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“One should treat mathematical physics through the rectangle,
the annulus, and the torus”

This work came out of trying to show that certain objects of
“TTbar’-deformed 2d CFT, which should retain their modular
invariance/covariance properties, in fact do so, and then
realizing that the proof had nothing to do with CFT but applies
to many of the modular and Jacobi forms of 19th C
mathematics.

We shall proceed by considering ‘TTbar’-deformed CFT in a
rectangle, torus and annulus as exemplars of these.



A well known theta function identity attributed to Jacobi but
known to Gauss:
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@ easily proved using Poisson sum formula

@ ‘modular form’ of weight } under S: 7 — —1/7 with 7 = i6



A deformed theta function:
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satisfies the identity

95(0;16) = 6~ 1/295/%° (0:/5)



The “TT” deformation of a 2d QFT

A family of non-local field theories 7 where the infinitesimal
flow 7* — 7219 corresponds to adding a term

(6)) / det TA(x)d?x = L(6))eke / X)T(x

to the action, where T,-} is the stress tensor of the deformed
theory. Induces left-right scattering in the UV.

“Solvable” because:
e factorization T2 (x) Ti(x) — TA(X) Ta(x +y) [zam 2004]
@ = coupling to random (flat) metric [pubovsky et al 2018;
JC 2018]

@ det T is a total derivative of a semi-local field (Jc 2019]



= “state-dependent” change of coordinates: [conti et a1
2018; JC 2019]
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where 67 = J(5\)*' T
Symmetry and conservation of T} imply
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so that

69" (x) = (6x) + (6x)"" = diffeomorphism: x — x + dx(x)



TT deformation = coordinate change x — x*(x) where

. X . . .
X (x) = —/ ek To(y)dy; = —€® x flux of T across (X, x)
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x> (x)? = —momentum flux across (X, x)

x> (x)! = energy flux across (X, x)

WHAT DOES ANY OF THIS MEAN?



Example: Ry x Ry rectangle (conformal boundary conditions)

Taking x; = Ry,

R,

O\R; = N;' = normal stress across xo = const. (= energy in 1+1 dim.

Similarly 9\R = Nj. In the fixed stress ensemble, evolution is

linear R} = R? + AN;

A 19th C digression: Cauchy, Lagrange, Euler and others meet

at the Académie



Cauchy: “All this talk about stress — why not think of x — x*(x) as the
deformation of an elastic solid, for which | have a marvelous theory of stress
and strain?”

JC: “Well, yes, but this TTbar solid has infinite Poisson’s ratio”

“Non, ce n’est pas possible! Ces physiciens du 21éme siecle sont tous fous”
[walks off muttering]

Lagrange steps forward: “But these are just the equations of a 2d fluid in my
particle picture with N = velocity, A = time.”

Euler interrupts: “But the fixed strain ensemble then corresponds to MY
picture O\N = —(N.V)N”

Burgers (from the 20th C): “But that's my equation too, and for A > 0 the
initial conditions with N o< 1/R in your CFTs will lead to shock formation!”

21st C theorists: “Zamolodchikov!! This must be a ‘Hagedorn’ singularity — a
maximum temperature!”

Carnot et al.:

“Non, c’est pas possible, ces physiciens du 21éme siécle sont tous fous...”



Back to the rectangle:

R,

ZT(Ry, Ry) = Fff/"'n(q)*c/z where g = e 27Ro/Ri — =29

where 77((7) = C]1/24 H?no:1(1 - qm) [Kleban, Vassileva 1991]
Modular S-symmetry ZFT(Ry, Ry) = ZFT(Ry, Ry) &
n(1/8) = 6V2y(3)  nis a modular form of weight 1

[T-symmetry under § — ¢ + i = exact quantum recurrences in the CFT]



Z(Ro, Ri) = RY* Y an(c)g %"

n=0
= 1B (R P A = [ oMt (g, ) oy
n

[Fixed strain (Ro, R1) ensemble — mixed (Ny, R1) ensemble]
from which we conjecture that the deformed partition function
is, at least formally,

Z)(Bo, Br) = [ 0P pCFT(No, Ry + ANo) ot

If so, it should be that Z*(Ro, R1) = Z (Rs, Ro).

Not obvious, but note that, formally,
rZ*(Ro, Ry) = —0R,0r, Z*(Ro, R1)
which respects the symmetry.
HOW TO MAKE MATHEMATICAL SENSE OF THIS?



Theorem.
Suppose that g = 2™ and FO(8) = 3_3° , a,q~*" converges
for|q| < 1 and satisfies F°(1/5) = §¥F0(6).
Then

Za [(1++/T+dma(atn)s) /2] =k f—(\/1+47ra(A+n -1)

Vi1+4ra(p+n)s

satisfies F*(1/8) = 6KF*(9).

Notes
1. equivalent to ZA(R(), R1) = ZA(R1 N R()) with o = )\/(R()R1), 6= Ro/R1,
but now F° is not necessarily a CFT object

2. we lose symmetry under T : 6 — ¢ — i (LR scattering destroys
recurrences) but see later

3. if A < 0, rhs converges only for § > 4r«|A| corresponding to
‘Hagedorn’ singularity in n = 0 term on Ihs.



Ouitline of proof:
Let  Z°Ro, Ry) = Ry¥F°(6 = Ry/Ry)
Laplace transform

Q%s, Ry) = / e 5FoZ0( Ry, Ry)dRl = RI* [ e~ Ai FO(5')ds’
0

Z%Ro, Ry) = / e500(s, Ry) 22 50 p(No, A1) =21m Q°(,R1)|s—
C 2mi

So define
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In terms of dimensionless quantities
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2 ways to manipulate this:

1. for each term o e~ 27(A+N)9" in FO(§"), integrating over ¢’
gives
eS°[1 — ads]' K
21(A + n)+ s(1 — ads)
and picking up the pole at s = —(1/2ad)(y/1 + 8rad(A + n) — 1)

gives the shifted exponent and the prefactor.




2. completing the square in s gives
Fo0) = [ K. [0 12F() (')
0
where

K (5.8 = e 03014038 [ (5511725524 Ko~ o
satisfies K*(1/6,1/8') = K%(4, ). This implies the
theorem F(1/8) = 6KF*(5).

@ akind of Weierstrass transform, but strongly peaked as 6 or § — 0 or oo

@ many choices of K have these properties, but only this one gives a
discrete deformed spectrum for Ny



Restoring the symmetry under T : 6 — § — i

@ as a model, consider a 1-point function (®)(Ry, Ry) on a
torus C/L(Ro, Ry)

(®)(Ro, BT = |Ry|*F°(6) (k= ho)

where 7 = id = i(dg + i01) is the modular parameter.
@ S-invariance (®)(Ry, Ry )FT = (®)(Ry, —Ro)FT implies

FO(1/6) = [6]*F°(5)

@ T-invariance (®)(Ro, Ry)FT = (®)(Ry, Ry + Ro)FT implies
F0(5o,51 + 1) == FO(507(51) so

FO(5) = 3 F(50)e®"

pEZ



A similar construction now shows that F(1/8) = |5|KF2(¢) but
with p-dependent modified exponents

VI + dra(B+ )5 = /1 +4ra( + n)do + 4n2a2p253

Note that a purely (anti-)holomorphic form with A + n= +p
does not deform



Deformed Virasoro Characters

Annulus = rectangle with periodic bc around x°.
Partition function

ZCFT F"Oa R1 Z naXa —e 27r5 Z naz ng —27r/5
where 6 = Ry/2R;.

But now it is Z on annulus with a marked point X which
satisfies a PDE:

O\ (Z*(Ro, R1)/Ro) = —0R,0r,(Z*(Ro, R1)/Ro)



Modifies the deformation to
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The integral over ¢’ leads to log(s — s_)(s — s;) and wrapping
the s-contour around log(s — s_) gives a term -9,

Only the exponents are deformed, the integer coefficients
remain the same, as expected.

XS0) = [ (n/add)! a0 1 55 )7

These extra factors complicate the S-transformation rule, so
X2(6) # > S2 x5 (1/5) (deformed boundary states no longer Ishibashi)



However, on the torus [patta, Jiang 2020]

, a2s
[axal®(5) = /H () a)e 190 /Aasosi [y 15 0 e
and then
[xaxa]*( Zsbsb [xaxal*(1/9)
bb

The proof of this serves as a model for identities on deformed
products of modular and Jacobi forms.

“Theta functions obey a bewildering number and variety of
identities.” (Elliptic Curves [Mckean & Moll 1997])



Some mathematics/physics consequences and questions

@ generalizes modular forms to functions with irrational
power spectrum

@ yields new(?) relations for arithmetic functions, e.g.
partitions P(N)

@ new (integrable?) lattice models with weights involving
deformed theta functions

@ other ‘solvable’ deformations?

@ it’s all (mainly French) early 19th C mathematical physics...



HAPPY BIRTHDAY HUBERT!!

A birthday present....



Recently discovered work allegedly by Cézanne on his little
known visit to Santa Barbara



