Nilpotent Slodowy slices and *W*-algebras

(joint work with Tomoyuki Arakawa and Jethro van Ekeren)

Darboux seminar

Anne Moreau January 7, 2021

Laboratoire de Mathématiques d'Orsay, Paris-Saclay University

Vertex operator algebras

$$V
ightarrow (\operatorname{\mathsf{End}}(V))[[z,z^{-1}]], \quad a\mapsto Y(a,z)=a(z)=\sum_{n\in\mathbb{Z}}a_{(n)}z^{-n-1}$$

$$V
ightarrow (\operatorname{\mathsf{End}}(V))[[z,z^{-1}]], \quad a\mapsto Y(a,z)=a(z)=\sum_{n\in\mathbb{Z}}a_{(n)}z^{-n-1}$$

that satisfies certains properties

$$V
ightarrow (\operatorname{End}(V))[[z, z^{-1}]], \quad a \mapsto Y(a, z) = a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$$

that satisfies certains properties such as the state-field correspondence

 $a = \lim_{z \to 0} a(z) |0\rangle,$

$$V
ightarrow (\operatorname{End}(V))[[z, z^{-1}]], \quad a \mapsto Y(a, z) = a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$$

that satisfies certains properties such as the state-field correspondence

$$a = \lim_{z \to 0} a(z) |0\rangle,$$

where $|0\rangle \in V$ is the vacuum vector,

$$V
ightarrow (\operatorname{End}(V))[[z, z^{-1}]], \quad a \mapsto Y(a, z) = a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$$

that satisfies certains properties such as the state-field correspondence

$$a = \lim_{z \to 0} a(z) |0\rangle,$$

where $|0
angle \in V$ is the vacuum vector, and the locality :

$$(z-w)^{N}[a(z), b(w)] = 0$$
 (N \gg 0),

$$V
ightarrow (\operatorname{End}(V))[[z, z^{-1}]], \quad a \mapsto Y(a, z) = a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$$

that satisfies certains properties such as the state-field correspondence

$$a = \lim_{z \to 0} a(z) |0\rangle,$$

where $|0
angle \in V$ is the vacuum vector, and the locality :

$$(z-w)^{N}[a(z), b(w)] = 0$$
 (N \gg 0),

or, equivalently, OPEs :

$$\mathsf{a}(z)b(w) \sim \sum_{j \geqslant 0} rac{1}{(z-w)^{j+1}} (\mathsf{a}_{(j)}b)(w).$$

$$V
ightarrow (\operatorname{End}(V))[[z, z^{-1}]], \quad a \mapsto Y(a, z) = a(z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1}$$

that satisfies certains properties such as the state-field correspondence

$$a = \lim_{z \to 0} a(z) |0\rangle,$$

where $|0
angle \in V$ is the vacuum vector, and the locality :

$$(z-w)^{N}[a(z), b(w)] = 0$$
 (N \gg 0),

or, equivalently, OPEs :

$$\mathsf{a}(z)b(w)\sim \sum_{j\geqslant 0}rac{1}{(z-w)^{j+1}}(\mathsf{a}_{(j)}b)(w).$$

It is also required that V is \mathbb{Z} -graded with dim $V_n < \infty$ for each n.

Associated variety of VOAs

$$\begin{array}{rcl} \{\mathsf{VOAs}\} & \longrightarrow & \{\mathsf{affine Poisson varieties}\}\\ V & \longmapsto & X_V, \end{array}$$

$$\begin{array}{rcl} \{\mathsf{VOAs}\} & \longrightarrow & \{\mathsf{affine Poisson varieties}\}\\ V & \longmapsto & X_V, \end{array}$$

where X_V is the *associated variety* of V:

$$\begin{array}{rcl} \{\mathsf{VOAs}\} & \longrightarrow & \{\mathsf{affine Poisson varieties}\}\\ & V & \longmapsto & X_V, \end{array}$$

where X_V is the *associated variety* of V:

$$X_V := \text{Specm } R_V,$$

$$\begin{array}{rcl} \{\mathsf{VOAs}\} & \longrightarrow & \{\mathsf{affine Poisson varieties}\} \\ V & \longmapsto & X_V, \end{array}$$

where X_V is the *associated variety* of V:

$$X_V := \text{Specm } R_V$$
,

and R_V is the Zhu's C_2 algebra.

Zhu's C_2 algebra

 R_V is defined as follows.

 R_V is defined as follows.

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}_{\circ}^{\circ} (\partial^{n_1} a_1(z) \dots \partial^{n_r} a_r(z)) {}_{\circ}^{\circ} \}.$$

 R_V is defined as follows.

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}^{\circ}_{\circ} \left(\partial^{n_1} a_1(z) \dots \partial^{n_r} a_r(z) \right) {}^{\circ}_{\circ} \}.$$

Let $C_2(V)$ be the subspace of V generated by the elements of the above form with $n_1 + \cdots + n_r \ge 1$,

 R_V is defined as follows.

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}^{\circ}_{\circ} \left(\partial^{n_1} a_1(z) \dots \partial^{n_r} a_r(z) \right) {}^{\circ}_{\circ} \}.$$

Let $C_2(V)$ be the subspace of V generated by the elements of the above form with $n_1 + \cdots + n_r \ge 1$, that is,

$$C_2(V) = \operatorname{span}_{\mathbb{C}} \{a_{(-2)}b \colon a, b \in V\}$$

 R_V is defined as follows.

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}^{\circ}_{\circ} \left(\partial^{n_1} a_1(z) \dots \partial^{n_r} a_r(z) \right) {}^{\circ}_{\circ} \}.$$

Let $C_2(V)$ be the subspace of V generated by the elements of the above form with $n_1 + \cdots + n_r \ge 1$, that is,

$$\mathcal{C}_2(V) = \operatorname{\mathsf{span}}_{\mathbb{C}}\{a_{(-2)}b\colon a,b\in V\}.$$

Then $R_V := V/C_2(V)$.

 R_V is defined as follows.

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}^{\circ}_{\circ} \left(\partial^{n_1} a_1(z) \dots \partial^{n_r} a_r(z) \right) {}^{\circ}_{\circ} \}.$$

Let $C_2(V)$ be the subspace of V generated by the elements of the above form with $n_1 + \cdots + n_r \ge 1$, that is,

$$C_2(V) = \operatorname{span}_{\mathbb{C}} \{ a_{(-2)}b \colon a, b \in V \}.$$

Then $R_V := V/C_2(V)$. It is a Poisson algebra by

$$\overline{a} \cdot \overline{b} = \overline{a_{(-1)}b}, \quad \{\overline{a}, \overline{b}\} = \overline{a_{(0)}b},$$

R_V is defined as follows.

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}_{\circ}^{\circ} (\partial^{n_1} a_1(z) \dots \partial^{n_r} a_r(z)) {}_{\circ}^{\circ} \}.$$

Let $C_2(V)$ be the subspace of V generated by the elements of the above form with $n_1 + \cdots + n_r \ge 1$, that is,

$$C_2(V) = \operatorname{span}_{\mathbb{C}} \{a_{(-2)}b \colon a, b \in V\}.$$

Then $R_V := V/C_2(V)$. It is a Poisson algebra by

$$\overline{a} \cdot \overline{b} = \overline{a_{(-1)}b}, \quad \{\overline{a}, \overline{b}\} = \overline{a_{(0)}b}.$$

Equivalently,

$$\overline{f(z)}.\overline{g(z)} = \overline{{}_{\circ}^{\circ} f(z)g(z)}_{\circ}^{\circ}, \qquad \{\overline{f(z)},\overline{g(z)}\} = \overline{\operatorname{Res}_{z=w} f(w)g(z)}.$$

R_V is defined as follows.

By the state-field correspondence we can write

$$V = \operatorname{span}_{\mathbb{C}} \{ {}_{\circ}^{\circ} (\partial^{n_1} a_1(z) \dots \partial^{n_r} a_r(z)) {}_{\circ}^{\circ} \}.$$

Let $C_2(V)$ be the subspace of V generated by the elements of the above form with $n_1 + \cdots + n_r \ge 1$, that is,

$$C_2(V) = \operatorname{span}_{\mathbb{C}} \{a_{(-2)}b \colon a, b \in V\}.$$

Then $R_V := V/C_2(V)$. It is a Poisson algebra by

$$\overline{a} \cdot \overline{b} = \overline{a_{(-1)}b}, \quad \{\overline{a}, \overline{b}\} = \overline{a_{(0)}b}.$$

Equivalently,

$$\overline{f(z)}.\overline{g(z)} = \overline{{}_{\circ}^{\circ} f(z)g(z)}_{\circ}^{\circ}, \qquad \{\overline{f(z)},\overline{g(z)}\} = \overline{\operatorname{Res}_{z=w} f(w)g(z)}.$$

• The associated variety $X_V = \text{Specm } R_V$ captures important properties of V.

4D/2D correspondence

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFT's \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \} \}$

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFT's \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \} \}$

such that

the *Schur index* of $\mathcal{T} = \chi_{\mathbb{V}(\mathcal{T})}(q) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\mathbb{V}(\mathcal{T})}/24})$,

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFT's \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \} \}$

such that

the *Schur index* of $\mathcal{T} = \chi_{\mathbb{V}(\mathcal{T})}(q) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\mathbb{V}(\mathcal{T})}/24})$,

 $q = e^{2i\pi\tau}, \ \tau \in \mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im } \tau > 0\}.$

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFT's \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \} \}$

such that

the *Schur index* of $\mathcal{T} = \chi_{\mathbb{V}(\mathcal{T})}(q) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\mathbb{V}(\mathcal{T})}/24})$,

 $q = e^{2i\pi\tau}, \ \tau \in \mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im } \tau > 0\}.$

• V is injective so far.

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFT's \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \} \}$

such that

the *Schur index* of $\mathcal{T} = \chi_{\mathbb{V}(\mathcal{T})}(q) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\mathbb{V}(\mathcal{T})}/24})$,

 $q = e^{2i\pi\tau}, \ \tau \in \mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im } \tau > 0\}.$

- \mathbb{V} is injective so far.
- $\mathbb{V}(\mathcal{T})$ is never unitary (reason : $c_{2D} = -12c_{4D}$).

 $\mathbb{V}: \{ 4D \ \mathcal{N} = 2 \ SCFT's \} \longrightarrow \{ 2D \ chiral \ CFTs \ (VOAs) \} \}$

such that

the *Schur index* of $\mathcal{T} = \chi_{\mathbb{V}(\mathcal{T})}(q) := \operatorname{tr}_{\mathbb{V}(\mathcal{T})}(q^{L_0 - c_{\mathbb{V}(\mathcal{T})}/24})$,

 $q = e^{2i\pi\tau}, \ \tau \in \mathbb{H} = \{\tau \in \mathbb{C} \mid \text{Im } \tau > 0\}.$

- \mathbb{V} is injective so far.
- V(T) is never unitary (reason : c_{2D} = −12c_{4D}). In particular, V is not surjective.

Conjecture (Beem-Rastelli '18)

For any 4D $\mathcal{N}=2$ SCFT $\mathcal{T},$ we have

 $\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})},$

where X_V is the associated variety of a VOA V.

Conjecture (Beem-Rastelli '18) For any 4D $\mathcal{N} = 2$ SCFT \mathcal{T} , we have Higgs $(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})}$, where X_V is the associated variety of a VOA V.

• The conjecture has been proved in the special case of class ${\cal S}$ theory by Arakawa '18.

```
Conjecture (Beem-Rastelli '18)
For any 4D \mathcal{N} = 2 SCFT \mathcal{T}, we have
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})},
where X_V is the associated variety of a VOA V.
```

- The conjecture has been proved in the special case of class ${\cal S}$ theory by Arakawa '18.
- The Higgs branch Higgs(*T*) is a hyperkähler cone, while the associated variety X_V of a VOA V is only a Poisson variety in general.

```
Conjecture (Beem-Rastelli '18)
For any 4D \mathcal{N} = 2 SCFT \mathcal{T}, we have
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})},
where X_V is the associated variety of a VOA V.
```

- The conjecture has been proved in the special case of class ${\cal S}$ theory by Arakawa '18.
- The Higgs branch Higgs(T) is a hyperkähler cone, while the associated variety X_V of a VOA V is only a Poisson variety in general.

It is expected that the associated variety $X_{\mathbb{V}(\mathcal{T})}$ has finitely many symplectic leaves.

Conjecture (Beem-Rastelli '18) For any 4D $\mathcal{N} = 2$ SCFT \mathcal{T} , we have Higgs $(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})}$,

where X_V is the associated variety of a VOA V.

- The conjecture has been proved in the special case of class ${\cal S}$ theory by Arakawa '18.
- The Higgs branch Higgs(T) is a hyperkähler cone, while the associated variety X_V of a VOA V is only a Poisson variety in general.

It is expected that the associated variety $X_{\mathbb{V}(\mathcal{T})}$ has finitely many symplectic leaves.

Definition

V is called *quasi-lisse* if X_V has finitely many symplectic leaves.
Beem-Rastelli conjecture

Conjecture (Beem-Rastelli '18) For any 4D $\mathcal{N} = 2$ SCFT \mathcal{T} , we have Higgs $(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})}$,

where X_V is the associated variety of a VOA V.

- The conjecture has been proved in the special case of class ${\cal S}$ theory by Arakawa '18.
- The Higgs branch Higgs(T) is a hyperkähler cone, while the associated variety X_V of a VOA V is only a Poisson variety in general.

It is expected that the associated variety $X_{\mathbb{V}(\mathcal{T})}$ has finitely many symplectic leaves.

Definition

V is called *quasi-lisse* if X_V has finitely many symplectic leaves. It is *lisse* if $X_V = \{\text{point}\}.$

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus\mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra \mathfrak{g} ,

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus\mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra $\mathfrak{g},$ and

$$V^k(\mathfrak{g}):=U(\widehat{\mathfrak{g}})\otimes_{U(\mathfrak{g}[t]\oplus\mathbb{C}K)}\mathbb{C}_k$$

the universal affine vertex algebra associated with \mathfrak{g} at level $k \in \mathbb{C}$.

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus\mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra $\mathfrak{g},$ and

 $V^k(\mathfrak{g}) := U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_k$

the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$. $V^{k}(g)$ is generated by $x(z), x \in g$, with OPEs $x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^{2}$

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus\mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra $\mathfrak{g},$ and

 $V^k(\mathfrak{g}) := U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_k$

the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$. $V^{k}(\mathfrak{g})$ is generated by $x(z), x \in \mathfrak{g}$, with OPEs $x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^{2}$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k).

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus\mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra $\mathfrak{g},$ and

 $V^k(\mathfrak{g}) := U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_k$

the universal affine vertex algebra associated with $\mathfrak g$ at level $k\in\mathbb C.$

 $V^k(\mathfrak{g})$ is generated by x(z), $x\in\mathfrak{g}$, with OPEs

$$x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^{2}$$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k).

We have

$$X_{V^k(\mathfrak{g})} = \mathfrak{g}^* \cong \mathfrak{g}.$$

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus \mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra $\mathfrak{g},$ and

 $V^k(\mathfrak{g}) := U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_k$

the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$. $V^{k}(\mathfrak{g})$ is generated by $x(z), x \in \mathfrak{g}$, with OPEs

 $x(z)y(w) \sim [x,y](w)/(z-w) + k(x|y)/(z-w)^2$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k).

We have

$$X_{V^k(\mathfrak{g})} = \mathfrak{g}^* \cong \mathfrak{g}.$$

Let $L_k(\mathfrak{g})$ be the simple quotient of $V^k(\mathfrak{g})$,

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus \mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra $\mathfrak{g},$ and

 $V^k(\mathfrak{g}) := U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_k$

the universal affine vertex algebra associated with \mathfrak{g} at level $k \in \mathbb{C}.$

 $V^{k}(\mathfrak{g})$ is generated by $x(z), x \in \mathfrak{g}$, with OPEs $x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^{2}$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k).

We have

$$X_{V^k(\mathfrak{g})} = \mathfrak{g}^* \cong \mathfrak{g}.$$

Let $L_k(\mathfrak{g})$ be the simple quotient of $V^k(\mathfrak{g})$,

 $X_{L_k(\mathfrak{g})} \subset \mathfrak{g}^*, \quad G$ -invariant and conic.

Let $\widehat{\mathfrak{g}}:=\mathfrak{g}[t,t^{-1}]\oplus\mathbb{C}K$ be the affine Kac-Moody algebra associated with a simple Lie algebra $\mathfrak{g},$ and

 $V^k(\mathfrak{g}) := U(\widehat{\mathfrak{g}}) \otimes_{U(\mathfrak{g}[t] \oplus \mathbb{C}K)} \mathbb{C}_k$

the universal affine vertex algebra associated with $\mathfrak g$ at level $k\in\mathbb C.$

 $V^k(\mathfrak{g})$ is generated by $x(z), x \in \mathfrak{g}$, with OPEs

$$x(z)y(w) \sim [x, y](w)/(z - w) + k(x|y)/(z - w)^{2}$$

(a $V^k(\mathfrak{g})$ -module = a smooth $\widehat{\mathfrak{g}}$ -module of level k).

We have

$$X_{V^k(\mathfrak{g})} = \mathfrak{g}^* \cong \mathfrak{g}.$$

Let $L_k(\mathfrak{g})$ be the simple quotient of $V^k(\mathfrak{g})$,

 $X_{L_k(\mathfrak{g})} \subset \mathfrak{g}^*, \quad G ext{-invariant and conic.}$

The associated variety $X_{L_k(g)}$ is difficult to compute in general !

• $L_k(\mathfrak{g})$ is integrable $(k \in \mathbb{Z}_{\geq 0}) \Rightarrow X_{L_k(\mathfrak{g})} = \{0\}.$

• $L_k(\mathfrak{g})$ is integrable $(k \in \mathbb{Z}_{\geq 0}) \Rightarrow X_{L_k(\mathfrak{g})} = \{0\}$. (The converse is true.)

• $L_k(\mathfrak{g})$ is integrable $(k \in \mathbb{Z}_{\geq 0}) \Rightarrow X_{L_k(\mathfrak{g})} = \{0\}$. (The converse is true.)

• $L_k(\mathfrak{g})$ is integrable $(k \in \mathbb{Z}_{\geq 0}) \Rightarrow X_{L_k(\mathfrak{g})} = \{0\}$. (The converse is true.)

 $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .

• $L_k(\mathfrak{g})$ is integrable $(k \in \mathbb{Z}_{\geq 0}) \Rightarrow X_{L_k(\mathfrak{g})} = \{0\}$. (The converse is true.)

 $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .

 $\{\mathsf{integrable} \ \widehat{\mathfrak{g}}\mathsf{-}\mathsf{repr.}\} \quad \ \subseteq \quad \{\mathsf{admissible} \ \widehat{\mathfrak{g}}\mathsf{-}\mathsf{repr.}\} \quad \ \subseteq \quad \{\mathsf{modular} \ \mathsf{inv.} \ \mathsf{repr.}\}.$

L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0}. (The converse is true.)

 $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .

 $\{ \mathsf{integrable} \ \widehat{\mathfrak{g}}\mathsf{-repr.} \} \hspace{0.1in} \underset{\neq}{\subseteq} \hspace{0.1in} \{ \mathsf{admissible} \ \widehat{\mathfrak{g}}\mathsf{-repr.} \} \hspace{0.1in} \subseteq \hspace{0.1in} \{ \mathsf{modular} \ \mathsf{inv.} \ \mathsf{repr.} \}.$

Example : $L_k(\mathfrak{g}) \cong L(k\Lambda_0)$ is admissible if and only if

$$k=-h^{ee}+p/q, ext{ with } (p,q)=1 ext{ and } egin{cases} p\geqslant h^{ee} & ext{ if } (q,r^{ee})=1, \ p\geqslant h & ext{ if } (q,r^{ee})
eq 1. \end{cases}$$

L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0}. (The converse is true.)

 $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .

 $\{ \mathsf{integrable} \ \widehat{\mathfrak{g}}\mathsf{-repr.} \} \hspace{0.1in} \underset{\neq}{\subseteq} \hspace{0.1in} \{ \mathsf{admissible} \ \widehat{\mathfrak{g}}\mathsf{-repr.} \} \hspace{0.1in} \subseteq \hspace{0.1in} \{ \mathsf{modular} \ \mathsf{inv.} \ \mathsf{repr.} \}.$

Example : $L_k(\mathfrak{g}) \cong L(k\Lambda_0)$ is admissible if and only if

$$k=-h^{ee}+p/q, ext{ with } (p,q)=1 ext{ and } egin{cases} p\geqslant h^{ee} & ext{ if } (q,r^{ee})=1, \ p\geqslant h & ext{ if } (q,r^{ee})
eq 1. \end{cases}$$

L_k(g) is admissible ⇒ X_{L_k(g)} = [¬]_{□k}, for some nilpotent orbit [¬]_{∪k} of g [Arakawa '15].

L_k(g) is integrable (k ∈ Z≥0) ⇒ X_{L_k(g)} = {0}. (The converse is true.)

 $L_k(\mathfrak{g})$ is quasi-lisse $\iff X_{L_k(\mathfrak{g})} \subset \mathcal{N}$, the nilpotent cone of \mathfrak{g} .

 $\{ \mathsf{integrable} \ \widehat{\mathfrak{g}}\mathsf{-repr.} \} \hspace{0.1in} \underset{\neq}{\subseteq} \hspace{0.1in} \{ \mathsf{admissible} \ \widehat{\mathfrak{g}}\mathsf{-repr.} \} \hspace{0.1in} \subseteq \hspace{0.1in} \{ \mathsf{modular} \ \mathsf{inv.} \ \mathsf{repr.} \}.$

Example : $L_k(\mathfrak{g}) \cong L(k\Lambda_0)$ is admissible if and only if

$$k=-h^{ee}+p/q, ext{ with } (p,q)=1 ext{ and } egin{cases} p\geqslant h^{ee} & ext{ if } (q,r^{ee})=1, \ p\geqslant h & ext{ if } (q,r^{ee})
eq 1. \end{cases}$$

L_k(g) is admissible ⇒ X_{L_k(g)} = [∞]/_{∞k}, for some nilpotent orbit [∞]/_k of g [Arakawa '15].

In particular, $L_k(\mathfrak{g})$ is quasi-lisse if k is admissible.

 $A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8,$

 $A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8,$

and $k = -h^{\vee}/6 - 1$,

 $A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8,$

and $k = -h^{\vee}/6 - 1$, then $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}_{min}}$ so that $L_k(\mathfrak{g})$ is quasi-lisse [Arakawa-M. '18].

 $A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8,$

and $k = -h^{\vee}/6 - 1$, then $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}_{min}}$ so that $L_k(\mathfrak{g})$ is quasi-lisse [Arakawa-M. '18].

The level $k = -h^{\vee}/6 - 1$ is equal to -2, -3, -4, -6 for D_4, E_6, E_7, E_8 , respectively.

 $A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8,$

and $k = -h^{\vee}/6 - 1$, then $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}_{min}}$ so that $L_k(\mathfrak{g})$ is quasi-lisse [Arakawa-M. '18].

The level $k = -h^{\vee}/6 - 1$ is equal to -2, -3, -4, -6 for D_4, E_6, E_7, E_8 , respectively.

In particular, it is not admissible for D_4, E_6, E_7, E_8 .

 $A_1 \subset A_2 \subset G_2 \subset D_4 \subset F_4 \subset E_6 \subset E_7 \subset E_8,$

and $k = -h^{\vee}/6 - 1$, then $X_{L_k(\mathfrak{g})} = \overline{\mathbb{O}_{min}}$ so that $L_k(\mathfrak{g})$ is quasi-lisse [Arakawa-M. '18].

The level $k = -h^{\vee}/6 - 1$ is equal to -2, -3, -4, -6 for D_4, E_6, E_7, E_8 , respectively. In particular, it is not admissible for D_4, E_6, E_7, E_8 .

► The VOAs $L_{-2}(D_4)$, $L_{-3}(E_6)$, $L_{-4}(E_7)$, $L_{-6}(E_8)$ are precisely the VOAs that appeared in [BL²PRvR] as the main examples of $\mathbb{V}(\mathcal{T})$!

Let f be a nilpotent element of \mathfrak{g} ,

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W-algebra* [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W-algebra* [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

 $\mathcal{W}^{k}(\mathfrak{g},f)=H^{0}_{DS,f}(V^{k}(\mathfrak{g})).$

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W-algebra* [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

$$\mathcal{W}^k(\mathfrak{g},f)=H^0_{DS,f}(V^k(\mathfrak{g})).$$

Then [De Sole-Kac]

 $X_{\mathcal{W}^k(\mathfrak{g},f)} \cong \mathscr{S}_f := f + \mathfrak{g}^e$, the *Slodowy slice* at f.

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W*-algebra [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

$$\mathcal{W}^k(\mathfrak{g},f)=H^0_{DS,f}(V^k(\mathfrak{g})).$$

Then [De Sole-Kac]

 $X_{\mathcal{W}^k(\mathfrak{g},f)}\cong \mathscr{S}_f:=f+\mathfrak{g}^e,\quad ext{ the } \textit{Slodowy slice } ext{ at } f.$

Theorem (Arakawa '15)

 $X_{H^0_{DS,f}(L_k(\mathfrak{g}))}\cong X_{L_k(\mathfrak{g})}\cap \mathscr{S}_f.$

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W*-algebra [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

$$\mathcal{W}^k(\mathfrak{g},f)=H^0_{DS,f}(V^k(\mathfrak{g})).$$

Then [De Sole-Kac]

 $X_{\mathcal{W}^k(\mathfrak{g},f)}\cong \mathscr{S}_f:=f+\mathfrak{g}^e,\quad ext{ the } \textit{Slodowy slice} ext{ at } f.$

Theorem (Arakawa '15)

$$\begin{split} X_{H^0_{DS,f}(L_k(\mathfrak{g}))} &\cong X_{L_k(\mathfrak{g})} \cap \mathscr{S}_f. \text{ In particular, } X_{H^0_{DS,f}(L_k(\mathfrak{g}))} \text{ is isomorphic to } \\ \overline{\mathbb{O}_k} \cap \mathscr{S}_f \text{ if } k \text{ is admissible.} \end{split}$$

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W-algebra* [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

$$\mathcal{W}^k(\mathfrak{g},f)=H^0_{DS,f}(V^k(\mathfrak{g})).$$

Then [De Sole-Kac]

 $X_{\mathcal{W}^k(\mathfrak{g},f)}\cong \mathscr{S}_f:=f+\mathfrak{g}^e,\quad ext{the Slodowy slice} ext{ at } f.$

Theorem (Arakawa '15)

$$\begin{split} X_{H^0_{DS,f}(L_k(\mathfrak{g}))} &\cong X_{L_k(\mathfrak{g})} \cap \mathscr{S}_f. \text{ In particular, } X_{H^0_{DS,f}(L_k(\mathfrak{g}))} \text{ is isomorphic to } \\ \overline{\mathbb{O}_k} \cap \mathscr{S}_f \text{ if } k \text{ is admissible.} \end{split}$$

 \rightsquigarrow This gives many examples of lisse and quasi-lisse W-algebras.

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W-algebra* [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

$$\mathcal{W}^k(\mathfrak{g},f)=H^0_{DS,f}(V^k(\mathfrak{g})).$$

Then [De Sole-Kac]

 $X_{\mathcal{W}^k(\mathfrak{g},f)}\cong \mathscr{S}_f:=f+\mathfrak{g}^e,\quad ext{ the } \textit{Slodowy slice} ext{ at } f.$

Theorem (Arakawa '15)

$$\begin{split} X_{H^0_{DS,f}(L_k(\mathfrak{g}))} &\cong X_{L_k(\mathfrak{g})} \cap \mathscr{S}_f. \text{ In particular, } X_{H^0_{DS,f}(L_k(\mathfrak{g}))} \text{ is isomorphic to } \\ \overline{\mathbb{O}_k} \cap \mathscr{S}_f \text{ if } k \text{ is admissible.} \end{split}$$

 \rightsquigarrow This gives many examples of lisse and quasi-lisse W-algebras.

Conjecturally [Kac-Wakimoto], $W_k(\mathfrak{g}, f) = H^0_{DS,f}(L_k(\mathfrak{g}))$, provided that $H^0_{DS,f}(L_k(\mathfrak{g})) \neq 0$ (proven in many cases),

Let f be a nilpotent element of \mathfrak{g} , and $\mathcal{W}^k(\mathfrak{g}, f)$ the *W-algebra* [Feigin-Frenkel, Kac-Roan-Wakimoto] associated with g, f at the level k obtained the quantized Drinfeld-Sokolov reduction :

$$\mathcal{W}^k(\mathfrak{g},f)=H^0_{DS,f}(V^k(\mathfrak{g})).$$

Then [De Sole-Kac]

 $X_{\mathcal{W}^k(\mathfrak{g},f)}\cong \mathscr{S}_f:=f+\mathfrak{g}^e,\quad ext{ the } \textit{Slodowy slice} ext{ at } f.$

Theorem (Arakawa '15)

$$\begin{split} X_{H^0_{DS,f}(L_k(\mathfrak{g}))} &\cong X_{L_k(\mathfrak{g})} \cap \mathscr{S}_f. \text{ In particular, } X_{H^0_{DS,f}(L_k(\mathfrak{g}))} \text{ is isomorphic to } \\ \overline{\mathbb{O}_k} \cap \mathscr{S}_f \text{ if } k \text{ is admissible.} \end{split}$$

 \rightsquigarrow This gives many examples of lisse and quasi-lisse W-algebras.

Conjecturally [Kac-Wakimoto], $\mathcal{W}_k(\mathfrak{g}, f) = H^0_{DS,f}(L_k(\mathfrak{g}))$, provided that $H^0_{DS,f}(L_k(\mathfrak{g})) \neq 0$ (proven in many cases), where $\mathcal{W}_k(\mathfrak{g}, f)$ is the simple quotient of $\mathcal{W}^k(\mathfrak{g}, f)$.
If $\mathbb{O}=\mathit{G.x}$ is a nilpotent orbit of $\mathfrak{g},$ the intersection

 $\mathscr{S}_{\mathbb{O},f} := \overline{\mathbb{O}} \cap \mathscr{S}_f$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a *nilpotent Slodowy slice*.

If $\mathbb{O}=\mathit{G.x}$ is a nilpotent orbit of $\mathfrak{g},$ the intersection

 $\mathscr{S}_{\mathbb{O},f} := \overline{\mathbb{O}} \cap \mathscr{S}_f$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a *nilpotent Slodowy slice*.

 \rightsquigarrow the local geometry of $\overline{\mathbb{O}}$ at $f \in \overline{\mathbb{O}}$ is encoded in $\mathscr{S}_{\mathbb{O},f}$.

If $\mathbb{O} = G.x$ is a nilpotent orbit of \mathfrak{g} , the intersection

 $\mathscr{S}_{\mathbb{O},f} := \overline{\mathbb{O}} \cap \mathscr{S}_f$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a *nilpotent Slodowy slice*.

 \rightsquigarrow the local geometry of $\overline{\mathbb{O}}$ at $f \in \overline{\mathbb{O}}$ is encoded in $\mathscr{S}_{\mathbb{O},f}$.

The geometry of $\mathscr{S}_{\mathbb{O},f}$ has been mainly studied in the case where G.f is a *minimal degeneration* of $\overline{\mathbb{O}}$, that is, G.f is a maximal orbit in the boundary $\overline{\mathbb{O}} \setminus \mathbb{O} = \text{Sing } \overline{\mathbb{O}}$.

If $\mathbb{O} = G.x$ is a nilpotent orbit of \mathfrak{g} , the intersection

 $\mathscr{S}_{\mathbb{O},f} := \overline{\mathbb{O}} \cap \mathscr{S}_f$

is a transverse slice to $\overline{\mathbb{O}}$ at the point *f*, called a *nilpotent Slodowy slice*.

 \rightsquigarrow the local geometry of $\overline{\mathbb{O}}$ at $f \in \overline{\mathbb{O}}$ is encoded in $\mathscr{S}_{\mathbb{O},f}$.

The geometry of $\mathscr{S}_{\mathbb{O},f}$ has been mainly studied in the case where G.f is a *minimal degeneration* of $\overline{\mathbb{O}}$, that is, G.f is a maximal orbit in the boundary $\overline{\mathbb{O}} \setminus \mathbb{O} = \text{Sing } \overline{\mathbb{O}}$.

When O = O_{reg} (O_{reg} = N, the nilpotent cone of g) and f = f_{subreg}, it is well-known that S_{O,f} = N ∩ S_{f_{subreg}} has a simple surface singularity at f of the same type as g, provided g is has type A, D, E [Brieskorn-Slodowy].

If $\mathbb{O} = G.x$ is a nilpotent orbit of \mathfrak{g} , the intersection

 $\mathscr{S}_{\mathbb{O},f} := \overline{\mathbb{O}} \cap \mathscr{S}_f$

is a transverse slice to $\overline{\mathbb{O}}$ at the point *f*, called a *nilpotent Slodowy slice*.

 \rightsquigarrow the local geometry of $\overline{\mathbb{O}}$ at $f \in \overline{\mathbb{O}}$ is encoded in $\mathscr{S}_{\mathbb{O},f}$.

The geometry of $\mathscr{S}_{\mathbb{O},f}$ has been mainly studied in the case where G.f is a *minimal degeneration* of $\overline{\mathbb{O}}$, that is, G.f is a maximal orbit in the boundary $\overline{\mathbb{O}} \setminus \mathbb{O} = \text{Sing } \overline{\mathbb{O}}$.

- When D = D_{reg} (D_{reg} = N, the nilpotent cone of g) and f = f_{subreg}, it is well-known that S_{D,f} = N ∩ S_{f_{subreg}} has a simple surface singularity at f of the same type as g, provided g is has type A, D, E [Brieskorn-Slodowy].
- When D = D_{min} and f = 0, then S_{D,f} = D_{min} has a minimal symplectic singularity at 0.

If $\mathbb{O} = G.x$ is a nilpotent orbit of \mathfrak{g} , the intersection

 $\mathscr{S}_{\mathbb{O},f} := \overline{\mathbb{O}} \cap \mathscr{S}_f$

is a transverse slice to $\overline{\mathbb{O}}$ at the point f, called a *nilpotent Slodowy slice*.

 \rightsquigarrow the local geometry of $\overline{\mathbb{O}}$ at $f \in \overline{\mathbb{O}}$ is encoded in $\mathscr{S}_{\mathbb{O},f}$.

The geometry of $\mathscr{S}_{\mathbb{O},f}$ has been mainly studied in the case where G.f is a *minimal degeneration* of $\overline{\mathbb{O}}$, that is, G.f is a maximal orbit in the boundary $\overline{\mathbb{O}} \setminus \mathbb{O} = \text{Sing } \overline{\mathbb{O}}$.

- When D = D_{reg} (D_{reg} = N, the nilpotent cone of g) and f = f_{subreg}, it is well-known that S_{D,f} = N ∩ S_{f_{subreg}} has a simple surface singularity at f of the same type as g, provided g is has type A, D, E [Brieskorn-Slodowy].
- When D = D_{min} and f = 0, then S_{D,f} = D_{min} has a minimal symplectic singularity at 0.
- ► More generally, the generic singularities has been determined ([Kraft and Procesi '81-82] in the classical types, [Fu-Juteau-Levy-Sommers ' 17] in the exceptional types).

Nilpotent Slodowy slices appear in various areas

Nilpotent Slodowy slices appear in various areas

W-algebras and Argyres-Douglas theory

Fact (Xie-Yan-Yau '16, Song-Xie-Yan '17, Wang-Xie '19)

 $\mathcal{W}_k(\mathfrak{g}, f)$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is boundary admissible, that is, $k = -h^{\vee} + h^{\vee}/q$ if $(q, r^{\vee}) = 1$.

Fact (Xie-Yan-Yau '16, Song-Xie-Yan '17, Wang-Xie '19)

 $\mathcal{W}_k(\mathfrak{g}, f)$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is boundary admissible, that is, $k = -h^{\vee} + h^{\vee}/q$ if $(q, r^{\vee}) = 1$.

There are cases when $\mathcal{W}_k(\mathfrak{g}, f) \cong \mathcal{W}_{k'}(\mathfrak{g}', f')$.

Fact (Xie-Yan-Yau '16, Song-Xie-Yan '17, Wang-Xie '19)

 $\mathcal{W}_k(\mathfrak{g}, f)$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is boundary admissible, that is, $k = -h^{\vee} + h^{\vee}/q$ if $(q, r^{\vee}) = 1$.

There are cases when $\mathcal{W}_k(\mathfrak{g}, f) \cong \mathcal{W}_{k'}(\mathfrak{g}', f')$. In particular, if

 $\mathcal{W}_k(\mathfrak{g},f)\cong L_{k'}(\mathfrak{g}'),$

the level k is called *collapsing* [Adamović-Kac-Möseneder-Papi-Perše '18].

Fact (Xie-Yan-Yau '16, Song-Xie-Yan '17, Wang-Xie '19) $\mathcal{W}_k(\mathfrak{g}, f)$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is boundary admissible, that is, $k = -h^{\vee} + h^{\vee}/q$ if $(q, r^{\vee}) = 1$.

There are cases when $\mathcal{W}_k(\mathfrak{g}, f) \cong \mathcal{W}_{k'}(\mathfrak{g}', f')$. In particular, if

 $\mathcal{W}_k(\mathfrak{g},f)\cong L_{k'}(\mathfrak{g}'),$

the level k is called *collapsing* [Adamović-Kac-Möseneder-Papi-Perše '18].

• If $\mathcal{T} \cong \mathcal{T}'$ as physical theories then $\mathbb{V}(\mathcal{T}) \cong \mathbb{V}(\mathcal{T}')$, and so one can predict many isomorphisms.

Fact (Xie-Yan-Yau '16, Song-Xie-Yan '17, Wang-Xie '19) $\mathcal{W}_k(\mathfrak{g}, f)$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is boundary admissible, that is, $k = -h^{\vee} + h^{\vee}/q$ if $(q, r^{\vee}) = 1$.

There are cases when $\mathcal{W}_k(\mathfrak{g}, f) \cong \mathcal{W}_{k'}(\mathfrak{g}', f')$. In particular, if

 $\mathcal{W}_k(\mathfrak{g},f)\cong L_{k'}(\mathfrak{g}'),$

the level k is called *collapsing* [Adamović-Kac-Möseneder-Papi-Perše '18].

- If $\mathcal{T} \cong \mathcal{T}'$ as physical theories then $\mathbb{V}(\mathcal{T}) \cong \mathbb{V}(\mathcal{T}')$, and so one can predict many isomorphisms.
- If $\mathcal{T} \cong \mathcal{T}'$ as physical theories then $\operatorname{Higgs}(\mathcal{T}) \cong \operatorname{Higgs}(\mathcal{T}')$.

Fact (Xie-Yan-Yau '16, Song-Xie-Yan '17, Wang-Xie '19) $W_k(\mathfrak{g}, f)$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is

boundary admissible, that is, $k = -h^{\vee} + h^{\vee}/q$ if $(q, r^{\vee}) = 1$.

There are cases when $\mathcal{W}_k(\mathfrak{g}, f) \cong \mathcal{W}_{k'}(\mathfrak{g}', f')$. In particular, if

 $\mathcal{W}_k(\mathfrak{g},f)\cong L_{k'}(\mathfrak{g}'),$

the level k is called *collapsing* [Adamović-Kac-Möseneder-Papi-Perše '18].

- If $\mathcal{T} \cong \mathcal{T}'$ as physical theories then $\mathbb{V}(\mathcal{T}) \cong \mathbb{V}(\mathcal{T}')$, and so one can predict many isomorphisms.
- If T ≅ T' as physical theories then Higgs(T) ≅ Higgs(T').
 Conversely, from the coincidence of the singularities of different nilpotent Slodowy slices, we can guess many isomorphisms.

Let \mathfrak{g}^{\natural} be the centralizer of the \mathfrak{sl}_2 -triple (e, h, f).

Let \mathfrak{g}^{\natural} be the centralizer of the \mathfrak{sl}_2 -triple (e, h, f). It is a reductive algebra.

Let \mathfrak{g}^{\natural} be the centralizer of the \mathfrak{sl}_2 -triple (e, h, f). It is a reductive algebra. [Kac-Wakimoto '04] : there is a vertex algebra morphism

 $V^{k^{\natural}}(\mathfrak{g}^{\natural}) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),$

Let \mathfrak{g}^{\natural} be the centralizer of the \mathfrak{sl}_2 -triple (e, h, f). It is a reductive algebra. [Kac-Wakimoto '04] : there is a vertex algebra morphism

$$V^{k^{\natural}}(\mathfrak{g}^{\natural}) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),$$

where the level k^{\natural} is determined by f and k.

Let \mathfrak{g}^{\natural} be the centralizer of the \mathfrak{sl}_2 -triple (e, h, f). It is a reductive algebra. [Kac-Wakimoto '04] : there is a vertex algebra morphism

$$V^{k^{\natural}}(\mathfrak{g}^{\natural}) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),$$

where the level k^{\natural} is determined by f and k.

Definition (Adamović-Kac-Möseneder-Papi-Perše '18)

We say that k is collapsing for $W_k(\mathfrak{g}, f)$ if the image of the composition map

$$V^{k^{\natural}}(\mathfrak{g}^{\natural}) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow \mathcal{W}_{k}(\mathfrak{g}, f)$$

is surjective,

Let \mathfrak{g}^{\natural} be the centralizer of the \mathfrak{sl}_2 -triple (e, h, f). It is a reductive algebra. [Kac-Wakimoto '04] : there is a vertex algebra morphism

$$V^{k^{\natural}}(\mathfrak{g}^{\natural}) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),$$

where the level k^{\natural} is determined by f and k.

Definition (Adamović-Kac-Möseneder-Papi-Perše '18)

We say that k is collapsing for $W_k(\mathfrak{g}, f)$ if the image of the composition map

$$V^{k^{\natural}}(\mathfrak{g}^{\natural}) \longrightarrow \mathcal{W}^{k}(\mathfrak{g},f) \longrightarrow \mathcal{W}_{k}(\mathfrak{g},f)$$

is surjective, that is,

$$\mathcal{W}_k(\mathfrak{g},f)\cong L_{k^{\natural}}(\mathfrak{g}^{\natural}).$$

Let \mathfrak{g}^{\natural} be the centralizer of the \mathfrak{sl}_2 -triple (e, h, f). It is a reductive algebra. [Kac-Wakimoto '04] : there is a vertex algebra morphism

$$V^{k^{\natural}}(\mathfrak{g}^{\natural}) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f),$$

where the level k^{\natural} is determined by f and k.

Definition (Adamović-Kac-Möseneder-Papi-Perše '18)

We say that k is collapsing for $W_k(\mathfrak{g}, f)$ if the image of the composition map

$$V^{k^{\natural}}(\mathfrak{g}^{\natural}) \hookrightarrow \mathcal{W}^{k}(\mathfrak{g}, f) \longrightarrow \mathcal{W}_{k}(\mathfrak{g}, f)$$

is surjective, that is,

$$\mathcal{W}_k(\mathfrak{g},f)\cong L_{k^{rak{l}}}(\mathfrak{g}^{lap{l}}).$$

For example, if $\mathcal{W}_k(\mathfrak{g}, f) \cong \mathbb{C}$, then k is collapsing.

Motivations

▶ If k is collapsing, the vertex algebra homomorphism $\mathcal{W}^k(\mathfrak{g}, f) \longrightarrow \mathcal{W}_k(\mathfrak{g}, f) \cong L_{k^{\natural}}(\mathfrak{g}^{\natural})$ induces an algebra homomorphism,

$$\mathsf{Zhu}(\mathcal{W}^k(\mathfrak{g},f))\cong\mathsf{U}(\mathfrak{g},f)\longrightarrow\mathsf{Zhu}(\mathsf{L}_{k^\natural}(\mathfrak{g}^\natural))\cong\mathsf{U}(\mathfrak{g}^\natural)/\mathsf{I}.$$

which gives to the representation theory of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ a richer structure.

▶ If k is collapsing, the vertex algebra homomorphism $\mathcal{W}^k(\mathfrak{g}, f) \longrightarrow \mathcal{W}_k(\mathfrak{g}, f) \cong L_{k^{\natural}}(\mathfrak{g}^{\natural})$ induces an algebra homomorphism,

$$\mathsf{Zhu}(\mathcal{W}^k(\mathfrak{g}, \mathsf{f})) \cong \mathsf{U}(\mathfrak{g}, \mathsf{f}) \longrightarrow \mathsf{Zhu}(\mathsf{L}_{k^\natural}(\mathfrak{g}^\natural)) \cong \mathsf{U}(\mathfrak{g}^\natural)/\mathsf{I}.$$

which gives to the representation theory of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ a richer structure.

▶ [AKMPP] Semisimplicity of some categories of $L_k(g)$ -modules for $f = f_{min}$.

▶ If k is collapsing, the vertex algebra homomorphism $\mathcal{W}^k(\mathfrak{g}, f) \longrightarrow \mathcal{W}_k(\mathfrak{g}, f) \cong L_{k^{\natural}}(\mathfrak{g}^{\natural})$ induces an algebra homomorphism,

$$\mathsf{Zhu}(\mathcal{W}^k(\mathfrak{g}, \mathsf{f})) \cong \mathsf{U}(\mathfrak{g}, \mathsf{f}) \longrightarrow \mathsf{Zhu}(\mathsf{L}_{k^\natural}(\mathfrak{g}^\natural)) \cong \mathsf{U}(\mathfrak{g}^\natural)/\mathsf{I}.$$

which gives to the representation theory of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ a richer structure.

▶ [AKMPP] Semisimplicity of some categories of $L_k(g)$ -modules for $f = f_{min}$.

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (\mathfrak{g}, k) such that $\mathcal{W}_k(\mathfrak{g}, f_{min}) \cong \mathbb{C}$ [Arakawa-M. '18, AKMPP for the super case].

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (\mathfrak{g}, k) such that $\mathcal{W}_k(\mathfrak{g}, f_{min}) \cong \mathbb{C}$ [Arakawa-M. '18, AKMPP for the super case].

► However, little or nothing was known for collapsing levels for non minimal nilpotent elements.

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (\mathfrak{g}, k) such that $\mathcal{W}_k(\mathfrak{g}, f_{min}) \cong \mathbb{C}$ [Arakawa-M. '18, AKMPP for the super case].

► However, little or nothing was known for collapsing levels for non minimal nilpotent elements.

The main reason is that for an arbitrary nilpotent element f, the commutation relations in $W_k(\mathfrak{g}, f)$ are unknown.

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (\mathfrak{g}, k) such that $\mathcal{W}_k(\mathfrak{g}, f_{min}) \cong \mathbb{C}$ [Arakawa-M. '18, AKMPP for the super case].

► However, little or nothing was known for collapsing levels for non minimal nilpotent elements.

The main reason is that for an arbitrary nilpotent element f, the commutation relations in $W_k(\mathfrak{g}, f)$ are unknown.

Idea to find appropriate candidates for f and k?

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (\mathfrak{g}, k) such that $\mathcal{W}_k(\mathfrak{g}, f_{min}) \cong \mathbb{C}$ [Arakawa-M. '18, AKMPP for the super case].

► However, little or nothing was known for collapsing levels for non minimal nilpotent elements.

The main reason is that for an arbitrary nilpotent element f, the commutation relations in $W_k(\mathfrak{g}, f)$ are unknown.

Idea to find appropriate candidates for f and k? If k is collapsing, then obviously

$$X_{\mathcal{W}_k(\mathfrak{g},f)}\cong X_{L_k^{\natural}(\mathfrak{g}^{\natural})},$$
What is known about collapsing levels?

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (\mathfrak{g}, k) such that $\mathcal{W}_k(\mathfrak{g}, f_{min}) \cong \mathbb{C}$ [Arakawa-M. '18, AKMPP for the super case].

► However, little or nothing was known for collapsing levels for non minimal nilpotent elements.

The main reason is that for an arbitrary nilpotent element f, the commutation relations in $W_k(\mathfrak{g}, f)$ are unknown.

Idea to find appropriate candidates for f and k? If k is collapsing, then obviously

$$X_{\mathcal{W}_k(\mathfrak{g},f)}\cong X_{L_k
atural}(\mathfrak{g}^{a}),$$

and this is a very restrictive condition on (k, f).

What is known about collapsing levels?

▶ [AKMPP '18] There is a full classification of collapsing levels for $W_k(\mathfrak{g}, f_{min})$, including simple affine Lie superalgebras.

Furthermore, there is a full classification of pairs (\mathfrak{g}, k) such that $\mathcal{W}_k(\mathfrak{g}, f_{min}) \cong \mathbb{C}$ [Arakawa-M. '18, AKMPP for the super case].

► However, little or nothing was known for collapsing levels for non minimal nilpotent elements.

The main reason is that for an arbitrary nilpotent element f, the commutation relations in $W_k(\mathfrak{g}, f)$ are unknown.

Idea to find appropriate candidates for f and k? If k is collapsing, then obviously

$$X_{\mathcal{W}_k(\mathfrak{g},f)} \cong X_{L_{k\flat}(\mathfrak{g}^{\flat})},$$

and this is a very restrictive condition on (k, f).

When k and k^{\natural} are admissible, such coincidences can be understood by considering singularities of nilpotent Slodowy slices...

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

 $\begin{array}{ccc} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

 $\{ \text{nilpotent orbits in } \mathfrak{sl}_n \} \quad \longleftrightarrow \quad \{ \text{partitions of } n \} \\ \mathbb{O}_{\boldsymbol{\lambda}} \quad \longleftarrow \quad \boldsymbol{\lambda}$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{array}{rcl} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leqslant s_0 < q$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\{ \text{nilpotent orbits in } \mathfrak{sl}_n \} \iff \{ \text{partitions of } n \}$$

$$\mathbb{O}_{\boldsymbol{\lambda}} \iff \boldsymbol{\lambda}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_{\lambda}}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_{\mu} \subset \overline{\mathbb{O}_{\lambda}}$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{array}{rcl} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

 $\begin{array}{rcl} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Example : n= 7, q= 3 so that $\lambda=(3^2,1)$, $f\in\mathbb{O}_{(3,1^4)}$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Example : n= 7, q= 3 so that $oldsymbol{\lambda}=(3^2,1),~f\in\mathbb{O}_{(3,1^4)}.$

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{array}{rcl} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Example : n= 7, q= 3 so that $oldsymbol{\lambda}=(3^2,1),~f\in\mathbb{O}_{(3,1^4)}.$

Remark :

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{aligned} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow \quad \{ \text{partitions of } n \} \\ \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow \quad \boldsymbol{\lambda} \end{aligned}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Example : n= 7, q= 3 so that $oldsymbol{\lambda}=(3^2,1),~f\in\mathbb{O}_{(3,1^4)}.$

Remark : $\mathfrak{g}^{\natural} = \mathbb{C} \times \mathfrak{sl}_4$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Example : n= 7, q= 3 so that $oldsymbol{\lambda}=(3^2,1),~f\in\mathbb{O}_{(3,1^4)}.$

Remark : $\mathfrak{g}^{\natural} = \mathbb{C} \times \mathfrak{sl}_4$.

Question :

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Example : n= 7, q= 3 so that $oldsymbol{\lambda}=(3^2,1),~f\in\mathbb{O}_{(3,1^4)}.$

Remark : $\mathfrak{g}^{\natural} = \mathbb{C} \times \mathfrak{sl}_4$.

Question : $\mathcal{W}_{-7+7/3}(\mathfrak{sl}_7, f) \cong L_{-4+4/3}(\mathfrak{sl}_4)$? 16

Assume that $\mathfrak{g} = \mathfrak{sl}_n$.

$$\begin{array}{ccc} \{ \text{nilpotent orbits in } \mathfrak{sl}_n \} & \longleftrightarrow & \{ \text{partitions of } n \} \\ & \mathbb{O}_{\boldsymbol{\lambda}} & \longleftarrow & \boldsymbol{\lambda} \end{array}$$

Let k be admissible, i.e., k = -n + p/q, (p,q) = 1, $p \ge n$.

Then $X_{L_k(\mathfrak{sl}_n)} = \overline{\mathbb{O}_k} = \overline{\mathbb{O}_\lambda}$ with $\lambda = (q^{m_0}, s_0)$, where $n = qm_0 + s_0$, $0 \leq s_0 < q$. Pick $f \in \mathbb{O}_\mu \subset \overline{\mathbb{O}_\lambda}$. Kraft-Procesi's *removal common rows* rule (improved by Yiqiang Li, 2019) allows to describe $\mathscr{S}_{\mathbb{O}_\lambda, f}$ in some cases.

Example : n= 7, q= 3 so that $oldsymbol{\lambda}=(3^2,1),~f\in\mathbb{O}_{(3,1^4)}.$

Remark : $\mathfrak{g}^{\natural} = \mathbb{C} \times \mathfrak{sl}_4$.

Question : $\mathcal{W}_{-7+7/3}(\mathfrak{sl}_7, f) \cong L_{-4+4/3}(\mathfrak{sl}_4)$? Yes... 16

Assume that $\mathfrak{g} = \mathfrak{sl}_n$, k = -n + p/q admissible.

1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.
- 2. Pick $f \in \mathbb{O}_{(q^m,1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$, k = -n + p/q admissible.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.

2. Pick $f \in \mathbb{O}_{(q^m,1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-s+s/q}(\mathfrak{sl}_s)$.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.
- 2. Pick $f \in \mathbb{O}_{(q^m, 1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-s+s/q}(\mathfrak{sl}_s)$.
- 3. Assume that $n = qm_0 + (q-2)$ and pick $f \in \mathbb{O}_{(q^{m_0-1}, (q-1)^2)} \in \overline{\mathbb{O}_k}$.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.
- 2. Pick $f \in \mathbb{O}_{(q^m,1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-s+s/q}(\mathfrak{sl}_s)$.
- 3. Assume that $n = qm_0 + (q-2)$ and pick $f \in \mathbb{O}_{(q^{m_0-1},(q-1)^2)} \in \overline{\mathbb{O}_k}$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-2+2/q}(\mathfrak{sl}_2)$.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.
- 2. Pick $f \in \mathbb{O}_{(q^m,1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-s+s/q}(\mathfrak{sl}_s)$.
- 3. Assume that $n = qm_0 + (q-2)$ and pick $f \in \mathbb{O}_{(q^{m_0-1},(q-1)^2)} \in \overline{\mathbb{O}_k}$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-2+2/q}(\mathfrak{sl}_2)$.

Assume that $\mathfrak{g} = \mathfrak{sl}_n$, k = -n + p/q admissible.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.
- 2. Pick $f \in \mathbb{O}_{(q^m,1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-s+s/q}(\mathfrak{sl}_s)$.
- 3. Assume that $n = qm_0 + (q-2)$ and pick $f \in \mathbb{O}_{(q^{m_0-1},(q-1)^2)} \in \overline{\mathbb{O}_k}$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-2+2/q}(\mathfrak{sl}_2)$.

▶ We have similar results for \mathfrak{sp}_n , \mathfrak{so}_n and the exceptional types.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.
- 2. Pick $f \in \mathbb{O}_{(q^m,1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-s+s/q}(\mathfrak{sl}_s)$.
- 3. Assume that $n = qm_0 + (q-2)$ and pick $f \in \mathbb{O}_{(q^{m_0-1},(q-1)^2)} \in \overline{\mathbb{O}_k}$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-2+2/q}(\mathfrak{sl}_2)$.

- ▶ We have similar results for \mathfrak{sp}_n , \mathfrak{so}_n and the exceptional types.
- ▶ In term of associated varieties, it yields isomorphisms of Poisson varieties.

- 1. Pick $f \in \mathbb{O}_k$ so that $\mathcal{W}_k(\mathfrak{sl}_n, f)$ is lisse (and even rational).
 - if $n \equiv \pm 1 \mod q$, then $\mathcal{W}_k(\mathfrak{sl}_n, f) \cong \mathbb{C}$.
 - if $n \equiv 0 \mod q$, then $\mathcal{W}_{-n+(n+1)/q}(\mathfrak{sl}_n, f) \cong L_1(\mathfrak{sl}_{m_0})$.
- 2. Pick $f \in \mathbb{O}_{(q^m, 1^s)} \in \overline{\mathbb{O}_k}$ with $s \neq 0$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-s+s/q}(\mathfrak{sl}_s)$.
- 3. Assume that $n = qm_0 + (q-2)$ and pick $f \in \mathbb{O}_{(q^{m_0-1},(q-1)^2)} \in \overline{\mathbb{O}_k}$. Then $\mathcal{W}_{-n+n/q}(\mathfrak{sl}_n, f) \cong L_{-2+2/q}(\mathfrak{sl}_2)$.

- ▶ We have similar results for \mathfrak{sp}_n , \mathfrak{so}_n and the exceptional types.
- ▶ In term of associated varieties, it yields isomorphisms of Poisson varieties.
- ▶ We conjecture that our results furnish the exhaustive liste of admissible collapsing levels *k*.

Proposition (Arakawa-van Ekeren-M., 2020)

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \mathbb{1}_{\mathbb{Z}>0}} V_n, V_0 \cong \mathbb{C}, r \ge 0$),

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \frac{1}{r}\mathbb{Z}_{\geq 0}} V_n$, $V_0 \cong \mathbb{C}$, $r \ge 0$), then

$$\chi_V(q)\sim {oldsymbol A}_V(-{
m i} au)^{rac{{oldsymbol w}_V}{2}}e^{rac{\pi i}{12 au}{oldsymbol g}_V} ~~{
m as}~~ au\downarrow 0,$$

where $q = e^{2i\pi\tau}$ and A_V , w_V , g_V are some constants.

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \frac{1}{r}\mathbb{Z}_{\geq 0}} V_n, V_0 \cong \mathbb{C}, r \ge 0$), then $\chi_V(q) \sim \mathbf{A}_V(-i\tau)^{\frac{\mathbf{w}_V}{2}} e^{\frac{\pi i}{12\tau} \mathbf{g}_V} \text{ as } \tau \downarrow 0,$

where $q = e^{2i\pi\tau}$ and A_V , w_V , g_V are some constants.

The result was known for several classes of VOAs :

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \frac{1}{r}\mathbb{Z}_{\geq 0}} V_n, V_0 \cong \mathbb{C}, r \ge 0$), then $\chi_V(q) \sim A_V(-i\tau)^{\frac{w_V}{2}} e^{\frac{\pi i}{12\tau}g_V} \text{ as } \tau \downarrow 0,$

where $q = e^{2i\pi\tau}$ and A_V , w_V , g_V are some constants.

The result was known for several classes of VOAs :

1. Rational, lisse, self-dual simple VOAs of CFT-type (well-known).
Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \frac{1}{r}\mathbb{Z}_{\geq 0}} V_n, V_0 \cong \mathbb{C}, r \ge 0$), then $\chi_V(q) \sim \mathbf{A}_V(-i\tau)^{\frac{w_V}{2}} e^{\frac{\pi i}{12\tau} \mathbf{g}_V}$ as $\tau \downarrow 0$,

where $q = e^{2i\pi\tau}$ and A_V , w_V , g_V are some constants.

The result was known for several classes of VOAs :

1. Rational, lisse, self-dual simple VOAs of CFT-type (well-known).

▶ Key point of the proof : the vector space spanned by the (finite) set of simple V-modules is invariant under the natural action of the modular group $SL_2(\mathbb{Z})$.

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \frac{1}{r}\mathbb{Z}_{\geq 0}} V_n, V_0 \cong \mathbb{C}, r \ge 0$), then $\chi_V(q) \sim \mathbf{A}_V(-i\tau)^{\frac{w_V}{2}} e^{\frac{\pi i}{12\tau} \mathbf{g}_V}$ as $\tau \downarrow 0$,

where $q = e^{2i\pi\tau}$ and \boldsymbol{A}_V , \boldsymbol{w}_V , \boldsymbol{g}_V are some constants.

The result was known for several classes of VOAs :

- Rational, lisse, self-dual simple VOAs of CFT-type (well-known).
 ► Key point of the proof : the vector space spanned by the (finite) set of simple V-modules is invariant under the natural action of the modular group SL₂(Z).
- 2. Quotients of Virasoro vertex algebras.

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \frac{1}{r}\mathbb{Z}_{\geq 0}} V_n, V_0 \cong \mathbb{C}, r \ge 0$), then $\chi_V(q) \sim \mathbf{A}_V(-i\tau)^{\frac{w_V}{2}} e^{\frac{\pi i}{12\tau} \mathbf{g}_V}$ as $\tau \downarrow 0$,

where $q = e^{2i\pi\tau}$ and A_V , w_V , g_V are some constants.

The result was known for several classes of VOAs :

Rational, lisse, self-dual simple VOAs of CFT-type (well-known).
 Key point of the proof: the vector space spanned by the (finite) set of

► Key point of the proof : the vector space spanned by the (finite) set of simple V-modules is invariant under the natural action of the modular group $SL_2(\mathbb{Z})$.

2. Quotients of Virasoro vertex algebras. For example,

$$\chi_{\operatorname{Vir}^{c}}(q) \sim (-2\mathrm{i}\pi\tau)(-\mathrm{i}\tau)^{\frac{1}{2}}e^{\frac{\pi i}{12\tau}}.$$

Proposition (Arakawa-van Ekeren-M., 2020)

Assume that V is a simple quasi-lisse VOA of CFT-type (i.e., $V = \bigoplus_{n \in \frac{1}{r}\mathbb{Z}_{\geq 0}} V_n, V_0 \cong \mathbb{C}, r \ge 0$), then $\chi_V(q) \sim \mathbf{A}_V(-i\tau)^{\frac{w_V}{2}} e^{\frac{\pi i}{12\tau} \mathbf{g}_V}$ as $\tau \downarrow 0$,

where $q = e^{2i\pi\tau}$ and A_V , w_V , g_V are some constants.

The result was known for several classes of VOAs :

Rational, lisse, self-dual simple VOAs of CFT-type (well-known).
 Key point of the proof : the vector space spanned by the (finite) set

► Key point of the proof : the vector space spanned by the (finite) set of simple V-modules is invariant under the natural action of the modular group $SL_2(\mathbb{Z})$.

2. Quotients of Virasoro vertex algebras. For example,

$$\chi_{\operatorname{Vir}^{c}}(q) \sim (-2\mathrm{i}\pi\tau)(-\mathrm{i}\tau)^{\frac{1}{2}} e^{\frac{\pi i}{12\tau}}.$$

3. V is $L_k(\mathfrak{g})$ or $H^0_{DS,f}(L_k(\mathfrak{g}))$ for k principal admissible [Kac-Wakimoto '89].

The key technical result

The key technical result

Theorem (Arakawa-van Ekeren-M., 2020)

Let k be an admissible level, and $f \in \overline{\mathbb{O}_k}$.

Let k be an admissible level, and $f \in \overline{\mathbb{O}_k}$. If

$$\chi_{H^0_{DS,f}(L_k(\mathfrak{g}))}(q)\sim \chi_{L_{k^{\natural}}(\mathfrak{g}^{\natural})}(q) \quad ext{as} \quad au \downarrow 0,$$

Let k be an admissible level, and $f \in \overline{\mathbb{O}_k}$. If

$$\chi_{H^0_{DS,f}(L_k(\mathfrak{g}))}(q) \sim \chi_{L_k \natural}(\mathfrak{g}^{\natural})(q) \quad ext{as} \quad au \downarrow 0,$$

that is,

$$\begin{split} \boldsymbol{w}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} &= \boldsymbol{w}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = \boldsymbol{0}, \\ \boldsymbol{A}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} &= \boldsymbol{A}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})}, \quad \boldsymbol{g}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = \boldsymbol{g}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} \end{split}$$

Let k be an admissible level, and $f \in \overline{\mathbb{O}_k}$. If

$$\chi_{H^0_{DS,f}(L_k(\mathfrak{g}))}(q) \sim \chi_{L_k \natural}(\mathfrak{g}^{\natural})(q) \quad ext{as} \quad au \downarrow 0,$$

that is,

$$\begin{split} \boldsymbol{w}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} &= \boldsymbol{w}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = 0, \\ \boldsymbol{A}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} &= \boldsymbol{A}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})}, \quad \boldsymbol{g}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = \boldsymbol{g}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} \end{split}$$

then k is collapsing, that is,

$$\mathcal{W}_k(\mathfrak{g},f)\cong L_{k^{\natural}}(\mathfrak{g}^{\natural}).$$

Let k be an admissible level, and $f \in \overline{\mathbb{O}_k}$. If

$$\chi_{H^0_{DS,f}(L_k(\mathfrak{g}))}(q) \sim \chi_{L_k \natural}(\mathfrak{g}^{\natural})(q) \quad ext{as} \quad au \downarrow 0,$$

that is,

$$\begin{split} \boldsymbol{w}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} &= \boldsymbol{w}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = 0, \\ \boldsymbol{A}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} &= \boldsymbol{A}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})}, \quad \boldsymbol{g}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = \boldsymbol{g}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} \end{split}$$

then k is collapsing, that is,

$$\mathcal{W}_k(\mathfrak{g},f)\cong L_{k^{\natural}}(\mathfrak{g}^{\natural}).$$

Let k be an admissible level, and $f \in \overline{\mathbb{O}_k}$. If

$$\chi_{H^0_{DS,f}(L_k(\mathfrak{g}))}(q) \sim \chi_{L_k \natural}(\mathfrak{g}^{\natural})(q) \quad ext{as} \quad au \downarrow 0,$$

that is,

$$\begin{split} \boldsymbol{w}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} &= \boldsymbol{w}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = \boldsymbol{0}, \\ \boldsymbol{A}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} &= \boldsymbol{A}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})}, \quad \boldsymbol{g}_{H^{0}_{DS,f}(L_{k}(\mathfrak{g}))} = \boldsymbol{g}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})} \end{split}$$

then k is collapsing, that is,

$$\mathcal{W}_k(\mathfrak{g},f)\cong L_{k^{\natural}}(\mathfrak{g}^{\natural}).$$

▶ We have explicit combinatorial formulas for $\boldsymbol{A}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})}, \ \boldsymbol{A}_{H_{DS,f}^{0}(L_{k}(\mathfrak{g}))}, \ \boldsymbol{g}_{L_{k^{\natural}}(\mathfrak{g}^{\natural})}$ and $\boldsymbol{g}_{H_{DS,f}^{0}(L_{k}(\mathfrak{g}))}$.

Some examples in the exceptional cases

Nilpotent orbits are classified by the Bala-Carter theory.

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$.

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$,

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$, the isomorphism $\overline{\mathbb{O}_{E_6(a_3)}} \cap \mathscr{S}_{D_4} \cong \mathcal{N}_{A_2}$ admits the following liftings :

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$, the isomorphism $\overline{\mathbb{O}_{E_6(a_3)}} \cap \mathscr{S}_{D_4} \cong \mathcal{N}_{A_2}$ admits the following liftings :

 $\mathcal{W}_{-12+12/7}(E_6, D_4) \cong L_{-3+3/7}(A_2), \quad \mathcal{W}_{-12+13/6}(E_6, D_4) \cong L_{-3+4/3}(A_2).$

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$, the isomorphism $\overline{\mathbb{O}_{E_6(a_3)}} \cap \mathscr{S}_{D_4} \cong \mathcal{N}_{A_2}$ admits the following liftings :

 $\mathcal{W}_{-12+12/7}(E_6, D_4) \cong L_{-3+3/7}(A_2), \quad \mathcal{W}_{-12+13/6}(E_6, D_4) \cong L_{-3+4/3}(A_2).$

Similarly, the isomorphism $\overline{\mathbb{O}_{A_4+A_2}} \cap \mathscr{S}_{A_4} \cong \overline{a_1}$ has the following lifting :

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$, the isomorphism $\overline{\mathbb{O}_{E_6(a_3)}} \cap \mathscr{S}_{D_4} \cong \mathcal{N}_{A_2}$ admits the following liftings :

 $\mathcal{W}_{-12+12/7}(E_6, D_4) \cong L_{-3+3/7}(A_2), \quad \mathcal{W}_{-12+13/6}(E_6, D_4) \cong L_{-3+4/3}(A_2).$

Similarly, the isomorphism $\overline{\mathbb{O}_{A_4+A_2}} \cap \mathscr{S}_{A_4} \cong \overline{a_1}$ has the following lifting :

$$\mathcal{W}_{-12+12/5}(E_6, A_4) \cong L_{-2+2/5}(A_1).$$

2. In $\mathfrak{g} = E_8$,

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$, the isomorphism $\overline{\mathbb{O}_{E_6(a_3)}} \cap \mathscr{S}_{D_4} \cong \mathcal{N}_{A_2}$ admits the following liftings :

 $\mathcal{W}_{-12+12/7}(E_6, D_4) \cong L_{-3+3/7}(A_2), \quad \mathcal{W}_{-12+13/6}(E_6, D_4) \cong L_{-3+4/3}(A_2).$

Similarly, the isomorphism $\overline{\mathbb{O}_{A_4+A_2}} \cap \mathscr{S}_{A_4} \cong \overline{a_1}$ has the following lifting :

$$\mathcal{W}_{-12+12/5}(E_6, A_4) \cong L_{-2+2/5}(A_1).$$

2. In $\mathfrak{g} = E_8$, we have (among others) the isomorphisms

$$\begin{aligned} \mathcal{W}_{-30+30/7}(E_8,D_4) &\cong L_{-9+9/7}(F_4), \quad \mathcal{W}_{-30+31/6}(E_8,D_4) &\cong L_{-9+13/6}(F_4), \\ \mathcal{W}_{-30+31/3}(E_8,2A_2) &\cong L_{-4+7/3}(G_2). \end{aligned}$$

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$, the isomorphism $\overline{\mathbb{O}_{E_6(a_3)}} \cap \mathscr{S}_{D_4} \cong \mathcal{N}_{A_2}$ admits the following liftings :

 $\mathcal{W}_{-12+12/7}(E_6, D_4) \cong L_{-3+3/7}(A_2), \quad \mathcal{W}_{-12+13/6}(E_6, D_4) \cong L_{-3+4/3}(A_2).$

Similarly, the isomorphism $\overline{\mathbb{O}_{A_4+A_2}} \cap \mathscr{S}_{A_4} \cong \overline{a_1}$ has the following lifting :

$$\mathcal{W}_{-12+12/5}(E_6, A_4) \cong L_{-2+2/5}(A_1).$$

2. In $\mathfrak{g} = E_8$, we have (among others) the isomorphisms

$$\begin{split} \mathcal{W}_{-30+30/7}(E_8,D_4) &\cong L_{-9+9/7}(F_4), \quad \mathcal{W}_{-30+31/6}(E_8,D_4) \cong L_{-9+13/6}(F_4), \\ \mathcal{W}_{-30+31/3}(E_8,2A_2) &\cong L_{-4+7/3}(G_2). \end{split}$$

As a consequence we obtain (new?) isomorphisms of Poisson varieties :

One can check *all* pairs of nilpotent orbits (\mathbb{O}, f) such that $\mathbb{O} = \mathbb{O}_k$ for some admissible k and $G.f \subset \overline{\mathbb{O}}$. Examples :

1. In $\mathfrak{g} = E_6$, the isomorphism $\overline{\mathbb{O}_{E_6(a_3)}} \cap \mathscr{S}_{D_4} \cong \mathcal{N}_{A_2}$ admits the following liftings :

 $\mathcal{W}_{-12+12/7}(E_6, D_4) \cong L_{-3+3/7}(A_2), \quad \mathcal{W}_{-12+13/6}(E_6, D_4) \cong L_{-3+4/3}(A_2).$

Similarly, the isomorphism $\overline{\mathbb{O}_{A_4+A_2}} \cap \mathscr{S}_{A_4} \cong \overline{a_1}$ has the following lifting :

$$\mathcal{W}_{-12+12/5}(E_6, A_4) \cong L_{-2+2/5}(A_1).$$

2. In $\mathfrak{g} = E_8$, we have (among others) the isomorphisms

$$\begin{split} \mathcal{W}_{-30+30/7}(E_8,D_4) &\cong L_{-9+9/7}(F_4), \quad \mathcal{W}_{-30+31/6}(E_8,D_4) \cong L_{-9+13/6}(F_4), \\ \mathcal{W}_{-30+31/3}(E_8,2A_2) &\cong L_{-4+7/3}(G_2). \end{split}$$

As a consequence we obtain (new?) isomorphisms of Poisson varieties :

$$\mathscr{S}_{A_6+A_1,D_4} \cong \overline{\mathbb{O}_{F_4(a_2)}}, \quad \mathscr{S}_{E_8(a_7),D_4} \cong \overline{\mathbb{O}_{F_4(a_3)}}, \quad \mathscr{S}_{3A_2+2A_1,2A_2} \cong \overline{g_2} \times \overline{g_2}.$$

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example :

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example : $\mathcal{W}_{-12+13/2}(E_6, A_1) \cong L_{-6+7/2}(A_5) \oplus L_{-6+7/2}(A_5; \varpi_3).$

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example : $\mathcal{W}_{-12+13/2}(E_6, A_1) \cong L_{-6+7/2}(A_5) \oplus L_{-6+7/2}(A_5; \varpi_3)$. But $X_{\mathcal{W}_{-12+13/2}(E_6, A_1)} \not\cong X_{L_{-6+7/2}(A_5)}$ since $\mathscr{S}_{3A_1, A_1} \not\cong \overline{\mathbb{O}_{(2^3)}}$.

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example : $\mathcal{W}_{-12+13/2}(E_6, A_1) \cong L_{-6+7/2}(A_5) \oplus L_{-6+7/2}(A_5; \varpi_3)$. But $X_{\mathcal{W}_{-12+13/2}(E_6, A_1)} \not\cong X_{L_{-6+7/2}(A_5)}$ since $\mathscr{S}_{3A_1, A_1} \not\cong \overline{\mathbb{O}_{(2^3)}}$. However, \mathscr{S}_{3A_1, A_1} and $\overline{\mathbb{O}_{(2^3)}}$ are birationally equivalent.

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example : $\mathcal{W}_{-12+13/2}(E_6, A_1) \cong L_{-6+7/2}(A_5) \oplus L_{-6+7/2}(A_5; \varpi_3)$. But $X_{\mathcal{W}_{-12+13/2}(E_6, A_1)} \not\cong X_{L_{-6+7/2}(A_5)}$ since $\mathscr{S}_{3A_1, A_1} \not\cong \overline{\mathbb{O}_{(2^3)}}$. However, \mathscr{S}_{3A_1, A_1} and $\overline{\mathbb{O}_{(2^3)}}$ are birationally equivalent.

We formulate a more general conjecture :

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example : $\mathcal{W}_{-12+13/2}(E_6, A_1) \cong L_{-6+7/2}(A_5) \oplus L_{-6+7/2}(A_5; \varpi_3)$. But $X_{\mathcal{W}_{-12+13/2}(E_6, A_1)} \not\cong X_{L_{-6+7/2}(A_5)}$ since $\mathscr{S}_{3A_1, A_1} \not\cong \overline{\mathbb{O}_{(2^3)}}$. However, \mathscr{S}_{3A_1, A_1} and $\overline{\mathbb{O}_{(2^3)}}$ are birationally equivalent.

We formulate a more general conjecture :

Conjecture (Arakawa-van Ekeren-M., 2020)

If a vertex algebra V is finite extension of a vertex subalgebra $W \subset V$, then the associated varieties of V and W are birationally equivalent.

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example : $\mathcal{W}_{-12+13/2}(E_6, A_1) \cong L_{-6+7/2}(A_5) \oplus L_{-6+7/2}(A_5; \varpi_3)$. But $X_{\mathcal{W}_{-12+13/2}(E_6, A_1)} \not\cong X_{L_{-6+7/2}(A_5)}$ since $\mathscr{S}_{3A_1, A_1} \not\cong \overline{\mathbb{O}_{(2^3)}}$. However, \mathscr{S}_{3A_1, A_1} and $\overline{\mathbb{O}_{(2^3)}}$ are birationally equivalent.

We formulate a more general conjecture :

Conjecture (Arakawa-van Ekeren-M., 2020)

If a vertex algebra V is finite extension of a vertex subalgebra $W \subset V$, then the associated varieties of V and W are birationally equivalent.

Note that it is known that if W is lisse then V is lisse. Our conjecture suggests that the converse holds as well.

Sometimes, $W_k(\mathfrak{g}, f)$ is merely a finite extension of $L_{k^{\natural}}(\mathfrak{g}^{\natural})$.

In most of such cases, the associated varieties of $W_k(\mathfrak{g}, f)$ and $L_{k^{\natural}}(\mathfrak{g}^{\natural})$ are isomorphic.

However, it is not always true : when it is not, we observe that they are at least birationally equivalent.

Example : $\mathcal{W}_{-12+13/2}(E_6, A_1) \cong L_{-6+7/2}(A_5) \oplus L_{-6+7/2}(A_5; \varpi_3)$. But $X_{\mathcal{W}_{-12+13/2}(E_6, A_1)} \not\cong X_{L_{-6+7/2}(A_5)}$ since $\mathscr{S}_{3A_1, A_1} \not\cong \overline{\mathbb{O}_{(2^3)}}$. However, \mathscr{S}_{3A_1, A_1} and $\overline{\mathbb{O}_{(2^3)}}$ are birationally equivalent.

We formulate a more general conjecture :

Conjecture (Arakawa-van Ekeren-M., 2020)

If a vertex algebra V is finite extension of a vertex subalgebra $W \subset V$, then the associated varieties of V and W are birationally equivalent.

Note that it is known that if W is lisse then V is lisse. Our conjecture suggests that the converse holds as well.
Using different methods one can obtain a few non-admissible collapsing levels.

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

Using different methods one can obtain a few non-admissible collapsing levels. For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

• $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

In particular, the last isomorphism should give $X_{L_{-2}(G_2)} \cong \overline{\mathbb{O}_{subreg}}$.

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

In particular, the last isomorphism should give $X_{L_{-2}(G_2)} \cong \overline{\mathbb{O}_{subreg}}$.

$$\begin{split} \text{Remark}: & G_2 = D_4^{\mathfrak{S}_3} \text{ and } X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{\min}}, \text{ while the image of } \overline{\mathbb{O}_{\min}}^{D_4} \text{ in } D_4 \text{ through the map} \\ & D_4^* \cong D_4 \longrightarrow G_2^* \cong G_2 \text{ is } \overline{\mathbb{O}_{subreg}}^{G_2}. \end{split}$$

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

In particular, the last isomorphism should give $X_{L_{-2}(G_2)} \cong \overline{\mathbb{O}_{subreg}}$.

$$\begin{split} \text{Remark}: & G_2 = D_4^{\mathfrak{S}_3} \text{ and } X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{\min}}, \text{ while the image of } \overline{\mathbb{O}_{\min}}^{D_4} \text{ in } D_4 \text{ through the map} \\ & D_4^* \cong D_4 \longrightarrow G_2^* \cong G_2 \text{ is } \overline{\mathbb{O}_{subreg}}^{G_2}. \end{split}$$

We also formulate a number of conjectures :

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

In particular, the last isomorphism should give $X_{L_{-2}(G_2)} \cong \overline{\mathbb{O}_{subreg}}$.

$$\begin{split} \text{Remark}: & G_2 = D_4^{\mathfrak{S}_3} \text{ and } X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{\min}}, \text{ while the image of } \overline{\mathbb{O}_{\min}}^{D_4} \text{ in } D_4 \text{ through the map} \\ & D_4^* \cong D_4 \longrightarrow G_2^* \cong G_2 \text{ is } \overline{\mathbb{O}_{subreg}}^{G_2}. \end{split}$$

We also formulate a number of conjectures :

• $\mathcal{W}_{-9}(E_6, 2A_2) \cong L_{-3}(G_2)$,

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

In particular, the last isomorphism should give $X_{L_{-2}(G_2)} \cong \overline{\mathbb{O}_{subreg}}$.

$$\begin{split} \text{Remark}: & G_2 = D_4^{\mathfrak{S}_3} \text{ and } X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{\min}}, \text{ while the image of } \overline{\mathbb{O}_{\min}}^{D_4} \text{ in } D_4 \text{ through the map} \\ & D_4^* \cong D_4 \longrightarrow G_2^* \cong G_2 \text{ is } \overline{\mathbb{O}_{subreg}}^{G_2}. \end{split}$$

We also formulate a number of conjectures :

• $\mathcal{W}_{-9}(E_6, 2A_2) \cong L_{-3}(G_2), \quad \mathcal{W}_{-6}(E_6, 2A_1) \cong L_{-2}(B_3),$

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

In particular, the last isomorphism should give $X_{L_{-2}(G_2)} \cong \overline{\mathbb{O}_{subreg}}$.

$$\begin{split} \text{Remark}: & G_2 = D_4^{\mathfrak{S}_3} \text{ and } X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{\min}}, \text{ while the image of } \overline{\mathbb{O}_{\min}}^{D_4} \text{ in } D_4 \text{ through the map} \\ & D_4^* \cong D_4 \longrightarrow G_2^* \cong G_2 \text{ is } \overline{\mathbb{O}_{subreg}}^{G_2}. \end{split}$$

We also formulate a number of conjectures :

- $\mathcal{W}_{-9}(E_6, 2A_2) \cong L_{-3}(G_2), \quad \mathcal{W}_{-6}(E_6, 2A_1) \cong L_{-2}(B_3),$
- $\mathcal{W}_{-12}(E_7, A_2 + 3A_1) \cong L_{-2}(G_2),$

Using different methods one can obtain a few non-admissible collapsing levels.

For examples, from explicit OPEs in type B_2 and G_2 (Justine Fasquel's computations), one obtains (Adamović-Fasquel) the following isomorphisms :

- $\mathcal{W}_{-1}(B_2, f_{subreg}) \cong M(1)$,
- $\mathcal{W}_{-2}(B_2, f_{subreg}) \cong Vir_{-2}$,
- $\mathcal{W}_{-2}(G_2, f_{subreg}) \cong \mathbb{C}.$

In particular, the last isomorphism should give $X_{L_{-2}(G_2)} \cong \overline{\mathbb{O}_{subreg}}$.

$$\begin{split} \text{Remark}: & G_2 = D_4^{\mathfrak{S}_3} \text{ and } X_{L_{-2}(D_4)} \cong \overline{\mathbb{O}_{\min}}, \text{ while the image of } \overline{\mathbb{O}_{\min}}^{D_4} \text{ in } D_4 \text{ through the map} \\ & D_4^* \cong D_4 \longrightarrow G_2^* \cong G_2 \text{ is } \overline{\mathbb{O}_{subreg}}^{G_2}. \end{split}$$

We also formulate a number of conjectures :

- $\mathcal{W}_{-9}(E_6, 2A_2) \cong L_{-3}(G_2), \quad \mathcal{W}_{-6}(E_6, 2A_1) \cong L_{-2}(B_3),$
- $\mathcal{W}_{-12}(E_7, A_2 + 3A_1) \cong L_{-2}(G_2)$, $\mathcal{W}_{-6}(F_4, \tilde{A}_2) \cong L_{-2}(G_2)$, etc.

Thank you!