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Supporting Information Text13

Sidewall convection14

The presence of horizontal temperature gradient naturally leads to sidewall convection which appears at non-zero ∆T0. The15

Rayleigh number Ra = α∆T0∆R3/κν where α is the thermal expansion coefficient, ∆T0 the temperature difference between16

the cylinders, ∆R = Ro − Ri, κ the thermal diffusivity and ν the kinematic viscosity. For liquid Gallium, α = 5.5 · 10−5 K−1,17

κ = 1.3 · 10−5 m2.s−1, ν = 3.18 · 10−7 m2.s−1. The Rayleigh number for ∆T0 ∼ 2 − 37 K is RaGa ∼ 5.7 · 103 − 1.06 · 105. For18

liquid Mercury, α = 1.83 · 10−4 K−1, κ = 4.9 · 10−6 m2.s−1, ν = 1.49 · 10−7 m2.s−1. The Rayleigh number for ∆T0 ∼ 2 − 37 K19

is RaHg ∼ 1.08 − 20.03 · 105.20

Analytical model21

We derive here a simple analytical model describing the generation of a thermoelectric current, the corresponding magnetic22

field, and electric potential, in a rectangular domain made of two dissimilar metals. The two electrically conducting regions,23

denoted by the indices ′+′ or ′−′, have electrical conductivity σ± and Seebeck coefficient (or thermoelectric power) S±. Both24

are supposed independent of temperature. A horizontal thermal gradient of arbitrary shape is applied across the two metals,25

which are separated by an electrically conducting interface located at z = 0.26

Fig. S1. Two metals with Seebeck coefficients S± and electrical conductivities σ±, superimposed in a rectangular closed domain, are in electrical contact at z = 0, and
subjected to a horizontal temperature gradient.

In the absence of a velocity field u and in the presence of a thermal gradient, Ohm’s law reads:27

j

σ
= E − S∇T, [1]28

where j is the electric current density, σ is the electrical conductivity, E is the electric field, S is the Seebeck coefficient and T29

is the temperature field.30

In the following we will use the magnetostatic approximation, relatively well satisfied here: in liquid metal, the magnetic31

field generally evolves on time scales much smaller than all the other variables such as the temperature or the velocity field.32

This is summed up by the dimensionless number ζ = µ0σκ, with µ0 the vacuum magnetic permeability. ζ is the ratio of the33

temperature evolution time scale due to thermal diffusion to the magnetic evolution time scale (also due to diffusion). The34

presence of convection implies that the temperature can evolve on time scale faster than ∆R2/κ like the eddy turnover time,35

∆R/Uff and Uff being a typical velocity scale due to convection such as the free-fall velocity Uff ∼
√

α∆T0gh. In that case,36

Rm = µ0σUff ∆R must also be small to fulfill the quasi-static approximation. In the present experiment, both ζ ≪ 1 and37

Rm ≪ 1, ensure that the evolution of the magnetic field produced by thermoelectricity follows adiabatically the evolution of38

temperature.39

In the magnetostatic approximation and for steady state, the Maxwell-Faraday equation reads ∇ × E = 0. For each layer,40

the electric field can then be decomposed as follows, E = −∇V ± where V ± is the electric potential in each subdomain.41
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Taking the curl of the Ohm’s law (1) in each subdomain:42

∇ ×
(

j±

σ±

)
= −∇ × (S∇T ) = ∇S × ∇T [2]43

Because S(T ) is a function of temperature only, ∇S × ∇T = 0. With the assumption that the electrical conductivity is44

constant in each domain, we get :45

j± = −σ±∇ϕ± [3]46

47

The charge conservation, in the magnetostatic approximation, implies ∇ · j± = 0. Therefore, in each domain, ϕ± fulfills a48

Laplace equation ∇2ϕ± = 0. The boundary conditions for the current are prescribed by charge conservation:49

j±
x (x = 0, z) = j±

x (x = d, z) = 0, [4]50

j+
z (x, z = h/2) = j−

z (x, z = −h/2) = 0, [5]51

j+
z (x, z = 0+) = j−

z (x, z = 0−) [6]52

These boundary conditions can be translated for ϕ± as:53

∂xϕ±(x = 0, z) = ∂xϕ±(x = d, z) = 0, [7]54

∂zϕ+(x, z = h/2) = ∂zϕ−(x, z = −h/2) = 0, [8]55

σ+∂zϕ+(x, z = 0+) = σ−∂zϕ−(x, z = 0−) [9]56

The quantity ϕ± can then be obtained as a decomposition over the eigenfunctions of the Laplacian. It is clear that sin(nπx/d),57

with n ∈ N, fulfill the boundary conditions for ∂xϕ±, thus58

ϕ± =
∑

n

cos
(

nπx

d

)
g±

n (z). [10]59

As ϕ± respects a Laplace equation, it is easy to check that g±
n (z) = a±

n cosh(κnz) + b±
n sinh(κnz) with κn = nπ/d for simplicity.60

The boundary conditions at z = ±h/2 then implies:61

dg±
n

dz
(z = ±h/2) = κna±

n sinh(±κnh/2) + κnb±
n cosh(±κnh/2) = 0, [11]62

which is a constraint on the coefficients since b±
n = ∓ tanh(κnh/2)a±

n . Injected in ϕ±, it gives:63

ϕ± =
∑

n

a±
n cos(κnx)(cosh(κnz) ∓ tanh(κnh/2) sinh(κnz)). [12]64

Finally, the boundary condition at z = 0 for ϕ± links the coefficients a+
n and a−

n . Indeed, it is easy to check that a−
n = −σ+a+

n /σ−.65

The continuity of the electric potential at the interface between the two conductors gives:66

V +(x, z = 0+) − V −(x, z = 0−) = 0, [13]67

Using the Ohm’s law ∇V ± = ∇(ϕ± − S±T ) where S is considered constant in each phase, the previous expression can be68

recast in terms of ϕ±:69

ϕ+(x, z = 0+) − ϕ−(x, z = 0−) = ∆ST (x, 0), [14]70

with ∆S = S+ − S−. Injecting the expression of ϕ+ and ϕ− gives:71 ∑
n

a+
n

σ+ + σ−

σ− cos(κnx) = ∆ST (x, z = 0), [15]72

multiplying this expression by cos(κmx) and integrating over the interval [0, d] enables to obtain the expression of a+
n (where73

the orthogonality relation for trigonometric function has been used):74

a+
n = Knσ−∆S

d(σ+ + σ−)

∫ d

0
T (x, 0) cos(κnx)dx. [16]75

with Kn = 1 if n = 0 and Kn = 2 otherwise. Finally, this gives the potential:76

ϕ± = ±
∑

n

Knσ∓∆S

d(σ+ + σ−) cos(κnx)(cosh(κnz) ∓ tanh(κnh/2) sinh(κnz))
∫ d

0
T (x, 0) cos(κnx)dx. [17]77

Marlone Vernet, Stephan Fauve and Christophe Gissinger 3 of 7



The potential ϕ which prescribes the thermoelectric current distribution is therefore completely determined by the temperature78

profile at the interface. The computation of j± and B which is given by Maxwell-Ampère law’s ∇×B = µ0j, is straightforward:79

j±
x = ±

∑
n

Knσ̃∆Sκn

d
sin(κnx)(cosh(κnz) ∓ tanh(κnh/2) sinh(κnz))In(T ), [18]80

j±
z = ∓

∑
n

Knσ̃∆Sκn

d
cos(κnx)(sinh(κnz) ∓ tanh(κnh/2) cosh(κnz))In(T ), [19]81

with σ̃ = σ+σ−/(σ+ + σ−) and In(T ) =
∫ d

0 T (x, 0) cos(κnx)dx. The important point of this result is the fact that any variation82

of the temperature along z will be supported by V keeping ϕ, j, and B unchanged. The component of the magnetic field83

produced by the thermoelectric effect is orthogonal to the plane (x, z), By simply denoted B and is:84

B± = ∓
∑

n

Knµ0σ̃∆S

d
sin(κnx)(sinh(κnz) ∓ tanh(κnh/2) cosh(κnz))In(T ), [20]85

We now implement this expression using the geometry and properties of the metals used in the experiment, namely mercury86

and gallium, h = 25 mm, d = 60 mm. If the two metals were in a solid state, the temperature profile would be linear with a87

constant thermal gradient −∆T0/d, where ∆T0 is the thermal gradient applied at the horizontal wall boundaries. Fig. S288

shows the computed isoline of potential ϕ± while Fig. S3 shows a colormap of B for nmax = 400, using the value ∆T0 = 37K89

obtained in the experiment at maximum heating power. The black lines correspond to the streamlines of the thermoelectric90

current. The resolution used to plot the solution is dx = 5 · 10−4d and dz = 5 · 10−4h.91

92

In the more realistic case of an interface separating two liquid metals, as in the experiment, the temperature profile can be93

approximated as piecewise linear at the interface. Here again, we use the temperatures obtained in the experiment (the red94

profile shown in Fig.2 of the main text). The resulting solution is shown in Fig S4 and Fig S5. The results are in excellent95

agreement with those obtained from the direct numerical simulations reported in the main manuscript, and confirm the96

existence of intense current loops near the boundaries and a saddle point at the interface.97

Fig. S6 shows the horizontal component of the thermoelectric current at z = +0.5mm for the two cases studied. Far enough98

from the vertical walls, a good estimate of jx in the solid case is σ̃∆S∆T0/d while for the liquid case, σ̃∆S∆TB/d provides the99

correct estimate, in agreement with numerical predictions.100

This agreement between theoretical predictions and numerical results confirms that the geometry of thermoelectric currents101

and magnetic field strength are controlled by the temperature profile at the interface, σ̃ and ∆S. This also confirms that the102

liquid nature of the interface, which produces a complex non-linear temperature profile, can generate a non-trivial distribution103

of thermoelectric currents, particularly near the thermal boundaries.104

105
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Fig. S2. Line of potential ϕ in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The temperature profile at the
interface displays a linear gradient, corresponding to the case where at least one of the metals is solid.

Fig. S3. Colormap of the magnetic field B in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The black lines
are the electric current. The temperature profile at the interface displays a linear gradient, corresponding to the case where at least one of the metals is solid.
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Fig. S4. Line of potential ϕ in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The temperature profile at the
interface is a piecewise linear gradient, and the vertical dashed lines indicate the positions of the thermal boundary layers..

Fig. S5. Colormap of the magnetic field B in the cartesian domain [0, d] × [−h/2, h/2]. The dashed-dotted line corresponds to the position of the interface. The black lines
are the electric current. The temperature profile at the interface is a piecewise linear gradient, and the vertical dashed lines indicate the positions of the thermal boundary layers.
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Fig. S6. Comparison between the horizontal component of the thermoelectric current density for a solid (red line) and a liquid interface (black line) both taken at z = +0.5mm.

Movie S1. Movie showing a typical experiment without top endcap, obtained for ∆T0 = 37K and B0 = 36mT .106

The strong thermoelectric forcing in the bulk causes the fluid to move azimuthally at the interface, with107

abnormally high velocities near the boundaries where the thermoelectric current is large.108
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