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The evolution of a star is influenced by its internal rotation dynamics through trans-

port and mixing mechanisms, which are poorly understood. Magnetic fields can play a

role in transporting angular momentum and chemical elements, but the origin of mag-

netism in radiative stellar layers is unclear. Using global numerical simulations, we

identify a subcritical transition from laminar flow to turbulence due to the generation

of a magnetic dynamo. Our results have many of the properties of the theoretically-

proposed Tayler-Spruit dynamo mechanism, which strongly enhances transport of an-

gular momentum in radiative zones. It generates deep toroidal fields that are screened

by the stellar outer layers. This mechanism could produce strong magnetic fields inside

radiative stars, without an observable field on their surface.

As young stars form through accretion, or as ageing stars have burned all of their hydrogen fuel, the

star’s core contracts. Conservation of angular momentum causes the core to spin-up, producing strong

gradients in the angular velocity as a function of radius, a situation referred to as differential rotation.

Measurements using stellar pulsations (asteroseismology) have shown that stars at various stages of
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their evolution have internal rotation profiles that are flatter than expected from stellar evolution models,

especially across radiative zones, where outward transport of energy occurs through radiative diffusion

rather than convection (1–3). This discrepancy could be resolved if there is an unidentified mechanism

that extracts angular momentum from the stellar core and suppresses differential rotation as the star

evolves (4).

A potential mechanism for enhanced angular momentum transport is stellar magnetism (5–7). Mag-

netic fields on stellar surfaces can collimate jets of plasma (8) or power flares (9). Theoretical treat-

ments of magnetic fields in radiative zone models have shown they modify the predicted dynamics of

stars (10–14). However, these predictions are limited by two theoretical problems. Firstly, magnetic

fields are difficult to observe in deep stellar layers, including the radiative cores of stars with less than

∼ 1.3 solar mass. Even in stars where the radiative zone is located in the envelope, in most cases the am-

plitude of potential magnetic fields falls below the spectropolarimeters detection limit - except for 10%

of these stars where strong, dipolar magnetic fields have been measured (15). Secondly, the mechanism

by which a dynamo magnetic field can be generated inside a radiative stellar layer remains unclear.

The dynamo instability is the spontaneous development of an amplification loop, by which magnetic

field directed toward the poles (poloidal field) is converted into magnetic field parallel to lines of lati-

tudes (toroidal field) and vice versa (16). This conversion is mediated by plasma motions, which must

be sufficiently powerful for an initially weak magnetic field to undergo self-amplification. In convec-

tive stellar layers, the required flow complexity can be provided by turbulent buoyant plumes (17, 18).

But in stably-stratified, radiative layers, dynamo action (and thus magnetic braking) require a different

source of hydrodynamic turbulence. Several models have been considered to provide angular momentum

transport, including internal waves (19) or magnetic instabilities (20). Among the latter approach is the

Tayler-Spruit (TS) dynamo model (21, 22). In this model, magnetic field generation in radiative layers

relies on (i) the winding of poloidal field into toroidal one by differential rotation [the Ω-effect (16)],

and (ii) the destabilization of the resulting strong, toroidal and axisymmetric magnetic field by the Tayler
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instability (23), which regenerates a poloidal field and thus (in theory) closes the dynamo loop initiated

by differential rotation. However, global numerical simulations have not produced TS dynamos, casting

doubt on whether the simplifications made in the theory are valid when the plasma is turbulent (24). It

is therefore unclear whether a dynamo mechanism could operate in a stably-stratified stellar layer. We

sought to numerically investigate whether a magnetic field can build up through dynamo instability, trig-

ger magnetohydrodynamic turbulence and achieve efficient angular momentum transport in a radiative

star.

We model a radiative stellar layer by considering the swirling flow of a stratified, non-ideal, elec-

trically conducting fluid between two coaxial, spherical shells spinning at different rates. The intensity

of the differential rotation is controlled by the dimensionless Rossby number Ro≡ ∆Ω/Ω , where Ω

and Ω +∆Ω are the angular velocities of the outer and inner shell, respectively, and the strength of

stratification is quantified by the buoyancy frequency N (25).

When the differential rotation across the radiative zone is weak compared to overall rotation, the

flow is stable, axisymmetric and all velocity perturbations decay away rapidly. For steeper rotation

profiles, the rotational invariance of the flow is broken by the destabilization of a free shear layer. In this

case, Fig. 1A shows the resulting magnetic energy. Initially weak magnetic fields undergo exponential

amplification and saturate to a magnetic state, whose final amplitude can be tuned in our simulations

by varying the fluid’s ratio of molecular to magnetic diffusivities (the magnetic Prandtl number Pm).

For large values of the plasma magnetic diffusivity (Pm < 0.5), the shear instability amplifies a laminar

and mostly axisymmetric toroidal dynamo which saturates at weak magnetic energies (characterised by

the dimensionless Elsasser number Λ < 1, (25)). However, if the toroidal energy exceeds a transition

value Λ◦ ∼ 1, a secondary instability is triggered: the exponential growth steepens, the system becomes

turbulent, and the magnetic energy saturates at values nearly two orders of magnitude higher. We refer

to these two dynamo solutions as the weak and strong dynamos, by analogy with Earth’s dynamo (26).

Fig. 1B shows a bifurcation diagram that illustrates the subcritical behavior of the strong dynamo branch:
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once the dynamo has been triggered for steep rotation profiles, it can be maintained even when the shear

rate is decreased well below the onset of hydrodynamic instability.

We propose that, when stars exhaust their fuel, the differential rotation across the radiative zone is

large enough (high Ro) for extremely weak initial magnetic fields to be amplified by dynamo action.

This induces enhanced outward transport of angular momentum, gradually flattening the rotation profile

(decreasing the effective Ro) as the star evolves. The magnetic field then dynamically adjusts to the

smoother rotation profile and sustains the turbulent motions on which it feeds, thus maintaining the

magnetic field (Fig. 1B).

Fig. 2 shows snapshots of our simulations before and after the steepening of the exponential growth to

illustrate how the strong dynamo causes the subcritical transition to hydrodynamic turbulence. Steeper

magnetic growth occurs at the same time as flow destabilization; after this time, the magnetic field

has become strongly chaotic, and exhibits fluctuations at small scale. The corresponding velocity field

becomes highly turbulent, especially in the inner regions of the star. This transition to turbulent flow

motions suppresses differential rotation across the fluid, causing flattening of the rotation (Fig. 2B) as

the strong dynamo builds up (Movie S1).

The strong dynamo that appears in our simulations shares several properties with the TS mecha-

nism (21). Firstly, this dynamo feeds on the interaction between a large-scale, toroidal magnetic field

and differential rotation. The resulting fields have a dominant axisymmetric, toroidal component, con-

taining more than 80% of the magnetic energy. Secondly, the spatial structure displayed by the magnetic

field has a small lengthscale in the radial direction compared to the azimuthal direction. Thirdly, our sim-

ulations show that strong dynamos arise when the maximum amplitude of the axisymmetric component

of the azimuthal magnetic field exceeds the local stability threshold of the Tayler instability, in agreement

with theoretical predictions (21). However, the TS dynamo loop in our simulations is initiated differently

from the theoretical prediction (21), which may explain why TS dynamos have long eluded numerical

simulations (see Supplementary Text). In theoretical models, the finite-amplitude toroidal field required
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to trigger the Tayler instability is assumed to have grown (linearly) out of an infinitesimal poloidal field,

wound up by differential rotation. In our simulations, this initial step is instead provided by the weak

dynamo instability, which (exponentially) amplifies the toroidal field and kick-starts a subcritical TS dy-

namo. Previous numerical simulations have shown that several mechanisms could play this role in stellar

interiors (see Supplementary Text). The dynamo transition we identify is turbulent, with many unstable

modes excited simultaneously, which is consistent with laboratory analogs of the Tayler instability (see

Supplementary Text). This indicates that a fluctuations-based TS dynamo occurs in our simulations, in

which the axisymmetric field is replenished by the mean electromotive force, so magnetic fluctuations

influence the saturation mechanism (27). The turbulent nature of the transition resolves a controversy in

the predicted TS dynamo model, that the dynamo loop cannot be closed with a single non-axisymmetric

mode getting unstable at the onset of the Tayler instability, as winding up the latter would not alone

replenish the required axisymmetric toroidal field (24) (see Supplementary Text).

We quantify the enhanced transport of angular momentum to the outer regions of the star by mea-

suring the total (G) and magnetic (GM) torques exerted on the swirling fluid. We performed a range of

simulations that systematically varied the overall rotation rate and the stratification of the radiative lay-

ers. Fig. 3 shows the resulting torques for strong dynamo action, which follow a transposed version of

the theoretically predicted powerlaw GM ∼N ≡ β r5/2
i

(U0Ω)3/2

Nν2 (21), where ri is the inner shell radius, ν

the plasma viscosity, U0 the local azimuthal velocity measured in the dynamo region and β an adjustable

parameter (25). Weak-field dynamos do not follow this relation (Fig. 3).

Our simulations produce a turbulent radiative dynamo that shares many features with the TS model.

A strong magnetic field can be sustained by dynamo action inside a stably-stratified radiative zone, sup-

pressing differential rotation and causing spin-down of the stellar core. As such, this dynamo provides a

plausible mechanism to account for the enhanced transport of chemical elements and angular momentum

in non-convective stellar layers. In particular, it also provides a potential additional transport mechanism

for the radiative layers of solar-type stars (28). Helioseismology has shown that the Sun has a flat rotation
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profile in its radiative zone (29).

The poloidal component of the dynamo mechanism we identify is extremely weak, so the resulting

magnetic fields are almost entirely toroidal. They are also deep in the star’s internal layers, where intense

differential rotation takes place. The thick stellar outer layers screen them from the surface, preventing

direct observations (but they could be inferred from asteroseismology (30)). Our results therefore pro-

vide a physical mechanism for enhanced transport of angular momentum in stellar interiors, through a

dynamo action that produces no surface magnetic field.

(Supplementary Materials appended below, p. 13–22)
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Figure 1: Subcritical dynamo bifurcation. (A) Timeseries of the magnetic energy (measured by the
dimensionless Elsasser number Λ ) for fixed rotation, stratification and thermal diffusion parameters
(specifically E = 10−5, N/Ω = 1.24, Pr = 0.1, Ro = 0.78 as defined in (25)) and varying magnetic
Prandtl number (Pm = {0.35 (blue) ;0.42 (red) ;0.5 (yellow) ;1 (purple) }, ordered as indicated by the
dashed arrow). Times (t) are made dimensionless using the Ohmic diffusion time tη (25). A secondary
instability occurs when the magnetic energy exceeds a typical value Λ◦∼ 1 (dashed black line). (B) Time-
averaged magnetic energy density of the saturated dynamo as a function of shear rate (quantified by the
Rossby number Ro), for Pm = 1 (other parameters the same as panel A). Empty diamonds indicate lin-
early unstable solutions from which the magnetic field grows exponentially. Solid diamonds illustrate the
hysteresis cycle (black arrows) between a non-magnetic solution (Λ = 0) and a strong, toroidal dynamo
solution. The scenario we propose follows the red arrow: the dynamo arises for initially large differen-
tial rotation, suppresses the shear as the star evolves and maintains the magnetic field below the stability
threshold.
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Figure 2: Transition to turbulence. (A) Timeseries of the total kinetic and magnetic energy densities.
The arrow marks the time where the amplitude of the axisymmetric component of the azimuthal magnetic
field

〈
Bϕ

〉
locally exceeds the prediction of the Tayler instability, BC

ϕ (21). Angle brackets denote spatial
averaging in the azimuthal direction, indicated by ϕ . (B) Radial profiles of the azimuthally-averaged
angular velocity 〈Ω〉 in the equatorial plane for two distinct times, labelled [t1] and [t2] in the panel A,
with ri and ro the radii of the inner and outer shells, respectively. The onset of the instability causes the
rotation profile to flatten between [t1] and [t2]. Snapshots of (C and D) the non-axisymmetric angular
velocity in the equatorial plane, (E and F) the azimuthal magnetic field in the equatorial plane and (G
and H) the same quantity in the meridional plane. Results are shown for the times [t1] (panels C, E and
G) and [t2] (panels D, F and H), which are before and after the onset of secondary (Tayler) instability.
This simulation has parameters: E = 10−5, N/Ω = 1.24, Pr = 0.1, Ro = 0.78 and Pm = 1.
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Figure 3: Angular momentum transport. (A) Total dimensionless torque (25) exerted on the inner
sphere as a function of the dimensionless quantity N ≡ β r5/2

i (U0Ω)3/2/Nν2 (25). Data points are for
simulations that result in non-magnetic flows (empty circles), weak-dynamos (green stars), and strong-
dynamos (red, purple, orange and yellow symbols, see legend). The arrow connects two simulations with
identical parameters, with and without magnetic fields. (B) Results for the magnetic torque only. The
purple line is the theoretical prediction for the TS dynamo (21).
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Materials and methods

Model
We consider an electrically conducting fluid, swirling between two concentric spheres of radius ri and

ro that rotate about the same axis at different angular velocities (Ω for the outer sphere and Ω +∆Ω for
the inner sphere), characterized by an aspect ratio χ = ri/ro set to 0.35. Stable stratification is achieved
inside the fluid by means of a prescribed temperature difference ∆T between the two shells. Using the
Boussinesq approximation (35) to neglect variations in the fluid density except in the buoyancy term, the
system is governed by the following magnetohydrodynamic equations, expressed in the reference frame
where the outer sphere is at rest:

ρ

(
∂u
∂ t

+ (u ·∇)u +2Ω ez×u
)
= −∇P +

1
µ0

(∇×B)×B + αρgΘ er + ρν∇
2u, (S1)

∂B
∂ t
− ∇× (u×B) = η ∇

2B, (S2)

∂T
∂ t

+(u ·∇)T = κ ∇
2T, (S3)

∇ ·u = 0, ∇ ·B = 0, (S4a,b)

where u, P, B and T are respectively the velocity, pressure, magnetic and temperature fields. Θ is the
temperature fluctuation accounting for density fluctuations in the buoyancy term, ez the unit vector point-
ing along the rotation axis and er the local, radial unit vector. The fluid physical properties are described
by the magnetic permeability µ0, the mean density ρ , the thermal expansion coefficient α , the thermal
diffusivity κ , the kinematic viscosity ν and the ohmic diffusivity η . The gravitational field, obtained by
integrating the Poisson equation for a self-gravitating gas with spherical symmetry, is g(r) ∝ M(r)/r2

where M(r) =
∫ r

0 ρ(r′)4πr′2dr′ is the mass included in the sphere of radius r. In deep stellar interiors,
the density ρ is a slowly decreasing function of r, such that ρ can be considered constant and the grav-
itation field reduces to g ∝ r (36). The strength of the stratification is measured by the Brunt-Väisälä
frequency (or buoyancy frequency) N = (αgo∆T/(ro− ri))

1/2, where go is the gravity at the outer shell
g(ro). Acoustic waves are filtered out by the use of Boussinesq approximation, which tends to stabilize
the Tayler instability (37). In the radiative zones we model, the difference of spinning rates ∆Ω between
the inner and outer shells is fixed as a simulation parameter. This can be viewed as a way to focus only
on a short period of the star’s life. This restriction does not apply to a real radiative zone however, where
the rotation profile could, eventually, flatten entirely over time.
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Numerical setup
All the simulations reported in this study were carried out using the PARODY-JA code (31,32) cou-

pled with the ShTns library (33). PARODY-JA uses finite-difference discretization in the radial direction
and spherical harmonics decomposition. The number of radial gridpoints (nr) used in the fluid domain is
288 < nr < 360, and the maximal degree (lmax) and order (mmax) of the spherical harmonics decomposi-
tion are 128 < lmax < 188 and 58 < mmax < 128, respectively. No-slip boundary conditions are applied
on both spheres, along with electrically insulating boundary condition on the outer sphere, whereas the
inner sphere has the same conductivity as the fluid.

Control parameters
The flow regime is described by five independent, dimensionless parameters: the Ekman number E =

ν/Ωr2
o quantifying the ratio between the effects of viscous effect and Coriolis acceleration, the Rossby

number Ro = ∆Ω/Ω comparing differential rotation and overall rotation rates, the Prandtl number Pr =
ν/κ comparing molecular and thermal diffusivities, the magnetic Prandtl number Pm = ν/η comparing
the kinematic and ohmic diffusivities, and the Rayleigh number Ra = αgo∆Tr3

o/(νκ) measuring the
strength of the stratification, with N/Ω = E

√
Ra/Pr(1−χ). The thermal Prandtl number is fixed to

Pr = 0.1. The hydrodynamic Reynolds number Re = riro∆Ω/ν measuring the ratio of inertial to viscous
effects is obtained from the other dimensionless parameters as Re = Roχ/E. The magnitude of the
total magnetic field is compared to Coriolis force through a global Elsasser number calculated from
the spatially averaged magnetic energy Λ = 1

V

∫
V B2/ρµ0Ωη , and a local Elsasser number Λlocal =

Bϕ

2
/µ0ρΩη in which Bϕ is the maximum value of the axisymmetric component of the azimuthal field.
Although the numerical code is fully dimensionless, it can be described in terms of dimensional units.

Apart from molecular diffusivities, which due to overwhelming numerical cost are orders of magnitude
larger than those of real stars, our numerical simulations reproduce most of the typical parameters of
stellar interiors: for example, the parameters of the simulation shown in Fig. 2 correspond to a stel-
lar radiative zone of outer radius ro = 7× 108m, with global rotation rate of Ω = 3× 10−6s−1; density
ρ = 103 kg m−3; buoyancy frequency N = 3.72×10−6s−1; shear strength ∆Ω = 2.34×10−6s−1; mag-
netic diffusivity η = 1.5× 107 m2s−1; thermal diffusivity κ = 1.5× 108m2s−1 and kinematic viscosity
ν = 1.5× 107 m2s−1. More generally, using the same outer radius, density and global rotation rates,
our simulations cover a range of buoyancy frequencies N ∈ [10−6 to 1.5×10−4]s−1 and shear strengths
∆Ω ∈ [10−7 to 10−4]s−1.

Typical timescales
The Tayler instability occurs very fast, on an Alfvenic timescale (corresponding to a few turnover

times only). Once generated, and despite considerable turbulent fluctuations, the dynamos are sustained
for at least 103 turnover times, the typical duration of our simulations. Fig. S1 shows an extended en-
ergy timeseries for the same simulation as in Fig. 1 & 2, integrated for more than 6 ohmic times, where
tη = (ro−ri)

2/η is the resistive timescale. The full time window in Fig. 4 is equivalent to∼ 105 turnover
times, or 106 days in dimensional units. These extended timeseries illustrate how fast the dynamo reaches
a steady state. It also shows some hints of more complicated dynamics, involving a bistability between
two TS states with slightly different energy levels. Failed dynamos (corresponding to the simulations
where no magnetic fields can be maintained) typically experience exponential decay almost immedi-
ately, as expected in a fully turbulent flow in which the kinetic energy supply rate is related to the turnover
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time (16). Our results therefore are unlikely to be a merely transient state. The resistive timescales in our
simulations are extremely long compared to the turnover time, as they are in the Sun (17).

Torques estimates
The amount of angular momentum that is transported to the outer regions of the star can be quantified

by directly measuring the total azimuthal stress S or the total torque T = Tν +TM = r3
i S applied on the

inner sphere, which includes the contribution of both the viscous torque Tν and the magnetic torque TM.
We computed the corresponding dimensionless torque G = T/(ρν2ri) shown in Fig. 3 for a wide range
of the parameters E, Ra, Re, with and without magnetic field. (For each simulation shown in Fig. 3,
the estimated torque is time-averaged over the saturated stage.) The results show that the enhancement
of the total torque between hydrodynamic runs and their MHD counterpart is limited by the imposed
rotation rates of the inner and outer spheres, which yield artificial contributions to the viscous torque. To
overcome this limitation, we compute the azimuthal stress BrBϕ/µ exerted on the fluid by the dynamo
field only.

Fig. 5A shows two typical profiles of the magnetic field used to compute this torque. These profiles
peak in the bulk of the fluid (at radii r0 ∼ 0.4− 0.7) and present a typical length scale λTa consistent
with the theoretical prediction λTa ∼ Bϕ/

√
µ0ρN (21). The magnetic torque GM is therefore computed

in this region where the field is maximum. Fig. 5B shows that the velocity field always exhibits the same
structure: a thin (Ekman) boundary layer develops at the inner sphere boundary, while the remaining
velocity difference δUϕ ∼U0 =Uϕ(r0) is accommodated by the bulk shear flow over a typical scale λTa.
To compare our results to the theoretical prediction for the bulk of the flow, we therefore take the dimen-
sionless differential rotation rate to be q = kU0/Ω with k = 2π/λTa and systematically use r0 = 0.55 for
simplicity, which also avoids boundary layer effects.

Scaling law for angular momentum transport
Fig. 3B shows that TS-like dynamos scale as BrBϕ/µ ∝ ρ(U0Ω)3/2/N, or in dimensionless form:

GM = N ≡ β r5/2
i

(U0Ω)3/2

Nν2 , (S5)

where U0 is the local azimuthal velocity measured in the dynamo region and β ∼ 10−1 is an adjustable
parameter standing for geometrical effects and for the effect of turbulent fluctuations on the value
of the turbulent diffusivities. This scaling law corresponds to the theoretical prediction BrBϕ/µ ∝

ρΩ 2r2q3
(

Ω

N

)4
(21) in which the dimensionless differential rotation rate q is expressed as q ∼ kU0/Ω ,

where k = N
√

µρ/Bϕ is the radial wavenumber at which the Tayler instability takes place.

Supplementary text

Here we highlight several differences between the original Tayler-Spruit theory (21) and our simulations.

Initiating the Tayler-Spruit loop
The threshold of the Tayler instability is reached in our simulations through a primary, weak dynamo

process driven by the shear instability, rather than by the winding up of the initial magnetic field (the Ω-
effect). This difference from the original Tayler-Spruit theory (21) springs from the subcriticality of the
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Tayler instability: it does not impact on the dynamo mechanism itself, but only on the way it is initiated.
The difference matters because of the numerical difficulty in achieving a parameter regime where the
Ω-effect is sufficiently vigorous to meet the required toroidal field amplitude for the Tayler instability.
This numerical difficulty may explain why some previous attempts to produce TS dynamos were unsuc-
cessful. In our simulations, the issue of initiating the TS dynamo is overcome because a weak dynamo
process could be obtained at affordable numerical cost in the explored parameter regime, producing the
toroidal field required to trigger the Tayler instability and kickstart the TS dynamo. Several dynamo
mechanisms could provide this primary amplification in real stars (38-41). In our simulations, the Tayler
instability is triggered when the amplitude of the axisymmetric, toroidal field reaches the value predicted

for dissipative systems (21), Λlocal >
√

RaEχ2

1−χ
(shown in Fig. 1 and 2).

Subcritical transition to turbulence and mean-field dynamo
Once the magnetic field becomes unstable to the Tayler instability, the turbulent state generated by

the subcritical dynamo differs from the original Tayler-Spruit scenario. Fig. 6 shows power spectra den-
sity of the velocity and magnetic fields for a typical simulation, illustrating how many azimuthal modes
are excited simultaneously, similarly to the behavior observed in experimental studies of the Tayler insta-
bility (42). The magnetostrophic force balance produces similar spectra for velocity and magnetic fields,
and the energy displays a decreasing continuous spectrum of m > 0 modes, with a quadrupolar symmetry
at large scale. This spectrum indicates a mean-field dynamo in which the electromotive force 〈u×B〉
due to non-axisymmetric modes generates axisymmetric large scale magnetic fields (43), with a m = 0
mode peaking one order of magnitude above the non-axisymmetric modes. This subcritical transition
to turbulence bypasses a criticism of the original Tayler-Spruit mechanism (24), that the “pure” m = 1
non-axisymmetric field produced by Tayler instability near its onset would not be sufficient to regenerate
the m = 0 toroidal field required to maintain the instability. The subcriticality of the transition makes it
difficult to obtain numerically and track in the parameter space.

Stratification effects
The theoretical derivation of the TS dynamo (21) relies on the assumption that N�Ω (which allows

for the so-called shellular approximation (10), that the angular velocity is invariant on each shell and
depends only on the radial coordinate). This is not the case for the dynamos in our simulations (even
though a minimal stratification seems to be required, because no strong, TS-like dynamos were found
for N/Ω < 0.1). These strong dynamos were observed over a wide range of differential rotation and
stratification profiles, spanning almost one order of magnitude in Ro and showing no sign of inhibition at
large values of the stratification N/Ω � 1. Fig. 7 shows snapshots of a dynamo obtained for N/Ω = 50
and integrated for roughly 104 turnover times. The magnetic field is similar to that shown in Fig. 2 for
smaller values of N/Ω , with a strong toroidal magnetic field in the equatorial plane associated with mul-
tiple non-axisymmetric modes and turbulent features. However, both magnetic and velocity fields have
a spherical rather than cylindrical geometry, as expected in stars where density stratification dominates
rotation (10).

The torque associated with this strongly stratified TS dynamo is large and similar to those obtained
at lower values of N/Ω. However, due to numerical limitations, this regime N/Ω� 1 could only be
reached in the less realistic limit Ro� 1.
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Figure 4: Extended energy timeseries. The simulation was integrated over several ohmic times, where
tη = (ro − ri)

2/η . Both magnetic and kinetic energies are normalized by the typical kinetic energy
ρ∆Ω 2r2

i , to illustrate the magnetostrophic force balance reached by the dynamo by the end of the time-
series.
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Figure 5: Strong dynamo branch: flow profiles. (A) Radial profiles of the (azimuthally averaged)
azimuthal magnetic field in the equatorial plane for two examples of TS-like dynamos at steady state
(E = 10−5, Re = 104, Ra = 109 in yellow and E = 10−6, Re = 3× 104, Ra = 1010 in red). (B)
Radial profiles of the (azimuthally averaged) azimuthal velocity field in the equatorial plane, for the
same simulations. The blue label r0 denotes the radius at which magnetic torques are systematically
computed in Fig. 3, and U0 corresponds to the (azimuthally averaged) azimuthal velocity at radius r0,
which we use to evaluate the right-hand side of (S5). The shaded area marks the region of the domain,
of typical width λTa, where TS dynamo action takes place. The black arrow signals the presence of a
viscous boundary layer, as shown by the sharp velocity gradient near the inner boundary.
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A B

Figure 6: Spectral densities. (A) Power spectra of the velocity and magnetic fields of the first spherical
harmonic degrees m and `. (B) The same data over a wider range of spherical harmonics. The simulation
parameters are E = 10−5, Re = 2.75×104, Pm = 1, Pr = 10−1 and Ra = 109.
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Figure 7: Strongly stratified regime. Snapshots of (A) the azimuthal magnetic field in the meridional
section, averaged in the azimuthal direction and over the steady state, (B) instantaneous azimuthal mag-
netic field in the equatorial plane, and (C) angular velocity in a meridional section, averaged in the
azimuthal direction and over the steady state. This simulation has N/Ω ≈ 50 (E = 4×10−4, Ra = 109,
Re = 4×104, Pr = 10−1, Pm = 1).
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Caption for Movie S1 (separate file). Strong dynamo and transition to turbulence. (A) Time
series of the total kinetic and magnetic energy densities. The ratio

〈
Bϕ

〉
/Bc

ϕ marks the time where the
amplitude of the axisymmetric component of the azimuthal magnetic field locally exceeds the threshold
for Tayler instability (

〈
Bϕ

〉
/Bc

ϕ = 1), in agreement with the theoretical prediction for these parameter val-
ues (21). Snapshots of (B) the azimuthal magnetic field in a meridional plane, (C) the non-axisymmetric
angular velocity in the equatorial plane and (D) the azimuthal magnetic field in the equatorial plane.
(E) Animated radial profiles of the azimuthally-averaged angular velocity in the equatorial plane. As the
threshold for the Tayler instability is reached (see panel A), both magnetic and velocity fields become
turbulent (see panels B,C,D) and the resulting enhanced transport of angular momentum causes a flatten-
ing of the rotation profile (see panel E). This transition to turbulence is associated with amplification of
the magnetic energy by nearly two orders of magnitude (see panel A). Simulation parameters: E = 10−5,
N/Ω = 1.24, Pr = 0.1, Ro = 0.78 and Pm = 1.
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Table 1: List of simulation runs. Input dimensionless parameters are listed for each simulation we
ran. The last column indicates whether the run produced a strong or weak dynamo, or was a purely
hydrodynamic simulation.

E Ra Re Pr Pm N/Ω duration of the run [days] Type
4×10−4 109 4×104 10−1 1.0 49.6 4.0775×103 Strong
2×10−4 109 4×104 10−1 1.0 24.8 5.3398×103 Strong
10−4 108 2×104 10−1 1.0 3.9 3.6042×103 Strong
10−5 109 4×104 10−1 1.0 1.24 7.5547×104 Strong
10−5 109 3×104 10−1 1.0 1.24 1.0194×105 Strong
10−5 109 2.75×104 10−1 1.0 1.24 1.0582×106 Strong
10−5 109 2×104 10−1 1.0 1.24 1.4437×105 Strong
10−5 109 1.5×104 10−1 1.0 1.24 9.6736×104 Strong
10−5 109 1.25×104 10−1 1.0 1.24 4.6000×104 Strong
10−5 109 104 10−1 1.0 1.24 5.0417×104 Strong
10−5 109 7.5×103 10−1 1.0 1.24 1.9319×105 Strong
10−5 109 2.75×104 10−1 0.5 1.24 6.4242×104 Strong
3×10−6 1010 9×104 10−1 1.0 1.18 2.4473×104 Strong
3×10−6 1010 6×104 10−1 1.0 1.18 2.2975×104 Strong
3×10−6 1010 3×104 10−1 1.0 1.18 4.2978×104 Strong
3×10−6 1010 2×104 10−1 1.0 1.18 1.0764×105 Strong
10−6 1010 12×104 10−1 1.0 0.39 4.1956×103 Strong
10−6 1010 9×104 10−1 1.0 0.39 3.0247×104 Strong
10−6 1010 6×104 10−1 1.0 0.39 3.7037×104 Strong
10−6 1010 4×104 10−1 1.0 0.39 3.4549×104 Strong
10−6 1010 3×104 10−1 1.0 0.39 6.8519×104 Strong
10−6 1010 2×104 10−1 1.0 0.39 1.5833×105 Strong
3×10−7 1010 8×104 10−1 1.0 0.12 1.7699×104 Strong
3×10−7 1010 6×104 10−1 1.0 0.12 4.7775×104 Strong
3×10−7 1010 4×104 10−1 1.0 0.12 2.6331×104 Strong
3×10−7 1010 2×104 10−1 1.0 0.12 9.8187×104 Strong
10−5 104 3×104 10−1 1.0 4×10−3 5.9259×103 Weak
10−5 106 3×104 10−1 1.0 4×10−2 2.9861×103 Weak
10−5 108 3×104 10−1 1.0 0.4 3.0093×103 Weak
10−5 109 2.75×104 10−1 0.35 1.24 6.3636×104 Weak
10−5 109 2.75×104 10−1 0.42 1.24 7.0189×104 Weak
10−5 109 4×104 10−1 N/A 1.24 2.0833×103 Hydro
10−5 109 2.75×104 10−1 N/A 1.24 1.2462×104 Hydro
10−6 1010 4×104 10−1 N/A 0.39 1.1823×105 Hydro
10−6 1010 12×104 10−1 N/A 0.39 1.5770×104 Hydro
3×10−7 1010 6×104 10−1 N/A 0.12 8.2305×103 Hydro
10−7 1010 6×104 10−1 N/A 3.9×10−2 3.7230×104 Hydro
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