Noncommutative topological approach to topological phases

Johannes Kellendonk

Institut Camille Jordan, Université Lyon 1

Paris, 04/02/2021

(Partial) Overview on the theory of topological phases in the C^* -algebraic approach to solid state physics proposed by J. Bellissard in 1984.

- Topological phases in the 1-particle approximation
- In K-theoretic formulation of topological phases
- Symmetry protection
- Boundary invariants and KK-classes
- Bulk boundary correspondance
- O Numerical invariants (outlook)

A theory of topological phases for interacting fermions in a solid is an active area of research, but not discussed here (second quantization, study of the topology of the ground state separated from the rest by a gap, captured by (higher) category theory).

< ロ > < 同 > < 回 > < 回 >

What is a topological insulator?

æ

Topological phases in the quasi-particle picture

Deep inside the material (bulk): configuration space \mathbb{R}^d or \mathbb{Z}^d .

Electron-electron interaction gives rise to an effective potential V for a single quasi-particle described by a stationary Schrödinger equation in $\mathcal{H} = L^2(\mathbb{R}^d, \mathbb{C}^N)$ or $\ell^2(\mathbb{Z}^d, \mathbb{C}^N)$ (\mathbb{C}^N internal (spin) degrees of freedom).

 $H\Psi = E\Psi, \quad H = -\Delta + V$

Examples: Landau Hamiltonian for a free electron in a magnetic field, Hofstadter Hamiltonian (its tight binding analog), but also models without magnetic field (Kane-Mele).

Main assumption: the system is (bulk) insulating: the Fermi energy lies in a gap of the spectrum of H.

Definition

Two models (Hamiltonians H_0 , H_1) belong to the same topological phase if they can be deformed into each other preserving the gap:

There is a continuous path $H(t) \in A$ of gapped Hamiltonians in some background topological space A linking the two.

In the following we do not talk about a specific Hamiltonians, but only of their homotopy classes in A. We choose A to be a C^* -algebra. Its form has to be physically motivated.

A describes the physics deep inside the material (the bulk).

In the tight binding approx. (configuration space \mathbb{Z}^d) A is generated by

- bounded potentials $C_{pot}(\mathbb{Z}^d) \subset \{V : \mathbb{Z}^d \to \mathbb{C}, bdd\}$
- **2** translations (possibly twisted by magnetic field Θ) $T_1, \dots, T_d, T_i \psi(x) = \psi(x + e_i)$

$$T_i^* T_i = 1 = T_i T_i^* \qquad T_i T_j = e^{i\Theta_{ij}} T_j T_i$$
(1)

$$T_i V T_i^*(x) = V(x + e_i)$$
⁽²⁾

 (finitely many) internal degrees of freedom (spin), internal Hilbert space C^N: A acts on ℓ²(Z^d) ⊗ C^N

$$A = A' \otimes M_N(\mathbb{C})$$

A' is a twisted crossed product algebra

$$A' = C_{pot}(\mathbb{Z}^d) \rtimes_{\alpha,\Theta} \mathbb{Z}^d$$

Continuous version: $A = C_{pot}(\mathbb{R}^d) \rtimes_{\alpha,\Theta} \mathbb{R}^d \otimes M_N(\mathbb{C})$

Examples (tight binding)

$$A = C_{pot}(\mathbb{Z}^d) \rtimes_{\alpha,\Theta} \mathbb{Z}^d \otimes M_N(\mathbb{C})$$

• All bounded potentials are allowed (no symmetry constreint) $C_{pot}(\mathbb{Z}^d) = C_b(\mathbb{Z}^d)$: A is the algebra of all local tight binding operators with at most N internal degrees of freedom.

A is non-separable so has relatively poor K-theory.

③ Crystals: potentials are periodic, internal Hilbert space contains elementary cell: $C_{pot}(\mathbb{Z}^d) = \mathbb{C}$. If no magnetic field:

$$A = M_{\mathcal{N}}(\mathbb{C}) \rtimes_{\alpha} \mathbb{Z}^{d} \cong C(\mathbb{T}^{d}, M_{\mathcal{N}}(\mathbb{C}))$$

Most often used in solid state physics (N Bloch bands).

③ Long range order / quasicrystalls: atomic positions described by point set $\mathcal{L} \subset \mathbb{R}^d$, restrict $C_b(\mathcal{L})$ to functions respecting long range order.

This has been introduced by [Bellissard 1986]: $C_b(\mathcal{L}) \cong C(\Omega)$ where Ω is the hull of the configuration \mathcal{L} .

Towards *K*-theoretical formulation of a topological phase [K 2017; Kukota 2017]

Fix the Fermi energy to be 0 (shift the spectral gap to 0).

• *H* has gap at $0 \Leftrightarrow H$ is invertible

Bands below energy 0 are filled, those above unfilled.

Example: H = 1 is a Hamiltonian whose bands are completely unfilled. H = -1 is a Hamiltonian whose bands are completely filled. Both are topologically trivial.

Definition (same definition)

A topological phase of an insulator in A is a path connected component of the open set

$$GL(A)^{s.a.} = \{H \in A : H^* = H, H^{-1} \in A\}$$

Spectral flattening: every element of $GL(A)^{s.a.}$ is homotopic to a self-adjoint unitary $H^* = H = H^{-1}$.

Definition (rough)

Let A be a C*-algebra with a unit. $K_0(A)$ is $GL(A)^{s.a.} / \sim_{homotopy}$ turned into an abelian group.

K_0 -group of a unital C*-algebra, van Daele's picture

 $K_0(A)$ is $GL(A)^{s.a.} / \sim_{homotopy}$ turned into an abelian group means the following:

• Stabilise: $GL(M_n(A))^{s.a.} \ni x \mapsto x \oplus 1 \in GL(M_{n+1}(A))^{s.a.}$ (adding unfilled bands). $V(A) = \bigcup_{n>1} GL(M_n(A))^{s.a.} / \sim_{homotopy}$ is an abelian semigroup

 $[x] + [y] = [x \oplus y] = [y \oplus x]$

2 Turn into a group: $K_0(A) = V(A) \times V(A) / \sim_{Grothendieck}$ (adding filled bands).

Definition (slightly weaker definition)

A topological phase of an insulator (slightly weaker sense) in A is an element of $K_0(A)$.

We have allowed adding of unfilled bands and of filled bands (stacking):

Two Hamiltonians are in the same topological phase (in a slightly weaker sense) if, after adding unfilled and filled bands they can be deformed into each other inside $M_n(A)$ without closing the gap.

The Hamiltonian *H* may be subject to symmetry conditions:

- Ordinary symmetries given by a group G representation ρ: C-linear ρ_g ∈ Aut_ℝ(A) such that ρ_g(H) = H.
 Restrict A to G-invariant elements.
- Quasiperiodicity (long range order): restrict $C_{pot}(\mathbb{Z}^d)$ to quasiperiodic functions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hamiltonian *H* may be subject to symmetry conditions:

Ordinary symmetries given by a group G representation ρ: C-linear ρ_g ∈ Aut_ℝ(A) such that ρ_g(H) = H.
 Restrict A to G-invariant elements.

• Quasiperiodicity (long range order): restrict $C_{pot}(\mathbb{Z}^d)$ to quasiperiodic functions.

Extra ordinary symmetries \mathcal{E} :

•	Time reversal symmetry TRS	
	anti-linear $\mathfrak{t} \in \operatorname{Aut}_{\mathbb{R}}(A)$ of order 2 and $\mathfrak{t}(H) = H$	(real structure)
۰	Charge conjugation (particle hole symmetry) PHS anti-linear $\mathfrak{c} \in \operatorname{Aut}_{\mathbb{R}}(A)$ of order 2 and $\mathfrak{c}(H) = -H$	(real structure)
٩	Chiral symmetry CS \mathbb{C} -linear $\gamma \in \operatorname{Aut}_{\mathbb{C}}(A)$ of order 2 and $\gamma(H) = -H$	(balanced grading)

Definition

A topological phase of an insulator in A with protecting symmetry ${\cal E}$ is a path connected component of the open set

```
GL(A, \mathcal{E})^{s.a.} = \{H \in A : H^* = H, H^{-1} \in A, H \text{ satisfies } \mathcal{E}\}
```

or, slightly weaker, an element of $K(A, \mathcal{E})$, obtained as above by turning $GL(A, \mathcal{E})^{s.a.}$ into a group.

< ロ > < 同 > < 三 > < 三 > -

Definition

A topological phase of an insulator in A with protecting symmetry ${\cal E}$ is a path connected component of the open set

 $GL(A, \mathcal{E})^{s.a.} = \{H \in A : H^* = H, H^{-1} \in A, H \text{ satisfies } \mathcal{E}\}$

or, slightly weaker, an element of $K(A, \mathcal{E})$, obtained as above by turning $GL(A, \mathcal{E})^{s.a.}$ into a group.

More precisely: Call A balanced graded if it contains an odd self-adjoint unitary e (OSU). e plays the role of a basepoint, or trivial insulator.

Definition (van Daele '84)

Let (A, γ) be a balanced graded real or complex C^* -algebra. Choose e. Van Daele K-group $DK_e(A, \gamma)$ is obtained from $GL(A, \{\gamma\})^{s.a.}$ as above except $GL(M_n(A), \{\gamma\})^{s.a.} \ni x \mapsto x \oplus e \in GL(M_{n+1}(A), \{\gamma\})^{s.a.}$

 $K(A, \mathcal{E}) = DK_e(A, \gamma)$ or $DK_e(A_{\mathbb{R}}, \gamma)$ if \mathcal{E} contains a chiral symmetry γ

up to isom. $DK_e(A, \gamma)$ does not depend on the choice of e

Classification into 10 symmetry types via Clifford algebras *Cl_{r,s}*

Recall $A = C_{pot}(\mathbb{Z}^d) \rtimes_{\alpha} \mathbb{Z}^d \otimes M_N(\mathbb{C})$

Suppose \mathcal{E} acts on internal degrees of freedom, i.e. on $M_N(\mathbb{C})$.

If \mathcal{E} contains chiral sym. γ then $(M_N(\mathbb{C}), \gamma) \cong (M_n(\mathbb{C}) \otimes \mathbb{C}l_2, \operatorname{Ad}_{\sigma_3}), N = 2n$.

Up to equivalence, there are 4 real structures \mathfrak{r} on $M_N(\mathbb{C})$ commuting with γ .

even TRS: $M_N(\mathbb{C})^r = M_N(\mathbb{R}) \cong M_n(\mathbb{R}) \otimes Cl_{1,1}$ (σ_3 is real) even PHS: $M_N(\mathbb{C})^r \cong M_n(\mathbb{R}) \otimes Cl_{2,0}$ (σ_3 is imag.) odd TRS: $M_N(\mathbb{C})^r \cong M_k(\mathbb{R}) \otimes \mathbb{H} \otimes Cl_{1,1} \cong M_k(\mathbb{R}) \otimes Cl_{0,4}$ (σ_3 real), N = 4kodd PHS: $M_N(\mathbb{C})^r \cong M_n(\mathbb{R}) \otimes Cl_{0,2}$ (σ_3 is imag.)

All Clifford algebras with even number of generators appear up to Morita equiv..

Definition (higher K-groups)

 (A, γ) a real or complex balanced graded algebra. $K_{1+s-r}(A, \gamma) := DK_e(A \otimes Cl_{r,s}, \gamma \otimes st).$

- $K(A, \mathcal{E}) \cong KU_1(A)$ if no real symetries (complex *K*-theorie, Bott 2-periodic)
- $K(A, \mathcal{E}) \cong KO_{1+s-r}(A_{\mathbb{R}})$ with real symmetries (real *K*-theorie, Bott 8-periodic)

- ロ ト - (同 ト - (三 ト -) -)

 $\ensuremath{\mathcal{E}}$ does not contain a chiral sym. Trick: add an outer one.

Replace *A* by $A \otimes \mathbb{C}l_1$, with outer grading γ . Replace \mathcal{E} by $\mathcal{E} \cup \{\gamma\}$.

Up to equivalence, there are 4 real structures \mathfrak{r} on $M_N(\mathbb{C}) \otimes \mathbb{C}l_1$ commuting with γ .

even TRS:
$$(M_N(\mathbb{C}) \otimes \mathbb{C}l_1)^{\mathfrak{r}} \cong M_N(\mathbb{R}) \otimes Cl_{1,0}$$

even PHS: $(M_N(\mathbb{C}) \otimes \mathbb{C}l_1)^{\mathfrak{r}} \cong M_N(\mathbb{R}) \otimes Cl_{0,1}$
odd TRS: $(M_N(\mathbb{C}) \otimes \mathbb{C}l_1)^{\mathfrak{r}} \cong M_n(\mathbb{R}) \otimes \mathbb{H} \otimes Cl_{1,0} \cong M_n(\mathbb{R}) \otimes Cl_{0,3}$
odd PHS: $(M_N(\mathbb{C}) \otimes \mathbb{C}l_1)^{\mathfrak{r}} \cong M_n(\mathbb{R}) \otimes \mathbb{H} \otimes Cl_{0,1} \cong M_n(\mathbb{R}) \otimes Cl_{3,0}$

All Clifford algebras with odd number of gen. appear up to Morita equiv..

By definition $K(A, \emptyset) := K(A \otimes \mathbb{C}I_1, \{\gamma\}) =: K_0(A).$

With real symmetry \mathcal{E}

$$\mathsf{K}(\mathsf{A},\mathcal{E}) := \mathsf{K}(\mathsf{A} \otimes \mathbb{C}l_1, \mathcal{E} \cup \{\gamma\}) \cong \mathsf{KO}_1(\mathsf{A}_{\mathbb{R}} \otimes \mathsf{C}l_{r,s}) =: \mathsf{KO}_{1+s-r}(\mathsf{A}_{\mathbb{R}})$$

Bulk invariants: First summary and comments

- Physical considerations leads to the choice of the algebra *A* whose elements describe the physics in the bulk.
- The symmetry protected topological phases can be identified with the elements of K(A, E). These are referred to as the bulk invariants.
- Different extra-ordinary symmetry types correspond to the different higher classical *K*-groups of *A*.

< ロ > < 同 > < 三 > < 三 > -

Bulk invariants: First summary and comments

- Physical considerations leads to the choice of the algebra *A* whose elements describe the physics in the bulk.
- The symmetry protected topological phases can be identified with the elements of K(A, E). These are referred to as the bulk invariants.
- Different extra-ordinary symmetry types correspond to the different higher classical *K*-groups of *A*.
- If *A* is commutative then the *K*-groups can be described by vectorbundles with symmetries (twisted *K*-theory) [Freed, Moore 2013]
- For A = C ⋊ ℝ^d (constant potential, cont. translations) one obtains the famous Kitaev table [Kitaev 2007].

< ロ > < 同 > < 三 > < 三 > -

Near the boundary the physics of material is described by operators on halfspace $\mathbb{Z}^{d-1} \times \mathbb{N}$.

Relevant algebra \hat{A} differs from bulk algebra A in one respect: restricting the action of perpendicular translation T_d to $\ell^2(\mathbb{Z}^{d-1} \times \mathbb{N})$ "runs into the wall": T_d^* no longer inject. \hat{A} is generated by

- bounded potentials $C_{pot}(\mathbb{Z}^d) \subset \{V : \mathbb{Z}^d \to \mathbb{C}, bdd\}$
- **2** translations (possibly twisted by magnetic field Θ) $\hat{T}_1, \dots, \hat{T}_d, \hat{T}_i \psi(x) = \psi(x + e_i)$

$$\hat{T}_i^* \hat{T}_i = 1 \quad \hat{T}_i \hat{T}_i^* = 1 - P_0 \qquad \hat{T}_i \hat{T}_j = e^{i\Theta_{ij}} \hat{T}_j \hat{T}_i \hat{T}_i V \hat{T}_i^* (x) = V(x + e_i)$$

 P_0 is a nontrivial projection (projection onto $\ell^2(\mathbb{Z}^{d-1} \otimes \{0\})$

◎ internal degrees of freedom (spin, pseudo spin): \hat{A} acts on $\ell^2((\mathbb{Z}^{d-1} \times \mathbb{N}) \otimes \mathbb{C}^N$

$$\hat{A} = \hat{A}' \otimes M_N(\mathbb{C})$$

 $A' = \mathcal{T}(A)$ is the Toeplitz extension of the crossed product algebra A.

As $\mathcal E$ acts on the internal degrees of freedom, it also acts on $\hat A$ and q intertwines this actions.

Shifting the boundary to $+\infty$ corresponds to the surjective algebra homomorphism

$$q: \hat{A} \to A, \qquad q(\hat{T}_i) = T_i$$

Its kernel is generated by P_0

$$J={\sf ker}\,q=\hat{A}P_0\hat{A}$$

thus consists of operators localized at the boundary.

1

K is a homological functor: the exact sequence

$$J\stackrel{i}{\hookrightarrow} \hat{A} \stackrel{q}{\twoheadrightarrow} A$$

induces an isomorphism, the K-theoretical bulk-boundary correspondence

$$K_i(A, \mathcal{E})/\mathrm{im}q_* \stackrel{\delta}{\cong} K_{i-1}(J, \mathcal{E}) \cap \ker i_*$$

Q: How can we understand physically the elements of $K_{i-1}(J)$?

There is a linear homomorphism $A \ni T_i \mapsto \hat{T}_i \in \hat{A}$ (not multiplicative!).

Consider a Hamiltonian $H \in GL^{s.a.}(A)$.

- \hat{H} is *H* with a choice of boundary conditions at the boundary.
- The class of H in $DK(A, \mathcal{E})$ (van Daele) is the bulk invariant.
- The class of \hat{H} in $KK(\mathbb{C}, J, \mathcal{E})$ (Kasparov) is the boundary invariant.
- The Cayley transform induces an isomorphism between van Daele's and Kasparov's picture of *K*-theory
- van Daele's picture of K-theory is topological bulk physics
- Kasparov's picture of K-theory is topological boundary physics

< 回 ト < 三 ト < 三

Kasparov's picture of $K_{-1}(B)$

Let *B* be a (σ -unital) *C*^{*}-algebra.

- **(**I) A (right) B Hilbert- C^* -module X_B is a "Hilbert space" with scalars replaced by B.
 - the scalar product is B-valued
 - $X_B = B$ is a B Hilbert- C^* -module of rank 1 (like \mathbb{C} is a one-dim. Hilbert space)
 - B-compact linear maps $T : X_B \rightarrow X_B$ are defined as closure of finite rank operators
 - the adjoint T^* of a linear map $T: X_B \to X_B$ is defined with *B*-valued scalar product

$$\langle x, T y \rangle = \langle T^* x, y \rangle$$

- 2 An endomorphism of X_B is a linear map T which admits an adjoint T^*
- S A Kasparov C − B-cycle (X_B, F) is a B Hilbert-C*-module together with a self-adjoint endomorphism F such that F² − 1 is B-compact. They can be added up by direct sum.
- A $KK(\mathbb{C}, B)$ -cycle (X_B, F) is degenerate if $F^2 = 1$.
- O The set of equivalence classes of Kasparov C − B-cycles modulo homotopy, unitary equivalence and addition of degenerate KK-cycles is KK(C, B). Direct sum induces abelian group structure. KK(C, B) is isomorphic to K₋₁(B).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kasparov's picture of $K_{-1}(B)$

Let *B* be a (σ -unital) *C*^{*}-algebra.

- **(**I) A (right) B Hilbert- C^* -module X_B is a "Hilbert space" with scalars replaced by B.
 - the scalar product is B-valued
 - $X_B = B$ is a B Hilbert- C^* -module of rank 1 (like \mathbb{C} is a one-dim. Hilbert space)
 - B-compact linear maps $T : X_B \rightarrow X_B$ are defined as closure of finite rank operators
 - the adjoint T^* of a linear map $T: X_B \to X_B$ is defined with *B*-valued scalar product

$$\langle x, Ty \rangle = \langle T^*x, y \rangle$$

- 2 An endomorphism of X_B is a linear map T which admits an adjoint T^*
- ③ A Kasparov C B-cycle (X_B, F) is a B Hilbert-C*-module together with a self-adjoint endomorphism F such that F² 1 is B-compact. They can be added up by direct sum.
- A $KK(\mathbb{C}, B)$ -cycle (X_B, F) is degenerate if $F^2 = 1$.
- O The set of equivalence classes of Kasparov C − B-cycles modulo homotopy, unitary equivalence and addition of degenerate KK-cycles is KK(C, B). Direct sum induces abelian group structure. KK(C, B) is isomorphic to K₋₁(B).

Extra ordinary symmetries \mathcal{E} can be treated in a similar way as for DK:

- If \mathcal{E} has a chiral symmetry, hence *B* carries a balanced grading then X_B is required to have a compatible grading and *F* to be an odd operator.
- If *E* has a real symmetry (TRS or PHS / even or odd), hence *B* carries a real structure then X_B is required to carry a compatible real structure and *F* to be real or imaginary.

< □ > < □ > < □ > < □ > < □ >

Theorem (Bourne, Rennie, K. 2020)

Let (B, γ) be a balanced graded real or complex C^* -algebra with choice of basepoint e and $H \in B$ and odd self-adjoint unitary. The map (Cayley transform)

$$x\mapsto \left(\overline{(x-e)B}, \frac{1}{2}e(x+e)(x-e)^{-1}|x-e|\right)$$

induces an isomorphism between $DK_e(B, \gamma)$ and $KK(\mathbb{C}, B)$.

Theorem (Alldridge, Max, Zirnbauer 2019; Bourne, Rennie, K. 2020)

Let H be a Hamiltonian $H \in GL^{s.a.}(A)$ with spectral gap Δ at 0. Let $P_{\Delta}(\hat{H})$ be the spectral projection of \hat{H} to Δ .

 $(J, P_{\Delta}(\hat{H})\hat{H})$

is a KK-cycle whose class corresponds to the class of H under the bulk-boundary correspondence:

$$\delta([H]) = [J, P_{\Delta}(\hat{H})\hat{H}].$$

K-theoretical Bulk-Boundary Correspondence: physical interpretation

Recall: *H* has a spectral gap Δ at the Fermi energy (which we moved to 0).

bulk K-group \ni [*H*] $\stackrel{\delta}{\rightarrow}$ [*J*, $P_{\Delta}(\hat{H})\hat{H}$] \in boundary K-group

and ker $\delta = \operatorname{im} q_*$.

- If [H] ∉ imq_{*} then the spectrum of Ĥ must cover the gap ∆ at 0. Therefore there must be states (resonances) which are localized at the boundary.
- These resonances cannot propagate into the bulk.
- These resonances cannot be destroyed by bending, denting the boundary or by adding disorder to it. They are stable against perturbation of the boundary.

Proof:

- If the spectrum of Ĥ has a gap in Δ then P_Δ(Ĥ)Ĥ is homotopic to an operator whose square is 1 thus defining a degenerate KK-cycle. This would mean that [J, P_Δ(Ĥ)Ĥ] = 0, a contradiction to [H] ∉ ker δ.
- Provide the end of the end of
- A perturbation which is restricted to the boundary does not affect the bulk invariant. Alternative argument: A perturbation which is restricted to the boundary can change Ĥ only up to a *J*-compact operator.

- We have established a correspondence between bulk invariants and boundary invariants for topological insulators.
- Both are derived naturally from the Hamiltonian of the system.
- The correspondence arises from algebraic topology (it is not an algebra homomorphism).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We have established a correspondence between bulk invariants and boundary invariants for topological insulators.
- Both are derived naturally from the Hamiltonian of the system.
- The correspondence arises from algebraic topology (it is not an algebra homomorphism).

Questions:

- How can we detect that the bulk invariant is not trivial, $[H] \notin imq_*$?
- Can one measure the topological invariants?

- We have established a correspondence between bulk invariants and boundary invariants for topological insulators.
- Both are derived naturally from the Hamiltonian of the system.
- The correspondence arises from algebraic topology (it is not an algebra homomorphism).

Questions:

- How can we detect that the bulk invariant is not trivial, $[H] \notin imq_*$?
- Can one measure the topological invariants?

Answer: Numerical topological invariants

- Any functional $K(A, \mathcal{E}) \to \mathbb{C}$ or \mathbb{Z}_2 is a numerical invariant for topol. phases.
- A numerical invariant serves to distinguish *K*-group elements and can detect the topological non-triviality of a material.
- A numerical invariant may be physically measurable (Hall conductivity).

< ロ > < 同 > < 三 > < 三 > -

There are two approaches to numerical invariants (partly related through index theory):

Via *KK*-theory: the dual of *K*-theory $KK(\mathbb{C}, A)$ is *K*-homology $KK(A, \mathbb{C})$ with \mathbb{R} in place of \mathbb{C} if we have real symmetries.

The duality pairing is the Kasparov product

 $\mathit{KK}_{i}(\mathbb{C}, \mathit{A}) \times \mathit{KK}_{j}(\mathit{A}, \mathbb{C}) \to \mathit{KK}_{i-j}(\mathbb{C}, \mathbb{C})$

and $KK_{j-i}(\mathbb{C},\mathbb{C})$ or $KK_{j-i}(\mathbb{R},\mathbb{R})$ is \mathbb{Z}, \mathbb{Z}_2 or 0. This gives a numerical invariant (an index). [Grossmann, Schulz-Baldes 2016] For our algebras (crossed product) exists a fundamental class $[\lambda_d] \in KK_d(A, \mathbb{C})$ (purely geometric data: Dirac operator in momentum space). The dual boundary map $\delta^* : KK_i(\mathbb{C}, J) \to KK_{i+1}(\mathbb{C}, A)$ maps $[\lambda_{d-1}]$ to $[\lambda_d]$. This yields a numerical bulk-boundary correspondance:

$$[H] \times [\lambda_d] = [(J, P_{\Delta}(\hat{H})\hat{H})] \times [\lambda_{d-1}]$$

[Bourne,Carey,Rennie,+K 2017].

< ロ > < 四 > < 回 > < 回 > < 回 >

Via cyclic cohomology: cyclic cohomology is a generalisation of de Rham cohomology to algebras.

A *K*-group element may be combined with a cyclic cocycle to obtain a Chern number generalising the integral of a Chern class.

Leads to a numerical bulk-boundary correspondence which is, however, trivial for \mathbb{Z}_2 -invariants [Richter, Schulz-Baldes +K. 2002]

Close to linear response theory [TKNN, Bellissard-Connes] for IQHE

Direct approach fails for \mathbb{Z}_2 -invariants, these need secondary pairings with cyclic cocycles [K. 2019].

< ロ > < 同 > < 三 > < 三 > -