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Increasing

energy orbits
n=2 /
n=1
Emitted photon

with energy E=h f

Kinetic momentum is “quantized” J = nh, where ne N.
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Zum Quantensatz von Sommerfeld und Epstein

Typus b): es treten unendlich viele p;-Systeme an der be-
trachteten Stelle auf. In diesem Falle lassen sich die p; nicht
als Funktionen der ¢; darstellen.

Man bemerkt sogleich, da der Typus b) die im § 2 formu-
lierte Quantenbedingung 11) ausschlieBt. Andererseits bezieht sich
die klassische statistische Mechanik im wesentlichen nur auf den
Typus b); denn nur in diesem Falle ist die mikrokanonische Ge-
samtheit der auf ein System sich beziehenden Zeitgesamtheit
dquivalent1).

1) In der mikrokanonischen Gesamtheit sind Systeme vorhanden, welche
bei gegebenen g; beliebig gegebene (mit dem Energiewert vereinbare) p;
besitzen.
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Zum Quantensatz von Sommerfeld und Epstein

Type b): There are infinitely many p,-systems at the location under consideration,
In this case the p, cannot be represented as functions of the g;.

One notices immediately that type b) excludes the quantum condition we
formulated in §2. On the other hand, classical statistical mechanics deals essentially
only with type b); because only in this case is the microcanonic ensemble of ope
system equivalent to the time ensemble.®

In summarizing we can say: The application of the quantum condition (11)
demands that there exist orbits such that a single orbit determines the p,-field for
which a potential J* exists.
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@ Heisenberg : physical observables are operators (matrices)
obeying certain commutation rules

[P, q]=inl.

The “spectrum” is obtained by computing eigenvalues of the
energy operator H.



I. Some history Il. Quantum ergodicity I1l. Graphs

@ Heisenberg : physical observables are operators (matrices)
obeying certain commutation rules

[P, q]=inl.

The “spectrum” is obtained by computing eigenvalues of the
energy operator H.

e De Broglie (1923) : wave particle duality.

@ Schrodinger (1925) : wave mechanics

Y(x,y,z,t) is the wave function.
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Figure: Left : nearest neighbour spacing histogram for nuclear data
ensemble (NDE). Right : Dyon-Mehta statistic A for NDE. Source O.

Bohigas
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In classical mechanics, billiard flow ¢* : (x,&) — (x + t€,€).

da f2
In quantum mechanics, ih—w = <— T A + 0)1/}.
dt 2m
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For classically ergodic / chaotic systems,
@ show that the spectrum of the quantum system resembles
that of large random matrices (Bohigas-Giannoni-Schmit
conjecture);
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For classically ergodic / chaotic systems,
@ show that the spectrum of the quantum system resembles
that of large random matrices (Bohigas-Giannoni-Schmit
conjecture);

o study the probability density |1(x) |2, where v(x) is a solution
to the Schrodinger equation (Quantum Unique Ergodicity
conjecture);

This is meant in the limit 7 — 0 (small wavelength).
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For classically ergodic / chaotic systems,

@ show that the spectrum of the quantum system resembles
that of large random matrices (Bohigas-Giannoni-Schmit
conjecture);

o study the probability density |1(x) |2, where v(x) is a solution
to the Schrodinger equation (Quantum Unique Ergodicity
conjecture);

@ show that 1(x) resembles a gaussian process
(x € B(xp, Rh), R » 1) (Berry conjecture).

This is meant in the limit 2 — 0 (small wavelength).
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M a billiard table / compact Riemannian manifold, of dimension d.

In classical mechanics, billiard flow ¢! : (x,&) — (x + t&,€)
(or more generally, the geodesic flow = motion with zero
acceleration).
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M a billiard table / compact Riemannian manifold, of dimension d.
In quantum mechanics :

:h(i;b (— %A + 0)¢

- h—zAw Eip,

in the limit of small wavelengths.
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M a billiard table / compact Riemannian manifold, of dimension d.

2
A’l,[)k = —)\kd)k or — iAT/) = El/),
2m

1Ykl 2omy = 1,
in the limit Ay — +4o0.

We study the weak limits of the probability measures on M,

|k (x) [? d Vol (x).
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Let (1x)ken be an orthonormal basis of L2(M), with

=AYy = Mg, Ak < Akt

QE Theorem (simplified): Shnirelman 74, Zelditch 85,

Colin de Verdiére 85

Assume that the action of the geodesic flow is ergodic for
the Liouville measure. Let a e CO(M). Then

1 2
NOY > UM a(x) ¢k (x)] dVoI(x)—fM a(x)d Vol (x)| —> 0.

A=A A—00
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Let (1x)ken be an orthonormal basis of L2(M), with

=AYy = Mg, Ak < Akt

QE Theorem (simplified): Shnirelman 74, Zelditch 85,

Colin de Verdiére 85

Assume that the action of the geodesic flow is ergodic for
the Liouville measure. Let a e CO(M). Then

M A—00

1 2
oY AkZQ JM a(x)| vk (x)|* d Vol (x) —f a(x)d Vol(x) — 0.
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Let (1x)ken be an orthonormal basis of L2(M), with

=AYy = Mg, Ak < Akt

QE Theorem (simplified): Shnirelman 74, Zelditch 85,

Colin de Verdiére 85

Assume that the action of the geodesic flow is ergodic for
the Liouville measure. Let a e CO(M). Then

1 2
NOY > UM a(x) ¢k (x)] dVoI(x)—fM a(x)d Vol (x)| —> 0.
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Equivalently, there exists a subset S N of density 1, such that

J a(x)}’t/;k(x)‘deol(x) j a(x)d Vol (x).
M M

k—>400
keS
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Equivalently, there exists a subset S N of density 1, such that

JM a(x)}wk(x)‘deol(x) P IM a(x)d Vol (x).

keS

Equivalently,
dVol(x)

[ o) [ Vol (x) ———
keS

in the weak topology.

Il. Graphs
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The full statement uses analysis on phase space, i.e.
T*M = {(x,€),xe M,£ € T}M}.

For a = a(x,£) a “reasonable” function on phase space, we can

define an operator on L%(M),

a(x, Dy) (DX - %ax).
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On M = RRY, we identify the momentum & with the Fourier
variable, and put

a(x. DYF(X) = ooz | ol €) F(6) ek

for a a “reasonable” function.
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On M = RRY, we identify the momentum & with the Fourier
variable, and put

1

a(x, Dy)f(x) = @y JRd a(x, &) F(&) e€xde.

for a a “reasonable” function.

Say a e S°(T*M) if ais smooth and 0-homogeneous in ¢ (i.e. ais
a smooth function on the sphere bundle SM).
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Let (1x)ken be an orthonormal basis of L2(M), with

=AYy = Mg, Ak < Ayt

QE Theorem (Shnirelman, Zelditch, Colin de Verdiere)

Assume that the action of the geodesic flow is ergodic for
the Liouville measure. Let a(x,¢) € S°(T*M). Then

1
W Z ‘<¢k7a(xﬂ Dx)¢k >L2(M)_ a(X,f)dXdé' —> 0.

A=A lg]=1
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Figure: Ergodic billiards. Source A. Backer
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Figure: Source A. Backer



I. Some history Il. Quantum ergodicity I1l. Graphs

1 Define the “Quantum Variance”

Vary (K Z ‘(W, K Vi)12(m)

)\<)\

2 Introduction of pseudodiffs v~ emergence of a classical
dynamical system (billiard / geodesic flow).
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1 Define the “Quantum Variance”

Van(K) = 55 20 [ &K e By
)\ <A

Invariance property under conjugacy by eitVA (quantum
dynamics).

2 Introduction of pseudodiffs v~> emergence of a classical
dynamical system (billiard / geodesic flow).
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1 Define the “Quantum Variance”

Van(K) = 55 20 [ &K e By
)\ <A

Invariance property under conjugacy by eitVA (quantum
dynamics).

2 Introduction of pseudodiffs \~~> emergence of a classical
dynamical system (billiard / geodesic flow).

eit*/Ea(X, D,) e itVA _ 55 ¢'(x, Dy) + r(x, Dx).
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1 Define the “Quantum Variance”

Van(K) = 55 20 [ &K e By
)\ <A

Invariance property under conjugacy by eitVA (quantum
dynamics).

2 Introduction of pseudodiffs v~> emergence of a classical
dynamical system (billiard / geodesic flow).

eit*/Ea(X, D,) e itVA _ 55 o' (x, Dy) + r(x, D).

limsup Var) (a(x, Dy)) = limsup VarA< ao ¢'(x,Dy) )

A—>00 A—>00
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1 Define the “Quantum Variance”

Van(K) = 55 20 [ &K e By
)\ <A

Invariance property under conjugacy by eitVA (quantum
dynamics).

2 Introduction of pseudodiffs v~> emergence of a classical
dynamical system (billiard / geodesic flow).

eit*/Ea(X, D,) e itVA _ 55 o' (x, Dy) + r(x, D).

1 T
limsup Var) (a(x, Dy)) = limsup Var)\<? J ao¢'(x, Dx)dt>
0

A—>00 A—>00
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3 Control by the L?-norm (Plancherel formula).

1 T
limsup Vary(a(x, Dy)) = limsup Var)\<? J a0¢*(x, Dx)dt>
0

A—00 A—00

< (LGM el=1 ‘% LT a0 9'(x g)dt‘zd)‘dg) .
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3 Control by the L?-norm (Plancherel formula).

1 T
limsup Vary(a(x, Dy)) = limsup Var)\<? J a0¢*(x, Dx)dt>
0

A—00 A—00

< (LGM el=1 ‘% LT a0 9'(x Qdflzdxdf) .

4 Use the ergodicity of classical dynamics to conclude.
Ergodicity : if a has zero mean, then

I L
TI—I>n-:ooTL ao¢'(x,§)dt =0

in L2(dxd¢) and for almost every (x, &).
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Figure: Source A. Backer
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Quantum Unique Ergodicity conjecture : Rudnick, Sar-
nak 94

On a negatively curved manifold, we have convergence of the
whole sequence :

) 7Dx 2 = y dxdg.
<wk a(X )d)k >[_ (M) (xE)eSM a(X E) xdg
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Quantum Unique Ergodicity conjecture : Rudnick, Sar-
nak 94

On a negatively curved manifold, we have convergence of the
whole sequence :

) 7DX 2 = y dxdg.
<wk a(X )d)k >[_ (M) (xE)eSM a(X 5) xdg

Proved by E. Lindenstrauss, in the special case of arithmetic
congruence surfaces, for joint eigenfunctions of the Laplacian, and
the Hecke operators.
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Let M have negative curvature and dimension d. Assume

(s 6 Do Dyzany — f( g 2 8HE)

(1) [A-Nonnenmacher 2006] : 1+ must have positive (non van-
ishing) Kolmogorov-Sinai entropy.

For constant negative curvature, our result implies that the
support of u has dimension > d = dim M.
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Let M have negative curvature and dimension d. Assume
<¢k;a(x7 Dx)¢k >L2(M) —’f a(ny)dM(X;Q
(x,6)eSM

(1) [A-Nonnenmacher 2006] : x must have positive (non van-
ishing) Kolmogorov-Sinai entropy.

For constant negative curvature, our result implies that the

support of u has dimension > d = dim M.

(2) [Dyatlov-Jin 2017] : d = 2, constant negative curvature,
1 has full support.
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Figure: Propagation of a gaussian wave packet in a cardioid. Source A.
Backer.
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Figure: Propagation of a gaussian wave packet in a cardioid. Source A.
Backer.
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Fig. 2. Light propagation along the fiber in the geometrical limit of rays.

Doya, Legrand, Michel, Mortessagne 2007
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(@) ®
Fig. 3. Near-field intensity (a) and far-field intensity (b) for . = 36/R.
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Fig. 5. Near-field intensity (a) and Far-field intensity (b) for a scar mode of order p = 5 with x; =
10.35/R.
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Toy models are “simple” models where either
@ some explicit calculations are possible,
OR

@ numerical calculations are relatively easy.
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Toy models are “simple” models where either
@ some explicit calculations are possible,
OR

@ numerical calculations are relatively easy.

They often have a discrete character.
Instead of studying i — 0 one considers finite dimensional Hilbert
spaces whose dimension N — +c0.
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Figure: A (random) 3-regular graph. Source J. Salez.
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Let G = (V,E) be a (g + 1)-regular graph.
Discrete laplacian : f : V — C,

Af(x) = Y, (Fy) = f(x) = X f(y) = (g + D)f (x).

y~x y~x

A=A—(qg+1)
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@ They are locally modelled on the (g + 1)- regular tree T,

@ T, may be considered to have curvature —co.
@ Harmonic analysis on T is very similar to h.a. on H".

@ For g = p a prime number, T} is the symmetric space of the
group SL>(Qp).
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They are locally modelled on the (g + 1)- regular tree T,
(cf. H" for hyperbolic manifolds).

Tq may be considered to have curvature —co.

Harmonic analysis on T is very similar to h.a. on H".

For g = p a prime number, T, is the symmetric space of the
group SL>(Qp).
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They are locally modelled on the (g + 1)- regular tree T,
(cf. H" for hyperbolic manifolds).

Tq may be considered to have curvature —co.

Harmonic analysis on T is very similar to h.a. on H".

For g = p a prime number, T, is the symmetric space of the

group SL>(Qp).
H? is the symmetric space of SLy(R).
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Sp(A) < [~(g+1),qg+1]
Let |V| = N. We look at the limit N — +o0.
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@ The adjacency matrix A is already an N x N matrix, so may
be easier to compare with Wigner's random matrices.

@ Regular graphs may be easily randomized : the Gy 4 model.
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We assume that Gy has “few” short loops (= converges to a tree
in the sense of Benjamini-Schramm).
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We assume that Gy has “few” short loops (= converges to a tree
in the sense of Benjamini-Schramm).

This implies convergence of the spectral measure (Kesten-McKay)

ﬂ{l Aiel} ﬁ) m(A\)dA

for any interval /.
The density m is completely explicit, supported in (—2,/9,2,/9).
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(a) cubic graph on 2000 vertices; (b) 5-valent graph on 500 vertices.

Figure 1. Eigenvalue distributions of random graphs vs McKay’s law

Figure: Source Jakobson-Miller-Rivin-Rudnick
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A-Le Masson, 2013

Assume that Gy has “few” short loops and that it forms an
expander family = uniform spectral gap for A.

Let (qﬁ,(N)),N:l be an ONB of eigenfunctions of the laplacian

on Gy.
Let a = ay : Vy — R be such that |a(x)| < 1 for all x € Vy.
Then
I (N) _
N—Imoo N Z X;/N ¢ — @ 0
where

@ = 3 o
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Il. Graphs

A-Le Masson, 2013

Assume that Gy has “few” short loops and that it forms an
expander family = uniform spectral gap for A.

Let (qﬁ,(N)),N:l be an ONB of eigenfunctions of the laplacian

on Gy.
Let a = ay : Vy — R be such that |a(x)| < 1 for all x € Vy.
Then
i 48] 5 ottt |-
N—Imoo N Z = ¢ (x) @ 0
where

@ = 3 o
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For any € > 0,

lim iﬁ{;,

N—+o N

3 a6t () F - <a>‘ > e} ~0.

XxXe VN
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Brooks-Lindenstrauss, 2011

Assume that Gy has “few” loops of length < clog V.
For € > 0, there exists § > 0 s.t. for every eigenfunction ¢,

BcVy, Y [o(x)|=e = [B|> N

xeEB

Proof also yields that | ¢, < |log N|~%4.
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Deterministic examples :

e the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988
(arithmetic quotients of the g-adic symmetric space
PGL(2,Qq)/PGL(2,Zy));



I. Some history Il. Quantum ergodicity I1l. Graphs

Deterministic examples :

e the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988
(arithmetic quotients of the g-adic symmetric space
PGL(2,Qq)/PGL(2,Zy));

e Cayley graphs of SLy(Z/pZ), p ranges over the primes,
(Bourgain-Gamburd, based on Helfgott 2005).



Il. Quantum ergodicity 11l. Graphs

Spectral statistics : Bauerschmidt, Huang, Knowles,
Yau, 2016

Let d = g+ 1 > 10%,

For the Gy 4 model, with large probability as N — +o0, the
small scale Kesten-McKay law

j:t{l i € I}N—>+oof/ m(A\)dA
holds for any interval / for |/| = log N*/N, and

c [-24/q+€,2,/q— €.
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Figure 2. Level spacing distribution of a cubic graph on 2000 vertices vs GOE

Spectral statistics : Bauerschmidt, Huang, Knowles,

Yau

Nearest neighbour spacing distribution coincides with Wigner
matrices for

N¢ < d(=q+1) < N3¢,
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Delocalization : Bauerschmidt, Huang, Yau

Let d = g+ 1> 10%.
For the Gy ¢ model,

° H¢,(-N) e < Iﬂg\/% as soon as

/\,(N) € [-2\/q9+¢€,2,/q —€];
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Delocalization : Bauerschmidt, Huang, Yau

Let d = g+ 1> 10%.
For the Gy ¢ model,

° H¢,(-N) oo < % as soon as

)\EN) € [-2\/q9+¢€,2,/q —€];
o (see also Bourgade —Yau) QUE : given

a:{1,...,N} — R,
for all A\ € [—2,/g + ¢,2,/9 — €],

N (N, 2 1 log V*
Y 2[00 = 5 X a0 + 0 (25— ) lale
x=1 n

with large probability as N — +co.



|. Some history Il. Quantum ergodicity Il. Graphs

Gaussianity of eigenvectors, Backhausz-Szegedy 2016

Consider the Gy ¢ model.
With probability 1 — o(1) as N — o, one has : for all eigen-
functions qﬁI(N), for all diameters R > 0, the distribution of

(N)
O |B(x,R)’

when x is chosen uniformly at random in V(Gy 4), is close
to a Gaussian process on Br, (o, R).
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Gaussianity of eigenvectors, Backhausz-Szegedy 2016

Consider the Gy ¢ model.
With probability 1 — o(1) as N — o, one has : for all eigen-
functions qﬁI(N), for all diameters R > 0, the distribution of

)
?i " 1B(x,R)

when x is chosen uniformly at random in V(Gy 4), is close
to a Gaussian process on Br, (o, R).

Remaining open question : is this Gaussian non-degenerate ?
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@ QUE for deterministic regular graphs ?
@ Stronger forms of QUE for Random Regular Graphs ?

@ Non-regular graphs (joint work with M. Sabri).
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@ QUE for deterministic regular graphs ?
@ Stronger forms of QUE for Random Regular Graphs ?
@ Non-regular graphs (joint work with M. Sabri).

@ More systematic study of manifolds in the large-scale limit (cf.
Le Masson-Sahlsten for hyperbolic surfaces, when genus
g — +m).

@ Random manifolds?
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Thank you for your attention !

...and thanks to R. Séroul and all colleagues who provided pictures.
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