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Internal State Conversion in Ultracold Gases
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We consider an ultracold gas of (noncondensed) bosons or fermions with two internal states, and we
study the effect of a gradient of the transition frequency between these states. When a p�2 rf pulse is
applied to the sample, exchange effects during collisions transfer the atoms into internal states which
depend on the direction of their velocity. This results, after a short time, in a spatial separation between
the two states. A kinetic equation is solved analytically and numerically; the results agree well with the
recent observations of Lewandowski et al.
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In the last few years, the study of ultracold gases has
generated a wealth of very interesting results. Spectacular
examples are given by Bose condensed gases, but gases
above their degeneracy temperature also provide exciting
and unexpected results. For instance, recent experiments
by Lewandowski et al. [1] have shown the existence of
a remarkable phenomenon, observed when a rf pulse is
applied to a 87Rb gas with two internal states, cooled by
laser irradiation and evaporative cooling (but not Bose con-
densed). Since the two internal states are similar to two
different species of atoms, the authors describe their ob-
servation as a “segregation” between the species. They
also mention that the differential Stern-Gerlach force, due
to the magnetic gradient acting on the species, is too small
to explain the segregation, which is actually related to in-
teractions between the atoms. The purpose of the present
Letter is to show that the “identical spin rotation effect”
(ISRE) provides a qualitative and a quantitative explana-
tion of the observations.

The ISRE was introduced in [2] as a microscopic phe-
nomenon taking place during a binary collision between
two identical atoms with internal degrees of freedom, nu-
clear spins, for instance. The effect is a consequence
of quantum indistinguishability; it introduces a rotation
of each spin around their sum (in opposite directions for
bosons and fermions). For instance, if a single atom with
a spin polarization in a given direction crosses a gas of
identical atoms polarized in another direction, the spin of
the transmitted atom undergoes a rotation; this is similar
to the rotation of the polarization of photons in the Fara-
day effect. On a macroscopic scale, the effect can affect
transport properties of gases with internal states. For in-
stance, Ref. [3] considers a gas which is in a “classical”
regime in terms of equilibrium properties, but where quan-
tum effects are important in binary collisions. When the
density is sufficient to reach a hydrodynamic regime, this
work shows the existence of transverse spin waves, analo-
gous to spin waves in degenerate liquid 3He [4]. Simi-
lar predictions had been made independently by Bashkin
[5] from a more macroscopic point of view, based on the
notion of “molecular field” (or mean field)—see also the
work of Lévy and Ruckenstein [6]. Transverse spin waves
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in gases were subsequently observed in H # [7] as well as
in helium [8,9].

Another prediction made in Ref. [3] (end of Sec. 1) is
that the ISRE can also create “longitudinal oscillations”
when a p�2 pulse is applied to the sample, provided the
transverse spin polarization is inhomogeneous. Here we
show that the phenomenon described in Ref. [1] is pre-
cisely this effect, transposed to the pseudospin associated
with the two hyperfine levels relevant in the experiment,
as foreseen by the authors who mention a “longitudinal
spin effect” in their conclusion. The major differences are
that the experiment was performed at a density where the
hydrodynamic regime is not reached and that the spin os-
cillations are not of small amplitude.

A point which emerged from the early studies on spin
waves in gases, sometimes after vivid controversy, is that
the effect of binary collisions in a gas are well described
by a simple mean field calculation, provided one considers
forward scattering only. In condensed matter, each par-
ticle interacts at the same time with several others; it seems
natural that their individual effects should be well averaged
by the test particle so that mean field theory should apply.
By contrast, in a dilute gas, particles are “free almost all
the time”; they interact only during brief collisions, with
a single partner with which they can develop strong corre-
lations. Indeed, in atomic physics, one rarely studies col-
lision processes within mean field theory. Nevertheless, it
turns out that the average effect of many collisions in the
forward direction is equivalent to the results of mean field
theory, if one replaces the real binary interaction poten-
tial by a pseudopotential involving directly the scattering
length (using the real potential would lead to meaningless
results); the equivalence holds in the limit of low collision
energy (the ISRE in the forward direction dominates over
lateral scattering at very low energies since the correspond-
ing “cross section” tfwd

ex diverges [2]).
In the experimental conditions of Ref. [1], the atoms

are in an axially symmetric magnetic trap elongated in
the Ox direction. Initially the gas is at equilibrium with
only state 1 populated. One then applies a p�2 rf pulse
which, suddenly, puts all the atoms into the same coherent
superposition of states 1 and 2, corresponding to a uniform
3)�230404(4)$20.00 230404-1



VOLUME 88, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 10 JUNE 2002
transverse polarization of the pseudospin. The system is
then left free to evolve, and one observes the time evolution
of the local densities n1 and n2.

We begin with a qualitative physical discussion of the
sequence of events. Since the field gradient creates an in-
homogeneous spin precession, the gas develops a gradient
of transverse spin orientation: correlations are created be-
tween position and transverse spin orientation. The free
thermal motion of the atoms then creates correlations be-
tween velocity and transverse spin. Thus, a particle mov-
ing with a given velocity at point x gets a spin polarization
which is not parallel to the average local spin polarization,
so that the ISRE precession takes place. This makes its
spin polarization leave the transverse plane and develop a
nonzero value of its longitudinal component, with an op-
posite sign for different signs of the x component of the
velocity of the atom. The appearance of this component
indicates the beginning of an internal conversion, which
eventually results in spatial separation of the atoms in dif-
ferent internal states. We emphasize that the apparent seg-
regation is not the result of a spatial separation of atoms in
fixed internal states, as for two different chemical species;
on the contrary, without changing their spatial position,
the ISRE transfers atoms into internal states that depend
on their motion.

For a more quantitative discussion, we use a transport
equation in terms of a time t dependent operator br�r, p, t�,
which depends on position r and momentum p; br is the
Wigner transform with respect to orbital variables of the
single particle density matrix; it remains a 2 3 2 operator
in the space of internal variables, corresponding to states 1
and 2. Instead of using the four matrix elements of br, it is
often convenient to replace them by a local density f and
(pseudo) spin density M in phase space defined by

br�r, p, t� �
1
2 � f�r, p, t�bI 1 M�r, p, t� ? bs� , (1)

where bI is the unit operator in spin space and bs is the spin
operator whose three components are the Pauli matrices.
The kinetic equation for br�r, p, t� (see, for instance, [2]) is

≠t br 1
p
m

? =r br 2
1
2

�=p br, ?=r bU�r, t��1 1

1
ih̄

�br, bU�r, t��2 � Icoll�br� ,

(2)

where the second term is the usual drift term (m is the
mass of the particles); the third term (anticommutator) is
the force term including both the effect of the trapping po-
tential and of the mean field created by the other atoms; the
fourth term (commutator) is a spin precession term con-
taining the ISRE as well as some other contributions that
we discuss below — this commutator is the term on which
we focus our attention in this Letter. On the right-hand
side, the collision integral Icoll�br� describes “real” colli-
sions (lateral scattering as opposed to forward scattering,
already included in the mean field); it can be obtained,
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for instance, from the Lhuillier-Laloë transport equation
[2], or even take a more detailed expression containing
“nonlocal collision terms” with r and p gradients, as dis-
cussed, e.g., in the appendix of [10] and [11]. In fact, if
we are mostly interested in a Knudsen regime, the precise
expression of Icoll�br� is not needed. The effective poten-
tial bU�r, t� is the spin operator

bU�r, t� � U0�r, t�bI 1 U�r, t� ? bs , (3)

where the scalar component is defined by

U0 �
V1 1 V2

2
1 ge

22n2 1 ge
11n1 1

ge
12

2
�n2 1 n1� .

(4)

Here V1 and V2 are the external trapping potentials acting
on states 1 and 2; the ge’s have the following expressions
in terms of the usual “coupling constants” g, proportional
to the appropriate scattering lengths associated with the
various possibilities for pair interactions between atoms in
levels 1 or 2 [12]:

ge
11,22 � g11,22�1 1 e��2; ge

12 � gd 1 egt , (5)

where gd and gt refer to the direct and transfer process
for two atoms in different levels. The number densities of
atoms in levels 1 and 2 are n1,2; e � 11 �21� for bosons
(fermions). The vectorial component of bU�r, t� is

U�r, t� �
h̄V�r, t�

2
ek 1 e

ge
12

2
m�r, t� ; (6)

ek is the unit vector in the longitudinal spin direction, and
V�r, t� is

h̄V � V2 2 V1 1 2ge
22n2 2 2ge

11n1 1 2ge
12�n1 2 n2� ,

(7)

where the total density n and spin polarization m are

n�r, t� �
Z

d3p f�r, p, t� ;

m�r, t� �
Z

d3p M�r, p, t�
(8)

and n1,2 � �n 7 mk��2. The first contribution (7) to U
acts as a “local magnetic field”; its average value over the
sample can be removed in a uniformly rotating frame. The
second contribution originates from the ISRE and is pro-
portional to the local spin polarization m (only m enters
the ISRE commutator because the 1�k divergence of tfwd

ex
at low k’s [2] compensates the relative velocity factor of
the collision integral). The commutator makes M precess
around the momentum integrated local spin polarization; it
does not affect the evolution of m itself but can change the
evolution of M for each value of p.

A few simplifying assumptions are appropriate in the
experimental conditions of [1]. The confining energy is of
order kBT � 13 kHz 3 h which is much larger than the
mean field interaction energy gn�0� � 140 Hz 3 h and
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the differential trapping energy V1 2 V2 � 10 Hz 3 h.
In the anticommutator this allows us to retain only the
confining energy of the harmonic trap:

U0 �
V1 1 V2

2
�

1
2

m�v2x2 1 v2
rad� y2 1 z2�� ; (9)

here v and vrad are the axial and radial trapping frequen-
cies. In the commutator of (2), U0 disappears, and only
the vectorial component U plays a role. The cigar shaped
trap has an axial frequency v�2p � 7 Hz, much smaller
than the radial frequency vrad�2p � 230 Hz, so that the
system is quasi-one-dimensional along the x axis. Assum-
ing that radial local equilibrium is quickly established in
the yz plane, we introduce the on-axis value br�x, p, t� (in-
tegrated over radial momenta). When averaged over radial
coordinates and momenta, Eq. (6) becomes

U�x, t� � h̄V�x�ek�2 1 ege
12m�x, t��4 , (10)

where h̄V � V 2 2 V1 1 �ge
22 2 ge

11�n�2; note that
the coupling constants are renormalized by a factor
of 1�2 upon averaging [13]; we have assumed that
2ge

12 � ge
11 1 ge

22.
With these assumptions the initial equilibrium Maxwell-

Boltzmann distribution f�x, p� solves the kinetic equation
(2), so that the dynamics after the pulse can be expressed
in terms of M only. When lengths are measured in units
of xT �

p
kBT�mv2, momenta in units of pT �

p
mkBT ,

and times in units of 1�v, Eq. (2) simplifies into

≠tM 1 p≠xM 2 x≠pM 2
2U
h̄v

3 M � 2
M 2 Meq

vtM
,

(11)

where a simple relaxation-time approximation has been
made for Icoll with a single parameter tM of the order of
the time between collisions; the local equilibrium value
Meq � m�x, t� exp�2p2�2��

p
2p. This is the equation

that we now discuss.
For small times we can use a time expansion

M�x, p, t� � M�0� 1 M�1�t 1 M�2�t2�2 1 . . . and solve
(11) to each time order. The spin distribution immediately
after the p�2 pulse is unchanged, except that M�0��x, p�
is perpendicular to ek. The density profile n�x� remains
Gaussian, so that the Bohr frequency V�x� does not vary in
time. The effect of real collisions [right-hand side of (11)]
is neglected since we are interested in small time behavior
only. The result of this calculation is that mk�x, t� starts

as t4 with m
�4�
k �x� � ege

12n�x� �V00�x�n�x� 1 V
0�x� 3

�n0�x� 2 xn�x�	��2h̄ in dimensionless form. Using the
fact that the density n�x� remains Gaussian and restoring
the units, we get

mk�x, t�
n�x�

�
n2 2 n1

n
�

ege
12n

h̄v

V
00
x2

T 2 2V
0
x

v

�vt�4

48
.

(12)

The first factor on the right-hand side is of the order of the
dimensionless ISRE constant g12n�0��h̄v. Since its value
in the experiment of Ref. [1] is �20, it is not surprising
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that species separation could be observed in a time smaller
than the trap period. The second factor involves the spatial
variations of V�x�; near the center of the trap, a positive
curvature implies a positive mk �n2 $ n1�, in accordance
with the results of [1] �tfwd

ex , 0�. Inserting the values of
the parameters of the experiment of [1] into (12) leads to
significant species separation �mk � n� for �25 ms, to be
compared with the observed 30 50 ms.

The maximum of the phenomenon can also readily be
understood. For short times, we have seen that positive ve-
locities along x correspond to one sign for the transverse
orientation, and conversely. For times greater than 2p�p

vdV [dV is the variation of V�x� between the center
and the edge of the cloud], both velocity signs become cor-
related to all spin directions in the transverse plane, so that
the apparent segregation effect averages out to zero. Typi-
cal values taken from the experiment of [1] give �100 ms
for the maximum of the phenomenon.

When, eventually, two separated species recombine un-
der the effect of the restoring force of the trap, the ISRE
plays no role anymore. The reason is merely that the op-
erator associated with transverse spin is diagonal in the
position representation (but not in the spin space), so that
it can have nonzero value only if the wave packets asso-
ciated with each internal state overlap. In the absence of
transverse polarization, the system is equivalent to a clas-
sical mixture of two gases.

Numerically, Eq. (11) can be solved by propagating the
initial distribution in time with the Lax-Wendroff method
(see, e.g., [14]), with parameters taken from Ref. [1]. The
Bohr frequency V�x� is taken to be an inverted Gauss-
ian of depth dV and half width xT . The dimensionless
ISRE constant is g12n�0��h̄v � 20. The relaxation time is
tM � 10 ms [1], so that vtM � 0.3. The time evolution
of the spin polarization at the center of the trap m�0, t� is
shown in Fig. 1, with no adjustable parameter. The longi-
tudinal spin polarization rises as predicted by (12), reaches
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FIG. 1. Time evolution of the spin polarization m at the center
of the trap; mk corresponds to the population difference between
the two states; m�,1 and m�,2 are the two components of the
transverse spin polarization. The center-to-edge difference in
Bohr frequency dV�2p is 12 Hz.
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130 ms
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FIG. 2. Evolution of the particle density in state 1; dV�2p
and g12n�0��h̄v are (a) 212 Hz, 20 (b) 0 Hz, 20 (c) 12 Hz,
20 (d) 30 Hz, 30. Note the good agreement with Fig. 3 of [1],
including the sign of the effect and higher order effects.

a maximum around 90 ms, and then oscillates and decays
to almost zero after 300 ms. Even in the pure Knudsen
regime �tM � `�, a strong maximum of mk is reached
around 100 ms. Figure 1 also shows how the other compo-
nents of the polarization oscillate and decay. An interesting
feature of the experiment of Ref. [1] is that neither the hy-
drodynamic nor the collisionless regime is valid along the
axis as vtM � 1, so that a study of the full phase-space
dynamics is necessary.

Figure 2 shows the time evolution of n1 as a function
of dV, the variation of V�x� between the center and the
edge of the atomic cloud, and of g12n�0��h̄v. When the
curvature is zero [column (b)], no state separation occurs.
Columns (a) and (c) show the effect of spin conversion for
negative and positive curvature dV (at the center). For
negative curvature, the atoms in state 1 are pulled towards
the center of the trap, whereas for positive curvature they
are expelled from it. Column (d) exhibits what authors of
Ref. [1] call “higher order effects,” for sufficiently large
values of dV and g12n�0��h̄v. These figures are in good
qualitative agreement with Fig. 3 in Ref. [1].

In conclusion, the ISRE plays an important role in the
dynamics of cold gases with internal states. In the experi-
ment of Ref. [1], this effect creates large longitudinal spin
oscillations in a nonhydrodynamic regime. Our calcula-
tions are also valid for fermions [15], where similar effects
could be observed, in a case where ge

11 � ge
22 � 0 and the

ISRE changes sign. Another interesting possibility is tun-
ing the effect by changing ge

12 at a Feshbach resonance
[16]. Finally we note that, strictly speaking, our study is
limited to nondegenerate gases; nevertheless, for noncon-
densed systems, most of the effect of degeneracy can be
included by simply replacing the Maxwell-Boltzmann dis-
tribution by the appropriate quantum distribution [17], so
that no dramatic change is expected.
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Note added.—While this Letter was being written, we
became aware of the work of Oktel and Levitov [18], who
reach conclusions similar to ours. Nevertheless, they use a
hydrodynamic expression for the evolution of the spin cur-
rent, while here we put more emphasis on the intermediate
and Knudsen regimes.
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