PHYSICAL REVIEW LETTERS

VOLUME 83

30 AUGUST 1999

NUMBER 9

The Transition Temperature of the Dilute Interacting Bose Gas

Gordon Baym,^{1,2,3} Jean-Paul Blaizot,² Markus Holzmann,³ Franck Laloë,³ and Dominique Vautherin⁴

¹University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

²Service de Physique Théorique, CE-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette, France

³LKB and LPS, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France

⁴LPNHE, Case 200, Universités Paris 6/7, 4 Place Jussieu, 75005 Paris, France

(Received 1 June 1999)

We show that the critical temperature of a uniform dilute Bose gas increases linearly with the *s*-wave scattering length describing the repulsion between the particles. Because of infrared divergences, the magnitude of the shift cannot be obtained from perturbation theory, even in the weak coupling regime; rather, it is proportional to the size of the critical region in momentum space. By means of a self-consistent calculation of the quasiparticle spectrum at low momenta at the transition, we find an estimate of the effect in reasonable agreement with numerical simulations.

PACS numbers: 03.75.Fi

Determination of the effect of repulsive interactions on the transition temperature of a homogeneous dilute Bose gas at fixed density has had a long and controversial history [1-5]. While [1] predicted that the first change in the transition temperature, T_c , is of order the scattering length a for the interaction between the particles, neither the sign of the effect nor its dependence on a has been obvious. Recent renormalization group studies [4] predict an increase of the critical temperature. Numerical calculations by Grüter, Ceperley, and Laloë [6], and more recently by Holzmann and Krauth [7], of the effect of interactions on the Bose-Einstein condensation transition in a uniform gas of hard sphere bosons, and approximate analytic calculations by Holzmann, Grüter, and Laloë of the dilute limit [8], have shown that the transition temperature, T_c , initially rises linearly with a. The effect arises physically from the change in the energy of low momentum particles near T_c [8]. Here we analyze the leading order behavior of diagrammatic perturbation theory, and argue that T_c increases linearly with a. We then construct an approximate self-consistent solution of the single particle spectrum at T_c which demonstrates the change in the low momentum spectrum, and which enables us to calculate the change in T_c quantitatively.

We consider a uniform system of identical bosons of mass m, at temperature T close to T_c and use finite tem-

perature quantum many-body perturbation theory. We assume that the range of the two-body potential is small compared to the interparticle distance $n^{-1/3}$, so that the potential can be taken to act locally and be characterized entirely by the *s*-wave scattering length *a*. Thus we work in the limit $a \ll \lambda$, where $\lambda = (2\pi\hbar^2/mk_BT)^{1/2}$ is the thermal wavelength. (We generally use units $\hbar = k_B = 1$.)

To compute the effects of the interactions on T_c , we write the density *n* as a sum over Matsubara frequencies $\omega_{\nu} = 2\pi i \nu T$ ($\nu = 0, \pm 1, \pm 2, ...$) of the single particle Green's function, G(k, z):

$$n = -T \sum_{\nu} \int \frac{d^3k}{(2\pi)^3} G(k, \omega_{\nu}), \qquad (1)$$

where

$$G^{-1}(k,z) = z + \mu - \frac{k^2}{2m} - \Sigma(k,z), \qquad (2)$$

with μ the chemical potential. The Bose-Einstein condensation transition is determined by the point where $G^{-1}(0,0) = 0$, i.e., where $\Sigma(0,0) = \mu$.

The first effect of interactions on Σ is a mean field term $\Sigma_{\rm mf} = 2gn$, where $g = 4\pi \hbar^2 a/m$; the factor of 2 comes from including the exchange term. Such a contribution, independent of k and z, has no effect on the transition temperature, as it can be simply absorbed in a redefinition

of the chemical potential. To avoid carrying along such trivial contributions we define:

$$\frac{\hbar^2}{2m\zeta^2} = -(\mu - 2gn). \tag{3}$$

The quantity ζ may be interpreted as the mean field correlation length. In the mean field approximation, ζ becomes infinite at T_c ; however, in general, it remains finite, and functions here as an infrared cutoff.

Because the effects of interactions are weak, one could imagine calculating the change in T_c in perturbation theory. However, such calculations are plagued by infrared divergences. Power counting arguments reveal that the leading contribution to the self-energy, $\Sigma(k \ll \zeta^{-1}, 0)$, of a diagram of order a^n has the form:

$$\Sigma_n \sim T \left(\frac{a}{\lambda}\right)^2 \left(\frac{a\zeta}{\lambda^2}\right)^{n-2}.$$
 (4)

In perturbation theory about the mean field, with the mean field criterion for the phase transition, $\zeta \to \infty$ at T_c , all Σ_n diverge, starting with a logarithmic divergence at n = 2. More generally, the approach of ζ towards λ^2/a in magnitude signals, according to the Ginsburg criterion, the onset of the critical region. Beyond, perturbation theory breaks down, since all Σ_n in Eq. (4) are of the same order of magnitude.

Even though the theory is infrared divergent, we can isolate the leading correction to the change in T_c , which, as we show, is of order *a*. Since the infrared divergences occur only in terms with zero Matsubara frequencies we separate, in Eq. (1), the contribution of the $\nu = 0$ terms, writing

$$n(a,T) = -T \int \frac{d^3k}{(2\pi)^3} [G_{\nu=0}(k) + G_{\nu\neq0}(k)], \quad (5)$$

where $G_{\nu\neq0}(k)$ is the sum of terms with $\nu \neq 0$. Similarly, the density of a noninteracting system with condensation temperature *T* is given by

$$n^{0}(T) = -T \int \frac{d^{3}k}{(2\pi)^{3}} \left[G^{0}_{\nu=0}(k) + G^{0}_{\nu\neq0}(k) \right]$$
$$= \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{e^{k^{2}/2mT} - 1} = \frac{\zeta(3/2)}{\lambda^{3}}, \qquad (6)$$

where $\zeta(3/2) = 2.612$. Since the nonzero Matsubara frequencies regularize the infrared behavior of the momentum integrals, the dependence of the $\nu \neq 0$ terms in Eq. (5) on *a* is nonsingular at T_c . These terms, of order a^2 at least, can be neglected. Thus to order *a*,

$$n(a, T_c) - n^0(T_c) = -T_c \int \frac{d^3k}{(2\pi)^3} [G_0(k) - G_0^0(k)].$$
(7)

To calculate the change in T_c at fixed density we equate $n(a, T_c)$ at T_c with $n^0(T_c^0)$ at the free particle transition temperature T_c^0 and observe that $n^0(T_c) = (T_c/T_c^0)^{3/2} n^0(T_c^0)$; thus in lowest order the change in

transition temperature
$$\Delta T_c = T_c - T_c^0$$
 is given by
 $\frac{3}{2} \frac{\Delta T_c}{T_c} n^0(T_c^0) = T_c \int \frac{d^3k}{(2\pi)^3} [G_{\nu=0}(k) - G_{\nu=0}^0(k)],$
(8)

where $\Delta T_c = T_c - T_c^0$. Thus

$$\frac{\Delta T_c}{T_c} = \frac{4\lambda}{3\pi\zeta(3/2)} \int_0^\infty dk \ \frac{U(k)}{k^2 + U(k)},\tag{9}$$

where $U(k) \equiv 2m[\Sigma_{\nu=0}(k) - \mu].$

Equation (9) for the leading correction to the critical temperature is crucial. The criterion for spatially uniform condensation is that U(0) = 0; above the transition, U(0) > 0. At the transition, $k^2 + U(k) > 0$ for k > 0. At large wave numbers, $U \rightarrow 1/\zeta^2 > 0$, and in the critical region, as we discuss below, U is also positive. Although we have not proved it rigorously, numerical simulations indicate that U is generally positive for k > 0, which implies that the integral in Eq. (9) and hence ΔT_c is positive.

In the critical region, $k < k_c$, where k_c defines the scale of the critical region in momentum space, $G_{\nu=0}$ has the scaling form [9] $G_{\nu=0}^{-1}(k) = -k^{2-\eta}k_c^{\eta}F(k\xi)$; ξ is the coherence length which diverges at T_c as $|T - T_c|^{-\nu}$, and F is a dimensionless function, with $F(\infty) \sim 1$. The critical index, η , is given to leading order in the $\epsilon = 4 - d$ expansion by $\epsilon^2/54$ [10]. At T_c , $G_{\nu=0}^{-1}(k) \sim -k^{2-\eta}k_c^{\eta}$, and thus $U \sim +k^{2-\eta}$. Both terms in Eq. (8) give a contribution of order k_c , so that $\Delta T_c/T_c \sim k_c$. As we shall see, $k_c \sim a/\lambda^2$, and hence $\Delta T_c/T_c \sim a/\lambda$.

To study the leading behavior in *a* quantitatively, we need concentrate only on the $\nu = 0$ sector where the full finite temperature theory reduces to a classical field theory [10] defined by the action:

$$S\{\phi(r)\} = \frac{1}{2mT} \int d^3r \left[\nabla \phi^*(r) \cdot \nabla \phi(r) + \frac{1}{\zeta^2} |\phi(r)|^2 + 4\pi a (|\phi(r)|^2 - \langle |\phi(r)|^2 \rangle)^2 \right];$$
(10)

the probability of a given field configuration entering the computation of expectation values is proportional to $e^{-S\{\phi(r)\}}$.

The classical theory is ultraviolet divergent, but superrenormalizable. The divergences appear only in the twoloop self-energy, $\Sigma_{\nu=0}^{(2)}$ —effectively the second order self-energy written in terms of the full $G_{\nu=0}$ rather than the zeroth order Green's functions—and can be removed by simple renormalization of the mean field coherence length, ζ . Since, henceforth, we calculate only in the classical theory, we drop the subscript $\nu = 0$. The second order self-energy is

$$\Sigma(k) = -2g^2 \int \frac{d^3q}{(2\pi)^3} B(q) \frac{T}{\epsilon_{\mathbf{k}-\mathbf{q}}},\qquad(11)$$

where $\epsilon_k = (k^2 + \zeta^{-2})/2m$, and the ($\nu = 0$) particlehole bubble,

$$B(q) = \int \frac{d^3p}{(2\pi)^3} \frac{T}{\epsilon_p \epsilon_{\mathbf{p}+\mathbf{q}}}, \qquad (12)$$

is given by

$$B(q) = \frac{2\pi^2 \zeta}{T \lambda^4} b(\zeta q); \qquad (13)$$

 $b(x) \rightarrow 1/x$ for $x \gg 1$ and $b(0) = 1/\pi$.

The integral in Eq. (11) is logarithmically divergent in the ultraviolet. But in the full theory the momentum integrals are cut off by distribution functions, $f = (e^{k^2/2mT} -$ $(1)^{-1}$, and the ultraviolet behavior is regular. To control this divergence we introduce an ultraviolet momentum cutoff, Λ , in the classical theory, recognizing that it is in fact effectively determined in the full theory. Then

$$2m\Sigma(k) = -32\pi^2 \frac{a^2}{\lambda^4} \int_0^{\Lambda\zeta} dx \, xb(x)L(k\zeta, x) \,, \quad (14)$$

where

$$L(k\zeta, x) = \frac{1}{k\zeta} \ln \left[\frac{(x + k\zeta)^2 + 1}{(x - k\zeta)^2 + 1} \right].$$
 (15)

The divergent part of the integral comes from the large x tail of b(x), and contributes $-128(a/\lambda^2)^2 \ln(\Lambda \zeta)$ to $2m\Sigma$.

More generally we carry out a diagrammatic expansion of Σ in terms of the *self-consistent* $\nu = 0$ Green's function, defined by $2mG^{-1}(k) = -k^2 + \zeta^{-2} + \zeta^{-2}$ $2m\Sigma(k, a, G, \Lambda)$. Note that the dependence of Σ on ζ enters only through the dependence of Σ on G. We define a *renormalized* mean field coherence length by

$$\frac{1}{\zeta_R^2} = \frac{1}{\zeta^2} - 128 \left(\frac{a}{\lambda^2}\right)^2 \ln(\Lambda \zeta_R).$$
(16)

Then $G^{-1}(k)$ is given by

$$-2mG^{-1}(k) = k^2 + \zeta_R^{-2} + 2m\Sigma_F(k, a, G), \quad (17)$$

where

$$\Sigma_F(k, a, G) = \Sigma(k, a, G, \Lambda) + 128 \left(\frac{a}{\lambda^2}\right)^2 \ln(\Lambda \zeta_R)$$
(18)

is independent of Λ . As a function of ζ_R , the Green's function is independent of the cutoff.

In fact, a simple power counting argument shows that the finite part of the self-energy has the form

$$\Sigma_F(k,a,G) = \frac{1}{2m\zeta_R^2} \,\sigma(k\zeta_R,J)\,,\tag{19}$$

where

$$J = a\zeta_R/\lambda^2.$$
 (20)

To see this structure we note that a term in the self-energy of order a^n is the product of a dimensionless function of $k\zeta_R$ times the Σ_n of Eq. (4), with ζ replaced by ζ_R [11]. The criterion for condensation, $\zeta_R^{-2} + 2m\Sigma_F(0, a, G) =$

0, implies that

$$1 + \sigma(0, J) = 0.$$
 (21)

Since $\sigma(0)$ is a well-behaved function of only the parameter J, Eq. (21) determines the critical value of $J = J^*$ for condensation, a dimensionless number independent of the parameters of the original problem. At condensation, the renormalized mean field coherence length ζ_R tends to infinity as $a \to 0$, with the product $a\zeta_R$ fixed, thus preventing a perturbative expansion in a.

At condensation $U(k) = [\sigma(k\zeta_R, J^*) + 1]/\zeta_R^2$, and Eq. (9) implies the change in T_c

$$\frac{\Delta T_c}{T_c} = \frac{a}{\lambda} \bigg[\frac{4}{3\pi\zeta(3/2)} \frac{1}{J^*} \int_0^\infty dx \, \frac{\sigma(x,J^*) + 1}{x^2 + \sigma(x,J^*) + 1} \bigg].$$
(22)

Since J^* is determined by the condition (21), the result for $\Delta T_c/T_c$ is linear and expected to be positive in a/λ .

We turn now to calculating ΔT_c explicitly within a simple self-consistent model based on taking only the zero frequency component of the leading two-loop approximation self-energy, given by Eq. (11). We construct the ϵ_p as self-consistent quasiparticle energies at the transition, i.e., solutions of the equation:

$$G^{-1}(k, \epsilon_k) = 0 = \epsilon_k - \frac{k^2}{2m} - [\Sigma(k) - \Sigma(0)]. \quad (23)$$

The low momentum behavior of ϵ_k is determined by a familiar argument [12]. In order that the integral (11) converge in the infrared limit, ϵ_k must behave, modulo possible logarithmic corrections, as $\sim k^{\alpha}$, where $\alpha < 2$. In this case, the term $k^2/2m$ in (23) can be neglected at small k. We then expand $\Sigma(k)$ about k = 0. For $1 \le \alpha < 4/3$ the self-energy is sufficiently convergent that $\Sigma(k) - \Sigma(0) \sim k^2$ at small k, and thus cannot be the correct self-consistent solution. For α with 4/3 < $\alpha < 2$ one has $\Sigma(k) - \Sigma(0) \sim +k^{6-3\alpha}$, so we find selfconsistency, $\Sigma(k) - \Sigma(0) \sim k^{\alpha}$, for $\alpha = 3/2$. We write the small k part of the spectrum as

$$\epsilon_k = k_c^{1/2} k^{3/2} / 2m \,. \tag{24}$$

Here k_c is the wave vector around which the $k^{3/2}$ at low k crosses over to the $k^2/2m$ free-particle behavior.

To extract the low momentum structure, below the scale k_c , we evaluate the most divergent terms of

$$\Sigma(k) - \Sigma(0) = -2g^2 T \int \frac{d^3 q}{(2\pi)^3} B(q) \left(\frac{1}{\epsilon_{\vec{k}-\vec{q}}} - \frac{1}{\epsilon_q}\right);$$
(25)

at small k. Since the $k^{3/2}$ structure arises from the small q behavior of the integral; we evaluate the bubble B(q), Eq. (12), at small q with the spectrum (24) for $k < k_c$ and $k^2/2m$ for $k > k_c$. Then

$$B(q) = \frac{4m}{\pi \lambda^2 k_c} \left[\ln(k_c/q) + c \right], \qquad (26)$$

1705

with $c \approx 2 + 2 \ln 2 - \pi/2 = 1.816$. Thus,

$$\Sigma(k) - \Sigma(0) = \frac{1024\pi}{15m} \left(\frac{a}{\lambda^2}\right)^2 \left(\frac{k}{k_c}\right)^{3/2}.$$
 (27)

Identifying the right side of Eq. (27) with $k_c^{1/2}k^{3/2}/2m$, we derive

$$k_c = 32 \left(\frac{2\pi}{15}\right)^{1/2} \frac{a}{\lambda^2} \approx 20.7 \frac{a}{\lambda^2}.$$
 (28)

As expected, the scale of the unusual low momentum structure is a/λ^2 .

Let us, for a first quantitative estimate, assume a spectrum at T_c of the form $\epsilon_k = k_c^{1/2} k^{3/2}/2m$ for $k \ll k_c$, and $(k^2 + k_c^2)/2m$ for $k \gg k_c$. We smoothly interpolate between these limits, writing $U(k) = k_c^{1/2} k^{3/2}/[1 + (k/k_c)^{3/2}]$. Thus $\int dk U/(k^2 + U) \simeq 1.2k_c$, so that with Eq. (28),

$$\frac{\Delta T_c}{T_c} \simeq 2.9an^{1/3}.$$
(29)

By comparison, Grüter, Ceperley, and Laloë [6] find $\Delta T_c/T_c \approx 0.34 a n^{1/3}$, while the more recent calculation of Holzmann and Krauth yields $\Delta T_c/T_c \approx (2.2 \pm 0.2) a n^{1/3}$. The agreement of the numerical coefficient, given the simplicity of the approximations in evaluating the effect of interactions on the transition temperature, is satisfying. As will be reported in a fuller paper [14], this estimate agrees with that derived from the numerical self-consistent solution of Eq. (23).

The lowest two-loop calculation does not account fully for the modification of the transition temperature; indeed, at the critical point, all diagrams become comparable [13,14]. Consider, for example, summing the bubbles describing the repeated scattering of the particle-hole pair in *B* [15], thus replacing *B* in Eq. (11) by

$$B_{\rm eff}(q) = \frac{B(q)}{1 + 2gB(q)},$$
 (30)

where the two accounts for the exchange terms. The denominator at small q, from Eq. (26), is given by

$$1 + 2gB(q) = 1 + \frac{32a}{\lambda^2 k_c} [\ln(k_c/q) + c].$$
(31)

Since $k_c \sim a/\lambda^2$, the correction is of order unity, and serves to modify the spectrum, recalculated from Eq. (25) with (31), from $k^{3/2}$ to $k^{2-\eta}$, with [14] $\eta \approx (1/2) - 1/(2c + k_c \lambda^2/16a) \approx 0.36$.

To estimate J^* , we calculate $\Sigma(0)$ from Eq. (11) with the 3/2 spectrum and the leading log in B(q), Eq. (26), and neglect the contribution for $q > k_c$. Then $\Sigma(0) \approx$ $-\kappa^2 a^2/2m\lambda^4$, and $\sigma(0, J) \approx -\kappa^2 J^2$, so that at $T_c, J^* \approx$ $1/\kappa = 3/(32\sqrt{2} + 3c)$. The self-consistent solution of Eq. (23) yields [14] $J^* \approx 0.07$.

The modification at T_c of the spectrum of particles at low momenta should have direct experimental consequences in trapped Bose condensates. While a $k^2/2m$ particle spectrum yields a flat distribution $v^2 dn/dv$ of velocities, a more rapidly rising spectrum, e.g., the $k^{3/2}$ discussed here, depletes the number of low momentum particles. These effects become more pronounced with a larger number of particles and flatter traps, as the level spacing ceases to control the low-energy behavior.

This work was facilitated by the cooperative agreement between the University of Illinois at Urbana-Champaign and the Centre National de la Recherche Scientifique, and also supported in part by National Science Foundation Grants No. PHY94-21309 and No. PHY98-00978, and the Deutscher Akademischer Austauschdienst. L. K. B. and L. P. S. are Unités Associées au CNRS UMR 8552 and UMR 8551.

- [1] T.D. Lee and C.N. Yang, Phys. Rev. 112, 1419 (1957).
- [2] K. Huang, in *Studies in Statistical Mechanics*, edited by J. de Boer and G.E. Uhlenbeck (North-Holland Publishers, Amsterdam, 1964), Vol. II, p. 1.
- [3] T. Toyoda, Ann. Phys. (N.Y.) 141, 154 (1982).
- [4] H.T.C. Stoof, Phys. Rev. A 45, 8398 (1992); M. Bijlsma and H.T.C. Stoof, Phys. Rev. A 54, 5085 (1996); J.O. Andersen and M. Strickland, Phys. Rev. A (to be published).
- [5] K. Huang, cond-mat/9904027.
- [6] P. Grüter, D. Ceperley, and F. Laloë, Phys. Rev. Lett. 79, 3549 (1997).
- [7] M. Holzmann and W. Krauth, cond-mat/9905198 [Phys. Rev. Lett. (to be published)].
- [8] M. Holzmann, P. Grüter, and F. Laloë, cond-mat/9809356 [Euro. Phys. J. B (to be published)].
- [9] B. D. Josephson, Phys. Lett. 21, 608 (1966).
- [10] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University Press, New York, 1989).
- [11] Were the classical theory not to contain an ultraviolet divergence, we could have deduced the structure of Eq. (19) by making a trivial scaling in the effective action (10) of lengths by $r = \zeta x$, and the field by $\phi(r) = \theta(x)/\lambda \zeta^{1/2}$, where *x* and θ are dimensionless. This scaling implies that in the absence of the ultraviolet divergence the classical theory would be a function only of the dimensionless parameter $a\zeta/\lambda^2$. After renormalizing ζ we find instead that the theory depends only on the parameter $J = a\zeta_R/\lambda^2$.
- [12] A. Z. Patashinskii and V. L. Pokrovskii, Zh. Eksp. Teor.
 Fiz. 46, 994 (1964) [Sov. Phys. JETP 19, 677 (1964)].
- [13] A.Z. Patashinskii and V.L. Pokrovskii, *Fluctuation The*ory of Phase Transitions (Pergamon Press, Oxford, 1979).
- [14] G. Baym, J.-P. Blaizot, M. Holzmann, F. Laloë, and D. Vautherin (to be published).
- [15] The current theory is an O(N) model with N = 2. In the limit of large N, the leading terms are given by the bubble sum in the self-energy, and the modification of T_c can be fully computed analytically. G. Baym, J.-P. Blaizot, and J. Zinn-Justin, cond-mat/9907241 [Europhys. Lett. (to be published)].