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We show that the critical temperature of a uniform dilute Bose gas increases linearly with thes-
wave scattering length describing the repulsion between the particles. Because of infrared divergenc
the magnitude of the shift cannot be obtained from perturbation theory, even in the weak couplin
regime; rather, it is proportional to the size of the critical region in momentum space. By means o
a self-consistent calculation of the quasiparticle spectrum at low momenta at the transition, we find a
estimate of the effect in reasonable agreement with numerical simulations.
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Determination of the effect of repulsive interactions o
the transition temperature of a homogeneous dilute B
gas at fixed density has had a long and controversial
tory [1–5]. While [1] predicted that the first change i
the transition temperature,Tc, is of order the scattering
lengtha for the interaction between the particles, neith
the sign of the effect nor its dependence ona has been
obvious. Recent renormalization group studies [4] pred
an increase of the critical temperature. Numerical calcu
tions by Grüter, Ceperley, and Laloë [6], and more recen
by Holzmann and Krauth [7], of the effect of interaction
on the Bose-Einstein condensation transition in a unifo
gas of hard sphere bosons, and approximate analytic ca
lations by Holzmann, Grüter, and Laloë of the dilute lim
[8], have shown that the transition temperature,Tc, ini-
tially rises linearly with a. The effect arises physically
from the change in the energy of low momentum partic
nearTc [8]. Here we analyze the leading order behavi
of diagrammatic perturbation theory, and argue thatTc in-
creases linearly witha. We then construct an approximat
self-consistent solution of the single particle spectrum
Tc which demonstrates the change in the low moment
spectrum, and which enables us to calculate the chang
Tc quantitatively.

We consider a uniform system of identical bosons
massm, at temperatureT close toTc and use finite tem-
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perature quantum many-body perturbation theory. We a
sume that the range of the two-body potential is sma
compared to the interparticle distancen21�3, so that the po-
tential can be taken to act locally and be characterized e
tirely by thes-wave scattering lengtha. Thus we work in
the limit a ø l, wherel � �2p h̄2�mkBT �1�2 is the ther-
mal wavelength. (We generally use unitsh̄ � kB � 1.)

To compute the effects of the interactions onTc, we
write the densityn as a sum over Matsubara frequencie
vn � 2pinT (n � 0, 61, 62, . . .) of the single particle
Green’s function,G�k, z�:

n � 2T
X
n

Z d3k
�2p�3 G�k, vn� , (1)

where

G21�k, z� � z 1 m 2
k2

2m
2 S�k, z� , (2)

with m the chemical potential. The Bose-Einstein con
densation transition is determined by the point wher
G21�0, 0� � 0, i.e., whereS�0, 0� � m.

The first effect of interactions onS is a mean field term
Smf � 2gn, whereg � 4p h̄2a�m; the factor of 2 comes
from including the exchange term. Such a contribution
independent ofk and z, has no effect on the transition
temperature, as it can be simply absorbed in a redefiniti
© 1999 The American Physical Society 1703
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of the chemical potential. To avoid carrying along such
trivial contributions we define:

h̄2

2mz 2 � 2�m 2 2gn� . (3)

The quantity z may be interpreted as the mean field
correlation length. In the mean field approximation, z

becomes infinite at Tc; however, in general, it remains
finite, and functions here as an infrared cutoff.

Because the effects of interactions are weak, one could
imagine calculating the change in Tc in perturbation the-
ory. However, such calculations are plagued by infrared
divergences. Power counting arguments reveal that the
leading contribution to the self-energy, S�k ø z 21, 0�,
of a diagram of order an has the form:

Sn � T

µ
a
l

∂2µ
az

l2

∂n22

. (4)

In perturbation theory about the mean field, with the mean
field criterion for the phase transition, z ! ` at Tc, all
Sn diverge, starting with a logarithmic divergence at n �
2. More generally, the approach of z towards l2�a in
magnitude signals, according to the Ginsburg criterion, the
onset of the critical region. Beyond, perturbation theory
breaks down, since all Sn in Eq. (4) are of the same order
of magnitude.

Even though the theory is infrared divergent, we can
isolate the leading correction to the change in Tc, which,
as we show, is of order a. Since the infrared divergences
occur only in terms with zero Matsubara frequencies we
separate, in Eq. (1), the contribution of the n � 0 terms,
writing

n�a, T � � 2T
Z d3k

�2p�3 �Gn�0�k� 1 Gnfi0�k�� , (5)

where Gnfi0�k� is the sum of terms with n fi 0. Similarly,
the density of a noninteracting system with condensation
temperature T is given by

n0�T � � 2T
Z d3k

�2p�3 �G0
n�0�k� 1 G0

nfi0�k��

�
Z d3k

�2p�3

1
ek2�2mT 2 1

�
z �3�2�

l3 , (6)

where z �3�2� � 2.612. Since the nonzero Matsubara fre-
quencies regularize the infrared behavior of the momentum
integrals, the dependence of the n fi 0 terms in Eq. (5) on
a is nonsingular at Tc. These terms, of order a2 at least,
can be neglected. Thus to order a,

n�a, Tc� 2 n0�Tc� � 2Tc

Z d3k
�2p�3 �G0�k� 2 G0

0�k�� .

(7)

To calculate the change in Tc at fixed density we
equate n�a, Tc� at Tc with n0�T 0

c � at the free particle
transition temperature T0

c and observe that n0�Tc� �
�Tc�T 0

c �3�2n0�T0
c �; thus in lowest order the change in
1704
transition temperature DTc � Tc 2 T0
c is given by

3
2

DTc

Tc
n0�T 0

c � � Tc

Z d3k
�2p�3 �Gn�0�k� 2 G0

n�0�k�� ,

(8)

where DTc � Tc 2 T0
c . Thus

DTc

Tc
�

4l

3pz �3�2�

Z `

0
dk

U�k�
k2 1 U�k�

, (9)

where U�k� � 2m�Sn�0�k� 2 m�.
Equation (9) for the leading correction to the critical

temperature is crucial. The criterion for spatially uni-
form condensation is that U�0� � 0; above the transition,
U�0� . 0. At the transition, k2 1 U�k� . 0 for k . 0.
At large wave numbers, U ! 1�z 2 . 0, and in the critical
region, as we discuss below, U is also positive. Although
we have not proved it rigorously, numerical simulations
indicate that U is generally positive for k . 0, which im-
plies that the integral in Eq. (9) and hence DTc is positive.

In the critical region, k , kc, where kc defines the scale
of the critical region in momentum space, Gn�0 has the
scaling form [9] G21

n�0�k� � 2k22hkh
c F�kj�; j is the co-

herence length which diverges at Tc as jT 2 Tcj
2n , and

F is a dimensionless function, with F�`� � 1. The criti-
cal index, h, is given to leading order in the e � 4 2 d
expansion by e2�54 [10]. At Tc, G21

n�0�k� � 2k22hkh
c ,

and thus U � 1k22h . Both terms in Eq. (8) give a con-
tribution of order kc, so that DTc�Tc � kc. As we shall
see, kc � a�l2, and hence DTc�Tc � a�l.

To study the leading behavior in a quantitatively, we
need concentrate only on the n � 0 sector where the full
finite temperature theory reduces to a classical field theory
[10] defined by the action:

S�f�r�	 �
1

2mT

Z
d3r

∑
=f��r� ? =f�r� 1

1
z 2 jf�r�j2

1 4pa�jf�r�j2 2 
jf�r�j2��2

∏
;

(10)

the probability of a given field configuration entering
the computation of expectation values is proportional to
e2S�f�r�	.

The classical theory is ultraviolet divergent, but super-
renormalizable. The divergences appear only in the two-
loop self-energy, S

�2�
n�0 —effectively the second order

self-energy written in terms of the full Gn�0 rather than
the zeroth order Green’s functions—and can be removed
by simple renormalization of the mean field coherence
length, z . Since, henceforth, we calculate only in the
classical theory, we drop the subscript n � 0. The second
order self-energy is

S�k� � 22g2
Z d3q

�2p�3 B�q�
T

ek2q
, (11)

where ek � �k2 1 z 22��2m, and the (n � 0) particle-
hole bubble,
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B�q� �
Z d3p

�2p�3

T
epep1q

, (12)

is given by

B�q� �
2p2z

Tl4 b�zq� ; (13)

b�x� ! 1�x for x ¿ 1 and b�0� � 1�p .
The integral in Eq. (11) is logarithmically divergent in

the ultraviolet. But in the full theory the momentum inte-
grals are cut off by distribution functions, f � �ek2�2mT 2

1�21, and the ultraviolet behavior is regular. To control
this divergence we introduce an ultraviolet momentum cut-
off, L, in the classical theory, recognizing that it is in fact
effectively determined in the full theory. Then

2mS�k� � 232p2 a2

l4

Z Lz

0
dx xb�x�L�kz , x� , (14)

where

L�kz , x� �
1

kz
ln

∑
�x 1 kz �2 1 1
�x 2 kz �2 1 1

∏
. (15)

The divergent part of the integral comes from the large x
tail of b�x�, and contributes 2128�a�l2�2 ln�Lz � to 2mS.

More generally we carry out a diagrammatic expan-
sion of S in terms of the self-consistent n � 0 Green’s
function, defined by 2mG21�k� � 2k2 1 z 22 1

2mS�k, a, G, L�. Note that the dependence of S on z

enters only through the dependence of S on G. We define
a renormalized mean field coherence length by

1

z
2
R

�
1
z 2 2 128

µ
a
l2

∂2

ln�LzR� . (16)

Then G21�k� is given by

22mG21�k� � k2 1 z 22
R 1 2mSF�k, a, G� , (17)

where

SF�k, a, G� � S�k, a, G, L� 1 128

µ
a
l2

∂2

ln�LzR�

(18)

is independent of L. As a function of zR , the Green’s
function is independent of the cutoff.

In fact, a simple power counting argument shows that
the finite part of the self-energy has the form

SF�k, a, G� �
1

2mz
2
R

s�kzR , J� , (19)

where

J � azR�l2. (20)

To see this structure we note that a term in the self-energy
of order an is the product of a dimensionless function of
kzR times the Sn of Eq. (4), with z replaced by zR [11].

The criterion for condensation, z
22
R 1 2mSF�0, a, G� �

0, implies that
1 1 s�0, J� � 0 . (21)

Since s�0� is a well-behaved function of only the parame-
ter J , Eq. (21) determines the critical value of J � J� for
condensation, a dimensionless number independent of the
parameters of the original problem. At condensation, the
renormalized mean field coherence length zR tends to infin-
ity as a ! 0, with the product azR fixed, thus preventing
a perturbative expansion in a.

At condensation U�k� � �s�kzR , J�� 1 1��z
2
R , and

Eq. (9) implies the change in Tc

DTc

Tc
�

a
l

∑
4

3pz �3�2�
1
J�

Z `

0
dx

s�x, J�� 1 1
x2 1 s�x, J�� 1 1

∏
.

(22)

Since J� is determined by the condition (21), the result for
DTc�Tc is linear and expected to be positive in a�l.

We turn now to calculating DTc explicitly within a
simple self-consistent model based on taking only the zero
frequency component of the leading two-loop approxima-
tion self-energy, given by Eq. (11). We construct the ep

as self-consistent quasiparticle energies at the transition,
i.e., solutions of the equation:

G21�k, ek� � 0 � ek 2
k2

2m
2 �S�k� 2 S�0�� . (23)

The low momentum behavior of ek is determined by
a familiar argument [12]. In order that the integral (11)
converge in the infrared limit, ek must behave, modulo
possible logarithmic corrections, as �ka , where a , 2.
In this case, the term k2�2m in (23) can be neglected
at small k. We then expand S�k� about k � 0. For
1 # a , 4�3 the self-energy is sufficiently convergent
that S�k� 2 S�0� � k2 at small k, and thus cannot be
the correct self-consistent solution. For a with 4�3 ,

a , 2 one has S�k� 2 S�0� � 1k623a , so we find self-
consistency, S�k� 2 S�0� � ka , for a � 3�2. We write
the small k part of the spectrum as

ek � k1�2
c k3�2�2m . (24)

Here kc is the wave vector around which the k3�2 at low k
crosses over to the k2�2m free-particle behavior.

To extract the low momentum structure, below the
scale kc, we evaluate the most divergent terms of

S�k� 2 S�0� � 22g2T
Z d3q

�2p�3 B�q�
µ

1
e �k2 �q

2
1
eq

∂
;

(25)

at small k. Since the k3�2 structure arises from the small
q behavior of the integral; we evaluate the bubble B�q�,
Eq. (12), at small q with the spectrum (24) for k , kc

and k2�2m for k . kc. Then

B�q� �
4m

pl2kc
�ln�kc�q� 1 c� , (26)
1705
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with c � 2 1 2 ln2 2 p�2 � 1.816. Thus,

S�k� 2 S�0� �
1024p

15m

µ
a
l2

∂2µ
k
kc

∂3�2

. (27)

Identifying the right side of Eq. (27) with k1�2
c k3�2�2m,

we derive

kc � 32

µ
2p

15

∂1�2 a
l2 � 20.7

a
l2 . (28)

As expected, the scale of the unusual low momentum
structure is a�l2.

Let us, for a first quantitative estimate, assume a spec-
trum at Tc of the form ek � k1�2

c k3�2�2m for k ø kc,
and �k2 1 k2

c��2m for k ¿ kc. We smoothly interpo-
late between these limits, writing U�k� � k1�2

c k3�2��1 1

�k�kc�3�2�. Thus
R

dk U��k2 1 U�  1.2kc, so that with
Eq. (28),

DTc

Tc
 2.9an1�3. (29)

By comparison, Grüter, Ceperley, and Laloë [6] find
DTc�Tc � 0.34an1�3, while the more recent calcula-
tion of Holzmann and Krauth yields DTc�Tc � �2.2 6

0.2�an1�3. The agreement of the numerical coefficient,
given the simplicity of the approximations in evaluating
the effect of interactions on the transition temperature, is
satisfying. As will be reported in a fuller paper [14], this
estimate agrees with that derived from the numerical self-
consistent solution of Eq. (23).

The lowest two-loop calculation does not account fully
for the modification of the transition temperature; indeed,
at the critical point, all diagrams become comparable
[13,14]. Consider, for example, summing the bubbles
describing the repeated scattering of the particle-hole pair
in B [15], thus replacing B in Eq. (11) by

Beff�q� �
B�q�

1 1 2gB�q�
, (30)

where the two accounts for the exchange terms. The
denominator at small q, from Eq. (26), is given by

1 1 2gB�q� � 1 1
32a
l2kc

�ln�kc�q� 1 c� . (31)

Since kc � a�l2, the correction is of order unity, and
serves to modify the spectrum, recalculated from Eq. (25)
with (31), from k3�2 to k22h , with [14] h  �1�2� 2

1��2c 1 kcl2�16a�  0.36.
To estimate J�, we calculate S�0� from Eq. (11) with

the 3�2 spectrum and the leading log in B�q�, Eq. (26),
and neglect the contribution for q . kc. Then S�0� 
2k2a2�2ml4, and s�0, J�  2k2J2, so that at Tc, J� 
1�k � 3��32

p
2 1 3c �. The self-consistent solution of

Eq. (23) yields [14] J�  0.07.
The modification at Tc of the spectrum of particles at low

momenta should have direct experimental consequences in
1706
trapped Bose condensates. While a k2�2m particle spec-
trum yields a flat distribution y2dn�dy of velocities, a
more rapidly rising spectrum, e.g., the k3�2 discussed here,
depletes the number of low momentum particles. These
effects become more pronounced with a larger number of
particles and flatter traps, as the level spacing ceases to
control the low-energy behavior.
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