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11. S. Alexandrov, A. Sen and B. Stefański, “D-instantons in Type IIA string theory on Calabi-Yau
threefolds,” JHEP 11 (2021), 018 [arXiv:2108.04265 [hep-th]].
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String theory
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Perturbative string theory in any background gives

1. The spectrum of states

– contains some massless states and infinite tower of massive
states

2. A formula for the scattering amplitudes involving these states

5



A scattering amplitude in closed string theory can be expressed
as

∞∑
n=0

an g2n+α
s

gs: string coupling

α: some fixed number for a given scattering process

an: coefficients that could depend on the quantum numbers of
external states

– can be computed in terms of integrals over the moduli spaces
of closed Riemann surfaces

Integrand: Correlation functions of vertex operators on Riemann
surfaces

World-sheet with Euler number χ gives contribution ∝ g−χs 6



What about non-perturbative corrections?

– need a non-perturbative formulation

– exists only for special backgrounds via various dualities
(matrix model, AdS/CFT)

However we do not yet have a complete non-perturbative
formulation of string theory in a general background. 7



Nevertheless, world-sheet formalism⇒ one class of
non-perturbative corrections

– additional contributions to an amplitude of the form

e−C/gs

∞∑
n=0

bn gn+β
s

C, β: some constants

bn’s depend on the quantum numbers of external states

– can be computed as integrals over the moduli space of
Riemann surfaces with boundaries, with Dirichlet boundary
condition along non-compact target space directions

– D-instanton corrections 8



D-instantons are like ordinary D-branes but have finite action
due to Dirichlet b.c

– localized in non-compact directions

In general there may be different D-instantons, differing by
boundary condition along the compact directions

– gives different C, bn

Final result: Weighted sum of these contributions 9



Systematics of

D-instanton corrections
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1. In the presence of D-instantons the spectrum has both closed
strings and open strings with ends on the instanton.

However the open strings describe the modes of the instanton
and only exist for limited time

– they are not asymptotic states

The external states in a scattering amplitude will always be
closed strings

(or open strings on ordinary time filling D-branes if present) 11



2. Dirichlet boundary condition breaks space-time translation
invariance

⇒ individual world-sheets with boundaries do not conserve
energy / momentum

– disconnected world-sheets contribute even for generic values
of external energy / momentum

For getting leading contribution to the D-instanton amplitude, we

– maximize the number of disks since each disk gives 1/gs

– can use as many annuli as we want since annuli ∼ (gs)0

mexp
[ ]

exp[−C/gs] × × × ×· · ·

×: closed string vertex operator C/gs: D-instanton action 12



At the next order there are more possibilities

mexp
[ ]

exp[−C/gs] × × ×× · · ·

mexp
[ ]

exp[−C/gs] × × × ×· · ·e
etc.

This way we can write down the expression for D-instanton
induced amplitude to any order in the string coupling gs

However, the moduli space integrals diverge from regions of the
moduli space where the Riemann surface degenerates 13



Example: 2D bosonic string theory

World-sheet theory has

1. A scalar X describing time direction

2. A Liouville field χL with central charge 25

– describes space direction with a potential

3. b,c ghost system with central charge −26

Ghost number assignment: c: 1, b: −1, matter: 0

Closed string spectrum has a single massless scalar field living
on a half line along χL (tachyon) 14



This theory has different D-instantons

The one with lowest C has C = 1 Zamolodchikov, Zamolodchikov

Annulus partition function =

∫ ∞
0

dt
2t
(
et − 1

)
Disk two point function ∝ finite +

1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y)

Annulus 1-point function

∝ finite +

∫ 1

0
dv
∫ 1/4

0
dx
{

v−2 − v−1

sin2(2πx)
+ 2ω2 v−1

}
15



For D-instantons in type IIB string theory in ten dimensions

Annulus partition function =

∫ ∞
0

dt
2t

(8− 8)

8 from NS sector, −8 from R sector

Naively the answer vanishes

However this gives results for instanton correction that are
inconsistent with the prediction of S-duality

The goal of these lectures will be to understand the physical
origin of these divergences and extract unambiguous, finite
numbers out of them.

– need string field theory 16



We shall not try to propose string field theory as a full
non-perturbative formulation of string theory

Instead we shall use it to systematically compute the effect of
fluctuations around the saddle points represented by
D-instantons

– integral along the steepest descent contour of the saddle point
17



For now, it is enough to know that

1. String field theory is a regular quantum field theory with
infinite number of fields, one for each mode of the string

2. It is designed so that the perturbative amplitudes reproduce
the world-sheet result (formally).

Each Feynman diagram reproduces integration over part of the
moduli space

Sum of all Feynman diagrams reproduces integration over the
full moduli space. 18



Open string propagator ∝ L−1
0

Closed string propagator ∝ (L0 + L̄0)−1

To make connection with world-sheet formalism we need to use
Schwainger parameter representation of the propagator:

L−1
0 =

∫ ∞
0

dt exp [−L0t] , (L0 + L̄0)−1 =

∫ ∞
0

dt exp
[
−(L0 + L̄0)t

]
After summing over all internal states we recover the
world-sheet expression, with the t parameters becoming the
moduli of Riemann surfaces

These relations are identities for positive L0 and (L0 + L̄0)

eigenvalues

However they fail for L0 ≤ 0 and (L0 + L̄0) ≤ 0 since the t
integrals diverge at t=0

– origin of all divergences in the world-sheet theory 19



L0 and L0 + L̄0 eigenvalues ∝ k2 + m2

m: mass of the string mode

We can compute the amplitude for positive k2 + m2 and then
explore other regions by analytic continuation in k

e.g. Veneziano or Shapiro-Virasoro amplitude

However, open strings on D-instantons have no continuous
momenta due to Dirichlet b.c.

– we need to tackle the divergences differently 20



SFT ⇒ (L0)−1 =

∫ ∞
0

dt e−L0t ⇐ world-sheet

1. This is an identity for L0 > 0

2. For L0 < 0 the rhs diverges from t→∞ end but the lhs is finite
and we can use lhs as the correct expression

3. For L0 = 0 both sides diverge

However, on the lhs we sit on the pole of a propagator and
insights from QFT can be used to make sense of this.

This is the essence of why string field theory is useful for
dealing with divergences in the integrals over the moduli spaces
of Riemann surfaces 21



Since closed string propagators do not cause any problem, we
can integrate out the closed strings from the internal states and
work with an effective string field theory, where

– external states are only closed strings

– internal states are open strings

⇒ Part of string field theory relevant for us is the one that
describes the dynamics of open strings with Dirichlet b.c. on all
non-compact directions

– a 0-dimensional field theory since open strings do not carry
continuous momentum

Path integral⇒ ordinary integrals 22



As a test of this procedure, we shall verify that when the answer
is known from a dual description e.g. matrix model or S-duality,
the procedure we shall describe reproduces them correctly. 23



Given that the string perturbation expansion is expected to be
an asymptotic series, does it make sense to compute
non-perturbative contribution?

Answer 1:

In many cases the perturbative contribution to specific
quantities either vanishes or terminates after a finite order

a) Terms protected by supersymmetry, e.g. R4 terms in type IIB
in D=10, moduli space metric in N=2 supersymmetric theories in
D=4, superpotential in N=1 supersymmetric theory in D=4 etc

b) Unitarity violation in c=1 bosonic string theory

c) Barrier penetration in ĉ = 1 type 0B string theory
24



Answer 2:

Instantons describe non-trivial saddle points of string theory

Instanton contribution to amplitudes represent the result of the
path integral along the steepest descent contour (Lefschetz
thimble) of this saddle point

– can be studied independently of the perturbative contribution

– can be used to compare the contribution from individual
instantons between a dual pair of theories both of which are
weakly coupled, e.g. in c ≤ 1 string theories, AdS/CFT
correspondence etc 25



In these lectures we shall focus on single D-instanton
amplitudes for simplicity.

n D-instanton contribution ∝ e−n C/gs

– more suppressed than single D-instanton contribution.

However the analysis can be (and has been) generalized to
multi-instanton amplitudes. 26



Explicit computations

27



We have seen that all D-instanton amplitudes have overall
normalization factor given by exponential of the annulus
amplitude.

We shall first discuss computation of the annulus amplitude.

We shall pick the example of 2D string theory but the same
procedure can be applied to all cases.

exp[annulus] = exp
[∫ ∞

0

dt
2t

(et − 1)

]
28



mexp
[ ]

= exp
[ ∫∞

0
dt
2t Z(t)

]

t ∝ ratio of circumference to the width of the cylinder / annulus

Z(t) = Tr
{

(−1)Fe−t L0b0c0
}

Tr is trace over open string states on the D-instanton

F = ghost number - 1

b0c0 is needed to remove ghost zero modes

Z(t) =
∑

b

e−t hb −
∑

f

e−t hf

hb,hf: L0 eigenvalues of bosonic / fermionic open string states
that are annihilated by b0 (Siegel gauge)

If hb or hf ≤ 0, then the integral diverges from large t region. 29



Strategy for dealing with large t divergence:

1. Use the identities, valid for hb,hf > 0,

exp
[∫

dt
2t
(
e−thb − e−thf

)]
=

√
hf

hb

h−1/2
b =

∫
dψb√

2π
e−

1
2 hbψ

2
b , ψb : grassmann even

hf =

∫
duf dvf e−hfufvf , uf,vf : grassmann odd

2. Interpret the modes ψb, uf, vf as open string fields (D=0) and
the exponent as open string field theory action in Siegel gauge

3. Modes with hb < 0 are tachyonic modes and integration over
them can be carried out along the steepest descent contour
producing 1/hb

4. Modes with hb = 0 and hf = 0 represent respectively the
bosonic and fermionic zero modes and need to be treated
carefully. 30



Origin of zero modes

1. Bosonic zero modes ψ0
b can arise from the freedom of

translating the instanton along flat directions e.g. Euclidean time

Remedy: Change variables from ψ0
b to D-instanton position y.

⇒ dψ0
b = K1 dy for some K1 – to be computed

Integration over y has to be done at the end and produces a
factor of

∫
dyeiEy = 2πδ(E), with E being the total energy of

external states 31



For 2D bosonic string theory

Z(t) =
(
et − 1

)
et ⇒ a mode with hb = −1 ⇒ produces

√
1/hb = i

The bosonic translation zero mode should give +1

Why do we have −1? 32



2. We have L0 = 0 states coming from ghost sector

c1c−1|0〉, |0〉

They are results of wrongly fixing the U(1) ‘gauge symmetry’ on
the instanton 33



Consider the gauge invariant open string field theory on a
Dp-brane

– has a U(1) gauge field in p+1 dimensions.

Action: ∫
dp+1x

[
1
4

FµνFµν +

(
1√
2
∂µAµ − φ

)2
]

φ: mode associated with the state c0eik.X(0)|0〉

– not present in the Siegel gauge but is present in the gauge
invariant theory

Gauge transformation:

δAµ =
√

2 ∂µθ(x), δφ = �θ(x)

34



S =

∫
dp+1x

[
1
4

FµνFµν +

(
1√
2
∂µAµ − φ

)2
]

δAµ =
√

2 ∂µθ(x), δφ = �θ(x)

Siegel gauge φ = 0 leads to gauge fixed action including ghosts:∫
dp+1x

[
−1

2
Aµ�Aµ − u�v

]
, u,v : ghosts

On D-instanton, p = −1, there is no Aµ and all fields are x
independent

⇒ u�v = 0

⇒ leads to ghost zero modes

– arise since we are attempting to gauge fix a rigid symmetry
with parameter θ under which δφ = 0 35



Remedy: Undo the gauge fixing by using a gauge invariant form
of the path integral

1. Integrate over φ and drop the integration over the ghosts

⇒
∫

dφe−φ
2

=
√
π

2. Divide by the volume of the gauge group

⇒
∫

dθ

– can be found by carefully comparing the string field theory
gauge transformation laws with ψ → eiαψ where α has period 2π.

ψ: any state of the open string with one end on the instanton

If θ = K2 α then
∫

dθ = K2 2π 36



exp
[∫ ∞

0

dt
2t

Z(t)
]

= exp
[∫ ∞

0

dt
2t

(et−2+1)

]
reduces to

i
√
π

2πK2

1√
2π

K1 2πδ(E)

To find K1,K2 we need more details of open string field theory. 37



Open (bosonic) string field theory

H(n): Vector space of open string states of ghost number n

Before gauge fixing, an open string field |ψ〉 is an arbitrary
element of H(1)

Let |ξ(n)r 〉 be a set of basis states in H(n)

Then |ψ〉 =
∑

r ψr|ξ(1)r 〉

ψr are the dynamical variables over which we do (path)
integration. 38



Action:
S =

1
2
〈ψ|QB|ψ〉+ interaction terms

QB =

∮
0

dz [c(z) Tm(z) + b(z)c(z)∂c(z)]

Tm(z): matter stress tensor

Q2
B = 0

The action S is invariant under gauge transformation:

δ|ψ〉 = QB|λ〉+ · · ·

|λ〉: arbitrary state in H(0)

If we expand |λ〉 as
∑

r λr|ξ(0)r 〉, then λr are the ‘gauge
transformation’ parameters 39



Siegel gauge: b0|ψ〉 = 0.

S =
1
2
〈ψ|c0L0|ψ〉+ · · ·

The gauge fixing leads to Faddeev-Popov ghosts

Result: The full action including the ghosts has the form

S =
1
2
〈ψ̃|c0L0|ψ̃〉+ · · ·

with |ψ̃〉 ∈
∑

n H(n) subject to b0|ψ̃〉 = 0

Components of |ψ̃〉 with ghost number other than 1 are the
Faddeev-Popov ghosts

Propagator ∝ (L0)−1 40



|ζ(n)r 〉: A basis of states of ghost number n, satisfying b0|ζ(n)r 〉 = 0

{|ξ(n)r 〉} = {|ζ(n)r 〉} ∪ {c0|ζ(n−1)
r 〉}

In order that the gauge fixed action 1
2 〈ψ̃|c0L0|ψ̃〉 has the form

−1
2

hbψ
2
b + hfufvf

we need to normalize the basis states as

〈ζ(1)r |c0|ζ(1)s 〉 = δrs, 〈ζ(2)r |c0|ζ(0)s 〉 = δrs

etc.

If |ψ〉 =
∑

r χr|ζ(1)r 〉+
∑

r φrc0|ζ(0)r 〉 and |λ〉 =
∑

r λr|ζ(0)r 〉 then

δ|ψ〉 = QB|λ〉 ⇒ δφr = hrλr

hr: L0 eigenvalue of |ζr〉 41



Open string field on D-instanton before gauge fixing:

|ψ〉 = χc1|0〉+ ψ0
b c1α−1|0〉+ iφc0|0〉+ · · ·

Gauge transformation parameters:

|λ〉 = i θ|0〉+ · · ·

Siegel gauge field:

|ψ̃〉 = χc1|0〉+ ψ0
b c1α−1|0〉+ u|0〉+ v c1c−1|0〉+ · · ·

χ: tachyon corresponding to the h = −1 state

α−1: oscillator of X satisfying [α1, α−1] = 1

Factors of i ensure that φ and θ are real

If |0〉 had carried L0 eigenvalue h, e.g. by carrying momentum k,
then gauge transformation law would give δφ = hλ and the
Siegel gauge φ = 0 would give a Faddeev-Popov determinant h

– would be reproduced by the ghost action huv 42



For h=0 this procedure breaks down.

Go back to the original gauge invariant formulation:∫
dχ√
2π

∫
dψ0

b√
2π

∫
dφe−S/

∫
dθ

S = −1
2
χ2 + φ2

Note: Comparison with the world-sheet result fixes the
normalization of the path integral measure over the open string
fields.

We could have replaced dφ by dφ/
√

2π but then dθ will also be
replaced by dθ/

√
2π so that the Faddeev-Popov determinant

remains L0. 43



Relation between ψ0
b and y:

1. The dependence of an amplitude on the D-instanton position
y must be of the form

eiω y

where ω is the total energy carried by all the closed string states

y insertion in an amplitude should product a iω factor

Compare this with the result of the ψ0
b insertion 44



State multiplying ψ0
b in string field expansion

c1α−1|0〉 = c(0)i
√

2∂X(0)|0〉

X is normalized so that

∂X(z)∂X(w) = − 1
2(z−w)2 + non-singular

⇒ vertex operator for ψ0
b:

unintegrated : c(z)i
√

2∂X(z), integrated : i
√

2∂X(z)

The disk amplitude with one insertion of ψ0
b and n closed string

vertex operators V1, · · ·Vn of energy ω1, · · ·ωn is

A ∝ go

〈∫
dz i
√

2∂X(z)
n∏

k=1

Vk(zk)

〉

go = (1/2π2T)1/2: open string coupling constant

T: D-instanton action C/gs 45



Using OPE

∂X(z)Vk(zk) = − iωk

2(z− zk)
Vk(zk) + non-singular

we get

A = iπ
√

2 go ω

〈
n∏

k=1

Vk(zk)

〉
, ω ≡

∑
k

ωk

⇒ ψ0
b insertion in an amplitude produces a factor of iπ

√
2 go ω

Since y insertion produces a factor of iω, we have

ψb = K1 y, K1 =
1

π
√

2 go

48



Relation between θ and α:

α: rigid gauge transformation parameter

An open string stretched between the original D-instanton and a
second spectator D-instanton picks up a phase eiα.

This gives infinitesimal transformation law:

δξ = iα ξ

ξ: Any state of the open string stretched between the pair of
D-instantons

We can compare this with the known gauge transformation law
of ξ in open string field theory:

δξ = go K θ ξ

K: three point function of normalized vertex operators of θ, ξ, ξc 47



In the expansion of the string field, θ multiplies i |0〉

⇒ θ vertex operator is i × identity

⇒ three point function of θ, ξ, ξc reduces to i × two point function
of ξ, ξc

i as long as ξ, ξc are normalized

Compare δξ = i go θξ with δξ = iαξ

This gives

θ = K2 α, K2 =
1
go

Net result:

i
√
π

2πK2

1√
2π

K1 2πδ(E) =
i

4π2 2πδ(E)

agrees with a dual matrix model result 48



If there are L0 = 0 states in the Ramond sector zero modes, they
represent fermion zero modes

– goldstino modes associated with supersymmetries broken by
the D-instanton

⇒ we need to perform integral over these grassmann odd
modes at the end

– same as differentiation

⇒ insert vertex operators of these modes into the world-sheet
diagram

Example: D-instantons in IIB in D=10 has 16 such fermion zero
mode

– 16 open string vertex operators will have to be distributed in all
possible ways over the boundaries of the world-sheet diagrams

49



When the result is known from a dual description, this procedure
produces the correct result in all cases that have been studied.

1. 2D bosonic string theory A.S; Eniceicu, Mahajan, Murdia, A.S.

2. c<1 bosonic string theory Eniceicu, Mahajan, Murdia, A.S.

3. Type IIB in D=10 A.S.

4. Type IIA / IIB on CY3 Alexandrov, A.S., Stefanski

5. ĉ = 1 type 0B string theory Chakravarty, A.S.

6. IIA/IIB on CY3 orientifolds Alexandrov, Firat, Kim, A.S., Stefanski

7. Sine-Liouville deformation of c=1 bosonic string theory
Alexandrov, Mahajan, A.S., work in progress

50



Higher order
contributions

51



At the next order we need to compute

mexp
[ ]

exp[−C/gs] × × ×× · · ·

mexp
[ ]

exp[−C/gs] × × × ×· · ·e
etc.

Define:

gs f(ω1, ω2): Ratio of disk two point function to product of two
disk one point functions

gs g(ω): Ratio of annulus one point function to disk one point
function

gs C: Partition function for disk with two holes and torus with
one hole. 52



Order gs contribution to the n-point amplitude:

gs × leading order contribution×

∑
j<k

f(ωj, ωk) +
∑

j

g(ωj) + C


f, g and C have divergences.

f = ffinite + fdiv, g = gfinite + gdiv, C = Cfinite + Cdiv

fdiv(ω1, ω2) =
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y) ≡ Af + Bf ω1ω2

gdiv(ω) =

∫ 1

0
dv
∫ 1/4

0
dx
{

v−2 − v−1

sin2(2πx)
+ 2ω2 v−1

}
≡ Ag + Bgω

2

n-point function at order gs:

= gs × leading order contribution

×

n(n− 1)

2
Af + n Ag + C +

{
Bg −

Bf

2

}∑
j

ω2
j + finite


We again need to make use of string field theory 53



Strategy:

1. Express the amplitudes as sum over SFT Feynman diagrams

The external states in a Feynman diagram are closed strings

The internal propagators are of open strings since we integrate
out the closed strings.

Open string propagator of a Siegel gauge state

L−1
0 =

∫ ∞
0

dt e−t L0 =

∫ 1

0
dq qL0−1, q ≡ e−t

q’s become the moduli in the world-sheet description.

Divergences come from states with L0 eigenvalue h ≤ 0 from q=0
end 54



2. In SFT, 1/L0 = 1/h is finite for h < 0

– removes the power law divergences in the q integral

Also remove the zero mode contribution to the propagators
since they are to be integrated at the end or removed altogether.∫ 1

0
q−1+h ⇒ h−1,

∫ 1

0
q−1 ⇒ 0

3. Add the propagator of the field φ that was not present in the
world-sheet formulation but should be present.

S = −φ2 ⇒ Propagator =
1
2

4. Account for corrections to the jacobian factors for change of
variable from ψ0

b to y and θ to α 55



We shall first describe the analysis of fdiv(ω1, ω2).

– related to the divergent part of disk / UHP two point function:

×
1
×
2

fdiv(ω1, ω2) =
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y)

On the UHP, closed string vertex operators are located at i and iy

×
×

i

iy
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fdiv(ω1, ω2) =
1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y)

Feynman diagrams:

• • •
(a) (b)

Thick lines: Closed strings Thin lines: open strings

The open-closed interaction vertices are UHP two point
functions 57



To compute these amplitudes we need the two point
open-closed interaction term for off-shell external states.

Need to choose a ‘local coordinate’ wi at the location of each
vertex operator.

If the UHP coordinate z is related to w as z = f(w) then we insert
the vertex operator f ◦ V(w) – conformal transform of V by f

e.g. for dimension h primeries, f ◦ V(w) = f′(w)hV(f(w))

Since only the open strings are off-shell, we need a choice of
local coordinates at the open string puncture.
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C-O interaction vertex

Put C at i, O at 0

Choose local coordinate at O to be

w = λ z ⇒ f(w) = w/λ ⇒ f ◦ V(w) = λ−hVV(z)

λ: an arbitrary constant, taken to be large for convenience

⇒ the two point function of a closed string state C and open
string state O is

〈VC(i)VO(0)〉UHP λ
−hO
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• • •
(a) (b)

We need to find the relation between y and the Schwinger
parameter q = e−t for diagram (a).

Diagram (a) corresponds to two UHP’s sewed via

ww′ = −q ⇒ λ2zz′ = −q, q ≡ e−t, t : Schwinger parameter

On the sewed surface the punctures are located at

z = i, z′ = i ⇒ z = i q/λ2 ≡ i y

This gives y = q/λ2. 60



y = q/λ2

0 ≤ q ≤ 1 ⇒ 0 ≤ y ≤ 1/λ2

The region 1/λ2 < y ≤ 1 comes from diagram (b) and gives finite
result.

Analyze fdiv using this:

1
2

∫ 1

0
dy y−2(1 + 2ω1ω2y) =

1
2

{∫ 1/λ2

0
+

∫ 1

1/λ2

}
dy y−2(1 + 2ω1ω2y)

=
1
2

∫ 1

0
dq{λ2q−2 + 2ω1ω2q−1}+

1
2

∫ 1

1/λ2
dyy−2(1 + 2ω1ω2y)

⇒ −1
2
λ2 +

1
2

∫ 1

1/λ2
dyy−2(1 + 2ω1ω2y) = −1

2
+ 2ω1ω2 lnλ

−ω1, ω2 are energies of incoming and outgoing C. 61



For the choice of local coordinates we have made, the C-φ vertex
vanishes.

⇒ no need to include φ exchange contribution.

Final result:

fdiv(ω1, ω2) = −1
2

+ 2ω1ω2lnλ ≡ Af + Bfω1ω2

Af = −1
2
, Bf = lnλ2

Note: If we had chosen a different local coordinate for the C-O
vertex, the result will be different

– compensated by φ exchange diagram for Af.

For Bf some part may also cancel against contribution to 2 Bg.
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We now turn to the divergent part of the annulus one point
function:

– four types of contributions

1. gfeynman from the Feynman diagrams with zero mode
contribution to the propagators removed

2. gφ with one or more φ propagators 63



3. Correction to the relation between ψ0
b and y

ψ0
b = K1y

[
1 + gs

∫
dωC(ω) F(ω)

]
F: computable function

Then the path integral gets an additional Jacobian factor while
changing variables from ψ0

b to y[
1 + gs

∫
dωC(ω) F(ω)

]
' exp

[
gs

∫
dωC(ω) F(ω)

]
⇒ new contribution gjac(ω)

4. There is a similar correction to the θ − α relation

θ = K2 α

[
1 + gs

∫
dωC(ω) G(ω)

]
⇒ ggauge(ω) 64



Results:

gfeynman(ω) = −2
π

∫ 1

(2λ̃)−1
dβ (1 + β2)−1 λ̃2 f(β)2 +

λ̃

4π
+

1
2
ω2 ln

α2λ̃2

4

gφ(ω) =
2
π

∫ 1

(2λ̃)−1
dβ (1 + β2)−1 λ̃2 f(β)2 +

λ̃

4π
f: an arbitrary function that enters the construction of C-O-O
interaction vertex

gjac(ω) = − λ̃
π
− ω2ln

λ̃2

λ2

ggauge(ω) =
λ̃

2π
Total

gdiv(ω) =
1
2
ω2 ln

λ2

4
≡ Ag + Bgω

2

⇒ Ag = 0, Bg =
1
2

ln
λ2

4
Recall Bf = lnλ2

⇒ Bf − 2Bg = ln 4 is independent of λ 65



Unitarity

Based on our understanding of D-instanton amplitudes, one can
also analyze unitarity of these amplitudes

Result: The only source of unitarity violation is in the imaginary
part of the exponential of the annulus partition function

– related to the tachyonic modes on the instanton 66



Conclusion

67



World-sheet theory, aided by string field theory, provides a fully
systematic procedure for computing D-instanton contribution to
an amplitude

Besides being of practical use, this can be used to gain deeper
understanding of string theory, e.g,

– testing duality conjectures

– role of resurgence

etc.
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