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Plan of the talk

(Partial) Overview on the theory of topological phases in the C∗-algebraic approach to
solid state physics proposed by J. Bellissard in 1984.

1 Topological phases in the 1-particle approximation
2 K-theoretic formulation of topological phases
3 Symmetry protection
4 Boundary invariants and KK-classes
5 Bulk boundary correspondance
6 Numerical invariants (outlook)

A theory of topological phases for interacting fermions in a solid is an active area of
research, but not discussed here (second quantization, study of the topology of the
ground state separated from the rest by a gap, captured by (higher) category theory).
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What is a topological insulator?
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Topological phases in the quasi-particle picture

Deep inside the material (bulk): configuration space Rd or Zd .

Electron-electron interaction gives rise to an effective potential V for a single
quasi-particle described by a stationary Schrödinger equation in H = L2(Rd ,CN ) or
`2(Zd ,CN ) (CN internal (spin) degrees of freedom).

HΨ = EΨ, H = −∆ + V

Examples: Landau Hamiltonian for a free electron in a magnetic field, Hofstadter
Hamiltonian (its tight binding analog), but also models without magnetic field
(Kane-Mele).

Main assumption: the system is (bulk) insulating: the Fermi energy lies in a gap of the
spectrum of H.

Definition

Two models (Hamiltonians H0, H1) belong to the same topological phase if they can be
deformed into each other preserving the gap:

There is a continuous path H(t) ∈ A of gapped Hamiltonians in some background
topological space A linking the two.

In the following we do not talk about a specific Hamiltonians, but only of their homotopy
classes in A. We choose A to be a C∗-algebra. Its form has to be physically motivated.
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Choice of the algebra A

A describes the physics deep inside the material (the bulk).

In the tight binding approx. (configuration space Zd ) A is generated by
1 bounded potentials Cpot (Zd )⊂{V : Zd → C, bdd}
2 translations (possibly twisted by magnetic field Θ) T1, · · ·Td , Tiψ(x) = ψ(x + ei )

T∗i Ti = 1 = Ti T∗i Ti Tj = eıΘij Tj Ti (1)

Ti VT∗i (x) = V (x + ei ) (2)

3 (finitely many) internal degrees of freedom (spin), internal Hilbert space CN :
A acts on `2(Zd )⊗ CN

A = A′ ⊗MN (C)

A′ is a twisted crossed product algebra

A′ = Cpot (Zd ) oα,Θ Zd

Continuous version: A = Cpot (Rd ) oα,Θ Rd ⊗MN (C)
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Examples of background algebra A

Examples (tight binding)

A = Cpot (Zd ) oα,Θ Zd ⊗MN (C)

1 All bounded potentials are allowed (no symmetry constreint) Cpot (Zd ) = Cb(Zd ):
A is the algebra of all local tight binding operators with at most N internal degrees
of freedom.
A is non-separable so has relatively poor K -theory.

2 Crystals: potentials are periodic, internal Hilbert space contains elementary cell:
Cpot (Zd ) = C. If no magnetic field:

A = MN (C) oα Zd ∼= C(Td ,MN (C))

Most often used in solid state physics (N Bloch bands).
3 Long range order / quasicrystalls: atomic positions described by point set L ⊂ Rd ,

restrict Cb(L) to functions respecting long range order.

This has been introduced by [Bellissard 1986]: Cb(L) ∼= C(Ω) where Ω is the hull
of the configuration L.
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Towards K -theoretical formulation of a topological phase
[K. 2017; Kubota 2017]

Fix the Fermi energy to be 0 (shift the spectral gap to 0).

H has gap at 0⇔ H is invertible

Bands below energy 0 are filled, those above unfilled.

Example: H = 1 is a Hamiltonian whose bands are completely unfilled. H = −1 is a
Hamiltonian whose bands are completely filled. Both are topologically trivial.

Definition (same definition)

A topological phase of an insulator in A is a path connected component of the open set

GL(A)s.a. = {H ∈ A : H∗ = H,H−1 ∈ A}

Spectral flattening: every element of GL(A)s.a. is homotopic to a self-adjoint unitary
H∗ = H = H−1.

Definition (rough)

Let A be a C∗-algebra with a unit. K0(A) is GL(A)s.a./ ∼homotopy turned into an abelian
group.
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K0-group of a unital C∗-algebra, van Daele’s picture

K0(A) is GL(A)s.a./ ∼homotopy turned into an abelian group means the following:

1 Stabilise: GL(Mn(A))s.a. 3 x 7→ x ⊕ 1 ∈ GL(Mn+1(A))s.a. (adding unfilled bands).
V (A) =

⋃
n≥1 GL(Mn(A))s.a./ ∼homotopy is an abelian semigroup

[x ] + [y ] = [x ⊕ y ] = [y ⊕ x ]

2 Turn into a group: K0(A) = V (A)× V (A)/ ∼Grothendieck (adding filled bands).

Definition (slightly weaker definition)

A topological phase of an insulator (slightly weaker sense) in A is an element of K0(A).

We have allowed adding of unfilled bands and of filled bands (stacking):

Two Hamiltonians are in the same topological phase (in a slightly weaker sense) if,
after adding unfilled and filled bands they can be deformed into each other inside
Mn(A) without closing the gap.
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Symmetry protection

The Hamiltonian H may be subject to symmetry conditions:

Ordinary symmetries given by a group G representation ρ: C-linear ρg ∈ AutR(A)
such that ρg(H) = H.
Restrict A to G-invariant elements.

Quasiperiodicity (long range order): restrict Cpot (Zd ) to quasiperiodic functions.

Extra ordinary symmetries E :

Time reversal symmetry TRS
anti-linear t ∈ AutR(A) of order 2 and t(H) = H (real structure)

Charge conjugation (particle hole symmetry) PHS
anti-linear c ∈ AutR(A) of order 2 and c(H) = −H (real structure)

Chiral symmetry CS
C-linear γ ∈ AutC(A) of order 2 and γ(H) = −H (balanced grading)
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Topological phases with symmetry protection

Definition

A topological phase of an insulator in A with protecting symmetry E is a path connected
component of the open set

GL(A, E)s.a. = {H ∈ A : H∗ = H,H−1 ∈ A,H satisfies E}

or, slightly weaker, an element of K (A, E), obtained as above by turning GL(A, E)s.a.

into a group.

More precisely: Call A balanced graded if it contains an odd self-adjoint unitary e
(OSU). e plays the role of a basepoint, or trivial insulator.

Definition (van Daele ’84)

Let (A, γ) be a balanced graded real or complex C∗-algebra. Choose e.
Van Daele K -group DKe(A, γ) is obtained from GL(A, {γ})s.a. as above except
GL(Mn(A), {γ})s.a. 3 x 7→ x ⊕ e ∈ GL(Mn+1(A), {γ})s.a.

K (A, E) = DKe(A, γ) or DKe(AR, γ) if E contains a chiral symmetry γ

up to isom. DKe(A, γ) does not depend on the choice of e

Kellendonk Noncommutative topological approach to topological phases



Topological phases with symmetry protection

Definition

A topological phase of an insulator in A with protecting symmetry E is a path connected
component of the open set

GL(A, E)s.a. = {H ∈ A : H∗ = H,H−1 ∈ A,H satisfies E}

or, slightly weaker, an element of K (A, E), obtained as above by turning GL(A, E)s.a.

into a group.

More precisely: Call A balanced graded if it contains an odd self-adjoint unitary e
(OSU). e plays the role of a basepoint, or trivial insulator.

Definition (van Daele ’84)

Let (A, γ) be a balanced graded real or complex C∗-algebra. Choose e.
Van Daele K -group DKe(A, γ) is obtained from GL(A, {γ})s.a. as above except
GL(Mn(A), {γ})s.a. 3 x 7→ x ⊕ e ∈ GL(Mn+1(A), {γ})s.a.

K (A, E) = DKe(A, γ) or DKe(AR, γ) if E contains a chiral symmetry γ

up to isom. DKe(A, γ) does not depend on the choice of e

Kellendonk Noncommutative topological approach to topological phases



Classification into 10 symmetry types via Clifford algebras Clr ,s
Odd case (chiral symmetry)

Recall A = Cpot (Zd ) oα Zd ⊗MN (C)

Suppose E acts on internal degrees of freedom, i.e. on MN (C).

If E contains chiral sym. γ then (MN (C), γ) ∼= (Mn(C)⊗ Cl2,Adσ3 ), N = 2n.

Up to equivalence, there are 4 real structures r on MN (C) commuting with γ.

even TRS: MN (C)r = MN (R) ∼= Mn(R)⊗ Cl1,1 (σ3 is real)

even PHS: MN (C)r ∼= Mn(R)⊗ Cl2,0 (σ3 is imag.)

odd TRS: MN (C)r ∼= Mk (R)⊗ H⊗ Cl1,1 ∼= Mk (R)⊗ Cl0,4 (σ3 real), N = 4k

odd PHS: MN (C)r ∼= Mn(R)⊗ Cl0,2 (σ3 is imag.)

All Clifford algebras with even number of generators appear up to Morita equiv..

Definition (higher K -groups)

(A, γ) a real or complex balanced graded algebra.
K1+s−r (A, γ) := DKe(A⊗ Clr,s, γ ⊗ st).

K (A, E) ∼= KU1(A) if no real symetries (complex K -theorie, Bott 2-periodic)

K (A, E) ∼= KO1+s−r (AR) with real symmetries (real K -theorie, Bott 8-periodic)
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Classification into 10 symmetry types via Clifford algebras
Even case, no chiral symmetry

E does not contain a chiral sym. Trick: add an outer one.

Replace A by A⊗ Cl1, with outer grading γ. Replace E by E ∪ {γ}.

Up to equivalence, there are 4 real structures r on MN (C)⊗ Cl1 commuting with γ.

even TRS: (MN (C)⊗ Cl1)r ∼= MN (R)⊗ Cl1,0
even PHS: (MN (C)⊗ Cl1)r ∼= MN (R)⊗ Cl0,1
odd TRS: (MN (C)⊗ Cl1)r ∼= Mn(R)⊗ H⊗ Cl1,0 ∼= Mn(R)⊗ Cl0,3
odd PHS: (MN (C)⊗ Cl1)r ∼= Mn(R)⊗ H⊗ Cl0,1 ∼= Mn(R)⊗ Cl3,0

All Clifford algebras with odd number of gen. appear up to Morita equiv..

By definition K (A, ∅) := K (A⊗ Cl1, {γ}) =: K0(A).

With real symmetry E

K (A, E) := K (A⊗ Cl1, E ∪ {γ}) ∼= KO1(AR ⊗ Clr,s) =: KO1+s−r (AR)
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Bulk invariants: First summary and comments

Physical considerations leads to the choice of the algebra A whose elements
describe the physics in the bulk.
The symmetry protected topological phases can be identified with the elements of
K (A, E). These are referred to as the bulk invariants.
Different extra-ordinary symmetry types correspond to the different higher
classical K -groups of A.

If A is commutative then the K -groups can be described by vectorbundles with
symmetries (twisted K -theory) [Freed, Moore 2013]
For A = C o Rd (constant potential, cont. translations) one obtains the famous
Kitaev table [Kitaev 2007].
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Systems with boundary
The half space algebra

Near the boundary the physics of material is described by operators on halfspace
Zd−1 × N.

Relevant algebra Â differs from bulk algebra A in one respect: restricting the action of
perpendicular translation Td to `2(Zd−1 × N) ”runs into the wall”: T∗d no longer inject.
Â is generated by

1 bounded potentials Cpot (Zd ) ⊂ {V : Zd → C, bdd}
2 translations (possibly twisted by magnetic field Θ) T̂1, · · · T̂d , T̂iψ(x) = ψ(x + ei )

T̂∗i T̂i = 1 T̂i T̂∗i = 1−P0 T̂i T̂j = eıΘij T̂j T̂i

T̂i VT̂∗i (x) = V (x + ei )

P0 is a nontrivial projection (projection onto `2(Zd−1 ⊗ {0})
3 internal degrees of freedom (spin, pseudo spin): Â acts on `2((Zd−1 × N)⊗ CN

Â = Â′ ⊗MN (C)

A′ = T (A) is the Toeplitz extension of the crossed product algebra A.

As E acts on the internal degrees of freedom, it also acts on Â and q intertwines this
actions.
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Exact sequence underlying the Bulk-Boundary Correspondence
[Richter, Schulz-Baldes +K. 2002]

Shifting the boundary to +∞ corresponds to the surjective algebra homomorphism

q : Â→ A, q(T̂i ) = Ti

Its kernel is generated by P0
J = ker q = ÂP0Â

thus consists of operators localized at the boundary.

K is a homological functor: the exact sequence

J
i
↪→ Â

q
� A

induces an isomorphism, the K -theoretical bulk-boundary correspondence

Ki (A, E)/imq∗
δ∼= Ki−1(J, E) ∩ ker i∗

Q: How can we understand physically the elements of Ki−1(J)?

Kellendonk Noncommutative topological approach to topological phases



Bulk versus boundary invariants, the rough picture
[Alldridge, Max, Zirnbauer 2019; Bourne, Rennie, K. 2020]

There is a linear homomorphism A 3 Ti 7→ T̂i ∈ Â (not multiplicative!).

Consider a Hamiltonian H ∈ GLs.a.(A).

Ĥ is H with a choice of boundary conditions at the boundary.

The class of H in DK (A, E) (van Daele) is the bulk invariant.

The class of Ĥ in KK (C, J, E) (Kasparov) is the boundary invariant.

The Cayley transform induces an isomorphism between van Daele’s and
Kasparov’s picture of K -theory

van Daele’s picture of K -theory is topological bulk physics

Kasparov’s picture of K -theory is topological boundary physics
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Kasparov’s picture of K−1(B)

Let B be a (σ-unital) C∗-algebra.
1 A (right) B Hilbert-C∗-module XB is a ”Hilbert space” with scalars replaced by B.

the scalar product is B-valued
XB = B is a B Hilbert-C∗-module of rank 1 (like C is a one-dim. Hilbert space)
B-compact linear maps T : XB → XB are defined as closure of finite rank operators
the adjoint T∗ of a linear map T : XB → XB is defined with B-valued scalar product

〈x, T y〉 = 〈T∗x, y〉

2 An endomorphism of XB is a linear map T which admits an adjoint T∗

3 A Kasparov C− B-cycle (XB ,F ) is a B Hilbert-C∗-module together with a
self-adjoint endomorphism F such that F 2 − 1 is B-compact. They can be added
up by direct sum.

4 A KK (C,B)-cycle (XB ,F ) is degenerate if F 2 = 1.
5 The set of equivalence classes of Kasparov C− B-cycles modulo homotopy,

unitary equivalence and addition of degenerate KK -cycles is KK (C,B). Direct
sum induces abelian group structure. KK (C,B) is isomorphic to K−1(B).

Extra ordinary symmetries E can be treated in a similar way as for DK :
1 If E has a chiral symmetry, hence B carries a balanced grading then XB is required

to have a compatible grading and F to be an odd operator.
2 If E has a real symmetry (TRS or PHS / even or odd), hence B carries a real

structure then XB is required to carry a compatible real structure and F to be real
or imaginary.
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K -theoretical Bulk-Boundary Correspondence

Theorem (Bourne, Rennie, K. 2020)

Let (B, γ) be a balanced graded real or complex C∗-algebra with choice of basepoint e
and H ∈ B and odd self-adjoint unitary. The map (Cayley transform)

x 7→
(

(x − e)B,
1
2

e(x + e)(x − e)−1|x − e|
)

induces an isomorphism between DKe(B, γ) and KK (C,B).

Theorem (Alldridge, Max, Zirnbauer 2019; Bourne, Rennie, K. 2020)

Let H be a Hamiltonian H ∈ GLs.a.(A) with spectral gap ∆ at 0. Let P∆(Ĥ) be the
spectral projection of Ĥ to ∆.

(J,P∆(Ĥ)Ĥ)

is a KK-cycle whose class corresponds to the class of H under the bulk-boundary
correspondence:

δ([H]) = [J,P∆(Ĥ)Ĥ].
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K -theoretical Bulk-Boundary Correspondence: physical interpretation

Recall: H has a spectral gap ∆ at the Fermi energy (which we moved to 0).

bulk K-group 3 [H]
δ→ [J,P∆(Ĥ)Ĥ] ∈ boundary K-group

and ker δ = imq∗.

1 If [H] /∈ imq∗ then the spectrum of Ĥ must cover the gap ∆ at 0. Therefore there
must be states (resonances) which are localized at the boundary.

2 These resonances cannot propagate into the bulk.
3 These resonances cannot be destroyed by bending, denting the boundary or by

adding disorder to it. They are stable against perturbation of the boundary.

Proof:
1 If the spectrum of Ĥ has a gap in ∆ then P∆(Ĥ)Ĥ is homotopic to an operator

whose square is 1 thus defining a degenerate KK-cycle. This would mean that
[J,P∆(Ĥ)Ĥ] = 0, a contradiction to [H] /∈ ker δ.

2 There is no bulk spectrum in the gap.
3 A perturbation which is restricted to the boundary does not affect the bulk

invariant. Alternative argument: A perturbation which is restricted to the boundary
can change Ĥ only up to a J-compact operator.
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Bulk-Boundary Correspondence: second summary and questions

We have established a correspondence between bulk invariants and boundary
invariants for topological insulators.

Both are derived naturally from the Hamiltonian of the system.

The correspondence arises from algebraic topology (it is not an algebra
homomorphism).

Questions:

How can we detect that the bulk invariant is not trivial, [H] /∈ imq∗?

Can one measure the topological invariants?

Answer: Numerical topological invariants

Any functional K (A, E)→ C or Z2 is a numerical invariant for topol. phases.

A numerical invariant serves to distinguish K -group elements and can detect the
topological non-triviality of a material.

A numerical invariant may be physically measurable (Hall conductivity).
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Numerical Invariants for Topological Phases / outlook/ via KK-theory

There are two approaches to numerical invariants (partly related through index theory):

Via KK -theory: the dual of K -theory KK (C,A) is K -homology KK (A,C) with R in place
of C if we have real symmetries.
The duality pairing is the Kasparov product

KKi (C,A)× KKj (A,C)→ KKi−j (C,C)

and KKj−i (C,C) or KKj−i (R,R) is Z, Z2 or 0. This gives a numerical invariant (an
index). [Grossmann, Schulz-Baldes 2016]
For our algebras (crossed product) exists a fundamental class [λd ] ∈ KKd (A,C)
(purely geometric data: Dirac operator in momentum space). The dual boundary map
δ∗ : KKi (C, J)→ KKi+1(C,A) maps [λd−1] to [λd ].
This yields a numerical bulk-boundary correspondance:

[H]× [λd ] = [(J,P∆(Ĥ)Ĥ)]× [λd−1]

[Bourne,Carey,Rennie,+K 2017].
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Numerical Invariants / outlook / via cyclic cohomology

Via cyclic cohomology: cyclic cohomology is a generalisation of de Rham cohomology
to algebras.

A K -group element may be combined with a cyclic cocycle to obtain a Chern number
generalising the integral of a Chern class.
Leads to a numerical bulk-boundary correspondence which is, however, trivial for
Z2-invariants [Richter, Schulz-Baldes +K. 2002]

Close to linear response theory [TKNN, Bellissard-Connes] for IQHE

Direct approach fails for Z2-invariants, these need secondary pairings with cyclic
cocycles [K. 2019].
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