1 +A(q)

(ρk+q − ρq)

(108)

where

A(q) = 2
a

λ
λ3

∫
d3k′

(2π)3
ρk′ ρk′−q. (109)

With the factor A(q) in the denominator the integral of
equation (108) is convergent in the infrared with a free
particle spectrum. Further generalizations are discussed
in [21]. Numerical solutions of particular approximations
are presented in Section 5. As far as the bubble summation
of equation (108) is concerned, we remark that a summa-
tion of Ursell ladder-like diagrams leads to the same re-
sult without the 2 in the denominator; for more details,
see [34].
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