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Vertex operator algebras

A vertex operator algebras (VOA) is a vector space V equipped with a linear

map

V → (End(V ))[[z , z−1]], a 7→ Y (a, z) = a(z) =
∑
n∈Z

a(n)z
−n−1

that satisfies certains properties such as the state-field correspondence

a = lim
z→0

a(z)|0〉,

where |0〉 ∈ V is the vacuum vector, and the locality :

(z − w)N [a(z), b(w)] = 0 (N � 0),

or, equivalently, OPEs :

a(z)b(w) ∼
∑
j>0

1

(z − w)j+1
(a(j)b)(w).

It is also required that V is Z-graded with dimVn <∞ for each n.
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Associated variety of VOAs

There is a contravariant functor

{VOAs} −→ {affine Poisson varieties}
V 7−→ XV ,

where XV is the associated variety of V :

XV := Specm RV ,

and RV is the Zhu’s C2 algebra.
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Zhu’s C2 algebra

RV is defined as follows.

By the state-field correspondence we can write

V = spanC{ ◦◦ (∂n1a1(z) . . . ∂nr ar (z)) ◦◦ }.

Let C2(V ) be the the subspace of V generated by the elements of the above

form with n1 + · · ·+ nr > 1, that is,

C2(V ) = spanC{a(−2)b : a, b ∈ V }.

Then RV := V /C2(V ). It is a Poisson algebra by

a · b = a(−1)b, {a, b} = a(0)b.

Equivalently,

f (z).g(z) = ◦
◦ f (z)g(z) ◦◦ , {f (z), g(z)} = Resz=w f (w)g(z).

I The associated variety XV = SpecmRV captures important properties of V .
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4D/2D correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees ’15 ([BL2PRvR]) :

V : {4D N = 2 SCFT’s} −→ {2D chiral CFTs (VOAs)}

such that

the Schur index of T = χV(T )(q) := trV(T )(q
L0−cV(T )/24),

q = e2iπτ , τ ∈ H = {τ ∈ C | Im τ > 0}.

• V is injective so far.

• V(T ) is never unitary (reason : c2D = −12c4D). In particular, V is not

surjective.
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Beem-Rastelli conjecture

Conjecture (Beem-Rastelli ’18)

For any 4D N = 2 SCFT T , we have

Higgs(T ) ∼= XV(T ),

where XV is the associated variety of a VOA V .

• The conjecture has been proved in the special case of class S theory by

Arakawa ’18.

• The Higgs branch Higgs(T ) is a hyperkähler cone, while the associated

variety XV of a VOA V is only a Poisson variety in general.

It is expected that the associated variety XV(T ) has finitely many symplectic

leaves.

Definition

V is called quasi-lisse if XV has finitely many symplectic leaves.

It is lisse if XV = {point}.
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Examples and non-examples of quasi-lisse vertex algebras

Let ĝ := g[t, t−1]⊕ CK be the affine Kac-Moody algebra associated with a

simple Lie algebra g, and

V k(g) := U(ĝ)⊗U(g[t]⊕CK) Ck

the universal affine vertex algebra associated with g at level k ∈ C.

V k(g) is generated by x(z), x ∈ g, with OPEs

x(z)y(w) ∼ [x , y ](w)/(z − w) + k(x |y)/(z − w)2

(a V k(g)-module = a smooth ĝ-module of level k).

We have

XV k (g) = g∗ ∼= g.

Let Lk(g) be the simple quotient of V k(g),

XLk (g) ⊂ g∗, G -invariant and conic.

The associated variety XLk (g) is difficult to compute in general !
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(a V k(g)-module = a smooth ĝ-module of level k).

We have

XV k (g) = g∗ ∼= g.

Let Lk(g) be the simple quotient of V k(g),

XLk (g) ⊂ g∗, G -invariant and conic.

The associated variety XLk (g) is difficult to compute in general !
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Examples

• Lk(g) is integrable (k ∈ Z>0) ⇒ XLk (g) = {0}. (The converse is true.)

Lk(g) is quasi-lisse ⇐⇒ XLk (g) ⊂ N , the nilpotent cone of g.

{integrable ĝ-repr.} $ {admissible ĝ-repr.} ⊆ {modular inv. repr.}.

Example : Lk(g) ∼= L(kΛ0) is admissible if and only if

k = −h∨ + p/q, with (p, q) = 1 and

p > h∨ if (q, r∨) = 1,

p > h if (q, r∨) 6= 1.
.

• Lk(g) is admissible ⇒ XLk (g) = Ok , for some nilpotent orbit Ok of g

[Arakawa ’15].

In particular, Lk(g) is quasi-lisse if k is admissible.
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Example : Lk(g) ∼= L(kΛ0) is admissible if and only if

k = −h∨ + p/q, with (p, q) = 1 and

p > h∨ if (q, r∨) = 1,

p > h if (q, r∨) 6= 1.
.

• Lk(g) is admissible ⇒ XLk (g) = Ok , for some nilpotent orbit Ok of g

[Arakawa ’15].

In particular, Lk(g) is quasi-lisse if k is admissible.

7



Examples

• Lk(g) is integrable (k ∈ Z>0) ⇒ XLk (g) = {0}. (The converse is true.)

Lk(g) is quasi-lisse ⇐⇒ XLk (g) ⊂ N , the nilpotent cone of g.

{integrable ĝ-repr.} $ {admissible ĝ-repr.} ⊆ {modular inv. repr.}.
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Another example

• If g belongs to the Deligne exceptional series,

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8,

and k = −h∨/6− 1, then XLk (g) = Omin so that Lk(g) is quasi-lisse

[Arakawa-M. ’18].

The level k = −h∨/6− 1 is equal to −2,−3,−4,−6 for D4,E6,E7,E8,

respectively.

In particular, it is not admissible for D4,E6,E7,E8.

I The VOAs L−2(D4), L−3(E6), L−4(E7), L−6(E8) are precisely the VOAs that

appeared in [BL2PRvR] as the main examples of V(T ) !
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Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of g, and Wk(g, f ) the W-algebra [Feigin-Frenkel,

Kac-Roan-Wakimoto] associated with g , f at the level k obtained the

quantized Drinfeld-Sokolov reduction :

Wk(g, f ) = H0
DS,f (V k(g)).

Then [De Sole-Kac]

XWk (g,f )
∼= Sf := f + ge , the Slodowy slice at f .

Theorem (Arakawa ’15)

XH0
DS,f

(Lk (g))
∼= XLk (g) ∩Sf . In particular, XH0

DS,f
(Lk (g)) is isomorphic to

Ok ∩Sf if k is admissible.

 This gives many examples of lisse and quasi-lisse W -algebras.

Conjecturally [Kac-Wakimoto], Wk(g, f ) = H0
DS,f (Lk(g)), provided that

H0
DS,f (Lk(g)) 6= 0 (proven in many cases), where Wk(g, f ) is the simple

quotient of Wk(g, f ).
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Compatibility with Drinfeld-Sokolov reduction

Let f be a nilpotent element of g, and Wk(g, f ) the W-algebra [Feigin-Frenkel,
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Nilpotent Slodowy slices

If O = G .x is a nilpotent orbit of g, the intersection

SO,f := O ∩Sf

is a transverse slice to O at the point f , called a nilpotent Slodowy slice.

 the local geometry of O at f ∈ O is encoded in SO,f .

The geometry of SO,f has been mainly studied in the case where G .f is a

minimal degeneration of O, that is, G .f is a maximal orbit in the boundary

O \O = Sing O.

I When O = Oreg (Oreg = N , the nilpotent cone of g) and f = fsubreg , it is

well-known that SO,f = N ∩Sfsubreg has a simple surface singularity at f

of the same type as g, provided g is has type A,D,E [Brieskorn-Slodowy].

I When O = Omin and f = 0, then SO,f = Omin has a minimal symplectic

singularity at 0.

I More generally, the generic singularities has been determined ([Kraft and

Procesi ’81-82] in the classical types, [Fu-Juteau-Levy-Sommers ’ 17] in

the exceptional types).
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Nilpotent Slodowy slices appear in various areas

Nilpotent Slodowy slices

Theory of symplec-

tic singularities

Associated varieties

of simple W -algebras

Higgs branches of

some 4d N=2 SCFT’s

(Argyres-Douglas theory)

Higgs branch conjecture

11
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W -algebras and Argyres-Douglas theory

Fact (Xie-Yan-Yau ’16, Song-Xie-Yan ’17, Wang-Xie ’19)

Wk(g, f ) appears as V(T ) for some Argyres-Douglas theory T if k is

boundary admissible, that is, k = −h∨ + h∨/q if (q, r∨) = 1.

There are cases when Wk(g, f ) ∼=Wk′(g
′, f ′). In particular, if

Wk(g, f ) ∼= Lk′(g
′),

the level k is called collapsing [Adamović-Kac-Möseneder-Papi-Peřse ’18].

• If T ∼= T ′ as physical theories then V(T ) ∼= V(T ′), and so one can

predict many isomorphisms.

• If T ∼= T ′ as physical theories then Higgs(T ) ∼= Higgs(T ′).

Conversely, from the coincidence of the singularities of different nilpotent

Slodowy slices, we can guess many isomorphisms.

12
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Collapsing levels for W -algebras

Let g\ be the centralizer of the sl2-triple (e, h, f ). It is a reductive algebra.

[Kac-Wakimoto ’04] : there is a vertex algebra morphism

V k\(g\) ↪−→Wk(g, f ),

where the level k\ is determined by f and k.

Definition (Adamović-Kac-Möseneder-Papi-Peřse ’18)

We say that k is collapsing for Wk(g, f ) if the image of the composition map

V k\(g\) ↪−→Wk(g, f ) −�Wk(g, f )

is surjective, that is,

Wk(g, f ) ∼= Lk\(g\).

For example, if Wk(g, f ) ∼= C, then k is collapsing.
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Motivations

I Collapsing levels are important in the Argyres-Douglas theory.

I If k is collapsing, the vertex algebra homomorphism

Wk(g, f ) −�Wk(g, f ) ∼= Lk\(g\) induces an algebra homomorphism,

Zhu(Wk(g, f)) ∼= U(g, f) −→ Zhu(Lk\(g\)) ∼= U(g\)/I.

which gives to the representation theory of Lk\(g\) a richer structure.

I [AKMPP] Semisimplicity of some categories of Lk(g)-modules for f = fmin.
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What is known about collapsing levels ?

I [AKMPP ’18] There is a full classification of collapsing levels for Wk(g, fmin),

including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (g, k) such that

Wk(g, fmin) ∼= C [Arakawa-M. ’18, AKMPP for the super case].

I However, little or nothing was known for collapsing levels for non minimal

nilpotent elements.

The main reason is that for an arbitrary nilpotent element f , the commutation

relations in Wk(g, f ) are unknown.

Idea to find appropriate candidates for f and k ? If k is collapsing, then

obviously

XWk (g,f )
∼= XL

k\
(g\),

and this is a very restrictive condition on (k, f ).

When k and k\ are admissible, such coincidences can be understood by

considering singularities of nilpotent Slodowy slices...
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Creutzig-Kawasetsu illustrating example

Assume that g = sln.

{nilpotent orbits in sln} ←→ {partitions of n}
Oλ 7−→ λ

Let k be admissible, i.e., k = −n + p/q, (p, q) = 1, p > n.

Then XLk (sln) = Ok = Oλ with λ = (qm0 , s0), where n = qm0 + s0, 0 6 s0 < q.

Pick f ∈ Oµ ⊂ Oλ. Kraft-Procesi’s removal common rows rule (improved by

Yiqiang Li, 2019) allows to describe SOλ,f in some cases.

Example : n = 7, q = 3 so that λ = (32, 1), f ∈ O(3,14).

∩ ∼=
∩ =

Remark : g\ = C× sl4.

Question : W−7+7/3(sl7, f ) ∼= L−4+4/3(sl4) ? Yes...
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Theorem (Arakawa-van Ekeren-M., 2020)

Assume that g = sln, k = −n + p/q admissible.

1. Pick f ∈ Ok so that Wk(sln, f ) is lisse (and even rational).

• if n ≡ ±1 mod q, then Wk(sln, f ) ∼= C.
• if n ≡ 0 mod q, then W−n+(n+1)/q(sln, f ) ∼= L1(slm0).

2. Pick f ∈ O(qm,1s ) ∈ Ok with s 6= 0. Then W−n+n/q(sln, f ) ∼= L−s+s/q(sls).

3. Assume that n = qm0 + (q − 2) and pick f ∈ O(qm0−1,(q−1)2) ∈ Ok . Then

W−n+n/q(sln, f ) ∼= L−2+2/q(sl2).

∩ ∼=
∩ =

I We have similar results for spn, son and the exceptional types.

I In term of associated varieties, it yields isomorphisms of Poisson varieties.

I We conjecture that our results furnish the exhaustive liste of admissible

collapsing levels k.

17
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Proof : asymptotic behaviour of characters

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e.,

V =
⊕

n∈ 1
r
Z≥0

Vn, V0
∼= C, r > 0), then

χV (q) ∼ AV (−iτ)
wV

2 e
πi

12τ
gV as τ ↓ 0,

where q = e2iπτ and AV , wV , gV are some constants.

The result was known for several classes of VOAs :

1. Rational, lisse, self-dual simple VOAs of CFT-type (well-known).

I Key point of the proof : the vector space spanned by the (finite) set of

simple V -modules is invariant under the natural action of the modular

group SL2(Z).

2. Quotients of Virasoro vertex algebras. For example,

χVirc (q) ∼ (−2iπτ)(−iτ)
1
2 e

πi
12τ .

3. V is Lk(g) or H0
DS,f (Lk(g)) for k principal admissible [Kac-Wakimoto ’89].
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The key technical result

Theorem (Arakawa-van Ekeren-M., 2020)

Let k be an admissible level, and f ∈ Ok . If

χH0
DS,f

(Lk (g))(q) ∼ χL
k\

(g\)(q) as τ ↓ 0,

that is,

wL
k\

(g\) = wH0
DS,f

(Lk (g)) = 0,

AH0
DS,f

(Lk (g)) = AL
k\

(g\), gH0
DS,f

(Lk (g)) = gL
k\

(g\),

then k is collapsing, that is,

Wk(g, f ) ∼= Lk\(g\).

I We have explicit combinatorial formulas for AL
k\

(g\), AH0
DS,f

(Lk (g)), gL
k\

(g\)

and gH0
DS,f

(Lk (g)).
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Some examples in the exceptional cases

Nilpotent orbits are classified by the Bala-Carter theory.

One can check all pairs of nilpotent orbits (O, f ) such that O = Ok for some

admissible k and G .f ⊂ O. Examples :

1. In g = E6, the isomorphism OE6(a3) ∩SD4
∼= NA2 admits the following

liftings :

W−12+12/7(E6,D4) ∼= L−3+3/7(A2), W−12+13/6(E6,D4) ∼= L−3+4/3(A2).

Similarly, the isomorphism OA4+A2 ∩SA4
∼= a1 has the following lifting :

W−12+12/5(E6,A4) ∼= L−2+2/5(A1).

2. In g = E8, we have (among others) the isomorphisms

W−30+30/7(E8,D4) ∼= L−9+9/7(F4), W−30+31/6(E8,D4) ∼= L−9+13/6(F4),

W−30+31/3(E8, 2A2) ∼= L−4+7/3(G2).

As a consequence we obtain (new ?) isomorphisms of Poisson varieties :

SA6+A1,D4
∼= OF4(a2), SE8(a7),D4

∼= OF4(a3), S3A2+2A1,2A2
∼= g2 × g2.
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A conjecture

Sometimes, Wk(g, f ) is merely a finite extension of Lk\(g\).

In most of such cases, the associated varieties of Wk(g, f ) and Lk\(g\) are

isomorphic.

However, it is not always true : when it is not, we observe that they are at least

birationally equivalent.

Example : W−12+13/2(E6,A1) ∼= L−6+7/2(A5)⊕ L−6+7/2(A5;$3). But

XW−12+13/2(E6,A1) 6∼= XL−6+7/2(A5) since S3A1,A1 6∼= O(23). However, S3A1,A1 and

O(23) are birationally equivalent.

We formulate a more general conjecture :

Conjecture (Arakawa-van Ekeren-M., 2020)

If a vertex algebra V is finite extension of a vertex subalgebra W ⊂ V , then

the associated varieties of V and W are birationally equivalent.

Note that it is known that if W is lisse then V is lisse. Our conjecture suggests

that the converse holds as well.
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Some non-admissible collapsing levels

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B2 and G2 (Justine Fasquel’s

computations), one obtains (Adamović-Fasquel) the following isomorphisms :

• W−1(B2, fsubreg ) ∼= M(1),

• W−2(B2, fsubreg ) ∼= Vir−2,

• W−2(G2, fsubreg ) ∼= C.

In particular, the last isomorphism should give XL−2(G2
) ∼= Osubreg .

Remark : G2 = D
S3
4 and XL−2(D4

) ∼= Omin , while the image of Omin
D4 in D4 through the map

D∗4 ∼= D4 −� G∗2 ∼= G2 is Osubreg
G2 .

We also formulate a number of conjectures :

• W−9(E6, 2A2) ∼= L−3(G2), W−6(E6, 2A1) ∼= L−2(B3),

• W−12(E7,A2 + 3A1) ∼= L−2(G2), W−6(F4, Ã2) ∼= L−2(G2), etc.
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Thank you !
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