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In a previous paper, we have reported numerical simulations of the MHD flow driven by a travelling magnetic
field (TMF) in an annular channel, at low Reynolds number. It was shown that the stalling of such induction
pump is strongly related to magnetic flux expulsion. In the present article, we show that for larger hydrody-
namic Reynolds number, and with more realistic boundary conditions, this instability takes the form of a large
axisymmetric vortex flow in the (r, z)-plane, in which the fluid is locally pumped in the direction opposite to
the one of the magnetic field. Close to the marginal stability of this vortex flow, a low-frequency pulsation is
generated. Finally, these results are compared to theoretical predictions and are discussed within the framework
of experimental annular linear induction electromagnetic pumps.

PACS numbers: 47.65.-d, 52.65.Kj, 91.25.Cw

I. INTRODUCTION

Electromagnetic Linear Induction Pumps (EMPs) are largely used in secondary cooling systems of fast breeder reactor, mainly
because of the absence of bearings, seals and moving parts. In these EMPs, the conducting fluid is generally driven in a
cylindrical annular channel by means of an external travelling magnetic field . In such induction pumps, the electrical current
is induced by the variation of the magnetic flux of the wave rather than imposed into the fluid by electrodes, as in conduction
pumps.

Nowadays, it is known that these pumps face a number of problems as they become large enough. In particular, a strong low
frequency pressure pulsation associated to a consequent decrease of the pump efficiency takes place at large magnetic Reynolds
number Rm. It has been suggested that this behavior may be related to some magnetohydrodynamic instability. One of the
first theoretical approach to this problem was done by Galitis and Lielausis [1], who derived a criterion based on the magnetic
Reynolds number for the appearance of such instability. In this model, instability arises and takes the form of an inhomogeneity
in the azimuthal direction, for sufficiently large Rm. This instability may be related to experimental results obtained by [2], [3]
who showed that when Rm > Rmc, a low frequency pulsation in the pressure and the flow rate is indeed observed.

More recently, significant progress have been done on the understanding of these electromagnetically driven flows. First, it
has been shown through numerical and experimental studies [4] that even at lowRm, the efficiency of such pumps is affected by
an amplification of the electromagnetic forcing, which takes the form of a strong pulsation at double supply frequency (DSF).
Second, it has been confirmed that at large Rm, an azimuthal non-uniformity of the applied magnetic field or of the sodium inlet
velocity can create some vortices in the annular gap [5]. In both cases (large and low Rm), some solutions have been proposed
to inhibit the occurrence of these perturbations, but generally imply a strong loss of efficiency of the pump.

In the first part of this article, we reported numerical simulations of a very idealized configuration. We chose to model a pump
infinite in the axial direction, and at relatively small kinetic Reynolds number (Re ∼ 100). This allowed us to emphasize the
physical mechanism by which the flow may become unstable in such systems. In particular, we have shown that magnetic flux
expulsion and reconnection seems to control the transition from synchronous flows to stalled regimes.

In the present part, we report a numerical study of a more realistic configuration reproducing an electromagnetic pump. In
particular, we simulate flows at much larger fluid Reynolds number, and take into account realistic boundary conditions in the
axial direction. A new instability is reported, in which large scale vortices are generated in the flow due to MHD effects, but
only when the kinetic Reynolds number of the flow is high enough.

We show that this instability, intrinsically axisymmetric, is related to end-effects and can be simply understood within the
framework of classical MHD-machine theory. Although the structure and the destabilization of the flow seem very different
from the stalling instability observed in the laminar regime, we will see that the mechanism reported here is similar to what has
been described in the first part, except that it occurs locally in the pipe.

We also show that complex behaviors can arise in these electromagnetically driven flows, such as slow periodic modulation
of the flow rate.

II. MODEL

A schematic view of a typical electromagnetic pump is shown in Fig.1. In general, the liquid metal flows along an annular
channel, between two concentric cylinders. A ferromagnetic core is placed on the inner side of the channel, in order to reinforce
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FIG. 1: Schematic view of a typical linnear induction annular electromagnetic pump.

the radial component of the magnetic field created by a three-phase system of electrical currents imposed on the outer side of
the channel.

In our numerical simulations, we consider the flow of an electrically conducting fluid between two concentric cylinders. ri is
the radius of the inner cylinder, ro = ri/β is the radius of the outer cylinder, and H is the length of the annular channel between
the cylinders. In all the simulations reported here, periodic boundary conditions are used in the axial direction.

The governing equations are the magnetohydrodynamic (MHD) equations, i.e. the Navier-Stokes equation coupled to the
induction equation :

ρ
∂u

∂t
+ ρ (u ·∇)u = −∇P + ρν∇2u + j ×B, (1)

∂B

∂t
=∇× (u×B) +

1

µ0σ
∇2B, (2)

where ρ is the density, ν is the kinematic viscosity, σ is the electrical conductivity, µ0 is the magnetic permeability, u is the fluid
velocity, B is the magnetic field, and j = µ−1

0 ∇×B is the electrical current density.
On the cylinders, we consider infinite magnetic permeability boundary conditions, for which the magnetic field is forced to

be normal to each boundary. In addition, an azimuthal electrical current Jθ is imposed on the outer cylinder (see [7] for more
details). This external electrical current J is imposed as:

J = J0 sin (kz − ωt) (3)

where J0 is the amplitude of the applied surface current, ω and k = 2π/λ are respectively the pulsation and the wavenumber of
the magnetic field.

Our equations are made dimensionless by a length scale l0 =
√
ri(ro − ri) and a velocity scale u0 = c, where c = ω/k is

the speed of the TMF. The pressure scale is p0 = ρc2 and the scale of the magnetic field is B0 =
√
µρc.

The problem is then governed by the geometrical parameters Γ = H/(ro−ri) and β = ri/ro, and the following dimensionless
numbers: the magnetic Reynolds number Rm = µσcl0, the magnetic Prandtl number Pm = ν/η, and the Hartmann number,
which controls the magnitude of the applied current, defined as Ha = µ0J0l0/

√
µ0ρνη. Alternatively, one may define a kinetic

Reynolds number Re = Rm/Pm instead of Pm.
These equations are integrated with the HERACLES code [6], described in the first part of this article. Typical resolutions

used in the simulations reported in this article are (Nr, NZ) = [256, 1024]. For the velocity field, no-slip conditions are used at
the radial boundaries. Depending on the simulations, we can either impose an inlet velocity Uin at z = 0, or an applied pressure
gradient Pin over the whole pump.

In our previous article, we studied a strongly idealized configuration with small Reynolds numbers (Re = 100) and axially in-
finite channels. In the simulations reported in the present paper, we explore a much more turbulent configuration, with Reynolds
numbers ranging from Re = 3000 to Re = 10000. In addition, we take into account the so-called pump inlet/outlet conditions.
This means that the boundary electrical currents are applied only on one half of the computational domain (from z = H/4 to
z = 3H/4), so the pump has a finite size and discharges into a non-magnetized channel.
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FIG. 2: (a) Colorplot of the velocity field and (b) of the magnetic field for Rm = 30, Ha = 1200 and Re = 5000. Streamlines
and magnetic field lines are shown in black. Figure has been enlarged in the radial direction.

III. COUNTER-FLOW INSTABILITY

Figure 2 shows a typical numerical simulation obtained for Re = 5000, Rm = 30 and Ha = 1200. Figure 2(a) shows an
instantaneous snapshot of the structure of the axial velocity field, whereas Fig. 2(b) shows the instantaneous Laplace force. For
these values of the parameters, the normalized flow rate is close to unity in most of the domain, and the bulk of the fluid is nearly
pumped in synchronism with the magnetic field. Contrary to the axially infinite laminar pump studied in [7], the velocity profile
(even time-averaged) is not independent of z. Since the magnetic field is applied on the outer cylinder only between z = H/4
and z = 3H/4, the inlet/outlet conditions lead to strong flow perturbations, with a stronger effect at the inlet boundary, as shown
in Fig. 2.

In this region, the radial magnetic field is also more complex and tends to decay with the distance from the external cylinder.
Another strong difference with simulations performed at smaller Re is the behavior of the boundary layers. When the flow
enters the active region, there is a widening of the magnetic boundary layer close to the inner cylinder, whereas a narrowing is
observed close to the external boundary. Fig. 3 shows the time-averaged velocity field for a larger magnetic Reynolds number
(Rm = 60) and illustrates the spatial organization of the flow. Before entering the active region (z < H/4), the flow exhibits
a laminar structure relatively symmetrical and identical to the solutions obtained at smaller Re and reported in the first part of
the paper. Despite the absence of applied magnetic field in this region, note that the velocity profile is different from a classical
annular Poiseuille flow. The presence of a relatively flat profile in the bulk flow and a stronger shear near boundaries is more
typical of magnetized regimes.

As the velocity field is probed at larger z, inside the active region (z = 9 and z = 15), the maximum value of Uz shifts towards
the outer cylinder, leading to stronger velocity gradient close to this boundary. On the contrary, the inner boundary layer widens.
This effect is not observed at smaller Rm, where the velocity (except in the boundary layers) is strongly homogeneous in the
radial direction. Finally, outside the active region, the system comes back very rapidly to the symmetrical profile with magnetic
boundary layers on each sides of the annular gap.

In addition, there is a strong perturbation as the fluid enters or leaves the active region of the electromagnetic pump. These
perturbations at the inlet/outlet boundaries induce a large adverse pressure gradient inside the channel and can yield local
velocities stronger than the wave speed.

It is important to note that despite strong fluctuations, the flow for Rm = 30 and Rm = 60 stays relatively homogeneous in
most of the computational domain, and the total flow rate developed by the channel is very close to its maximum value.
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FIG. 3: (a) Colorplot of the time averaged axial velocity field for run with Rm = 60, Ha = 1200 and Re = 5000. (b)

Corresponding profiles in the radial direction for different values of z.

According to the solid body model for induction pumps [1], an instability of the flow similar to the stalling of an asynchronous
motor should appear at sufficiently large Rm. Our numerical simulations at low Re exhibit a behavior very close to the predic-
tions. The magnetic Reynolds number is therefore further increased, from Rm = 60 to Rm = 120, keeping fixed Ha = 1200
andRe = 5000. The turbulent flow studied here develops a behavior drastically different from the stalled regime observed in the
laminar case. Fig. 4(a) shows a colorplot of the averaged velocity field in such regime. Compared to the regime obtained at lower
Rm, the flow rate developed by the channel has been strongly reduced with a total normalized flow rate around Q ∼ 0.5. This
decrease in the efficiency of the pump takes the form of a strong inhomogeneous flow in both radial and axial direction. Indeed,
one can see that the fluid located close to the outer cylinder, where the surface current is applied, moves nearly in synchronism
with the wave, similarly to the regime obtained at lower Rm. On the contrary, the inner region exhibits a strongly fluctuating
negative velocity, flowing against the TMF. These negative velocities can be observed in the time averaged velocity profiles
shown in Fig. 4(b). Whereas the profiles outside the pump remain Hartmann-like, inside the pump the profiles drastically change
its shape, achieving negative velocities of the same order than the positive ones, for r < 1.5. For some values of r, it is possible
to observe positive velocities larger than the driving wave speed.

Fig. 4(c) shows the time averaged axial velocity profiles in the center of the z domain for runs at different Reynolds numbers,
from Re = 100 up to Re = 10000, at fixed Ha = 1000. For these parameters, the inhomogeneous regime shown in Fig. 4(a)
appears for the three high Re number simulations as well, giving similar profiles than for Re = 5000, although very different
from the laminar case (Re = 100).

A careful study of each simulation computed for differentHa andRm numbers, at a fixed value of the fluid Reynolds number
Re = 5000 gives the Ha−Rm parameter space shown in Fig. 5. Black circles indicate simulations similar to the one described
in Fig. 2 and Fig. 3: in most of the domain, the fluid is relatively homogeneous, independent of r (except close to the boundaries)
and in synchronism with the wave.

Blue squares represent simulations where a very small flowrate is observed. In these runs, the flow is still homogeneous in r,
but the velocities remain very small in comparison with the speed of the wave. This situation is reminiscent to the one observed
in the first part of the article, associated with a global stalling of the pump.

Red squares correspond to the new state described in fig. 4 in which the flow becomes unstable and inhomogeneous in r.
This parameter space clearly differs from the one obtained in the case of laminar simulations seen in part 1, for which only one
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FIG. 4: (a) Colorplot of the time averaged velocity field for run with Rm = 120, Ha = 1200 and Re = 5000. (b)
Corresponding profiles in the radial direction for different values of z. (c) Velocity profiles in the radial direction for runs with
Re = 3000, 4000 and 10000, for fixed Rm = 120, Ha = 1000. Note the difference with Re = 100 (obtained for Rm = 120,

Ha = 100).

transition is observed, from homogeneous synchronism with the wave (black circles) to homogeneous stalled flow (blue squares).
The difference therefore lies in the presence of inhomogeneous flows, characterized by the presence of both synchronous and
stalled flows, in different parts of the channel.

It also should be noted that the parameter space does not seem to show a strong dependence on the Reynolds number, at least
for Re comprised between 3000 and 10000, as can be observed from comparison between Figs. 4(b) and (c). Nonetheless,
our simulations indicate that the upper boundary of the instability pocket decreases as we decrease Re (from Ha ∼ 1000 to
Ha ∼ 800, when going from Re = 5000 to Re = 3000), whereas the lower boundary remains among the same values of
(Ha − Rm). This narrowing of the instability pocket as we decrease Re is consistent with the theoretical predictions of the
solid body model presented in the first part of the paper. At small values of Re, the parameter space of the laminar problem is
divided by a single marginal stability line following M c

b ∝
√
Res, where Res = (c − u)l0/ν is the kinetic Reynolds number

based on the slip. Here, M c
b = (c− u)

√
ρµ0/B0 is the critical Alfvenic Mach number comparing the velocity of the fluid to the

Alfven wave celerity at onset. It measure the ability of the fluid to expel magnetic flux from the bulk. The simulations reported
in this second paper show that as Re is increased, a new regime appears, opening the marginal instability line into a pocket for
which both synchronous and stalled flows coexists in the bulk flow. In most of the parameter space, both boundaries of this
pocket present a strong hysteresis. In our simulations, the limit between the three regimes shown in Fig. 5 was always obtained
entering the instability pocket from the homogeneous solution (from black or blue points towards red points). In this fashion, the
upper limit of the pocket is expected to follow the turbulent scaling M c

b ∝ 1 (see part I) if flux expulsion is still the mechanism
involved in the generation of this new instability.

IV. COMPOSITE MODEL

At this point, it is interesting to compare the present high Reynolds number results with theoretical predictions and laminar
simulations discussed in the first part of this article. First, the structure of the parameter space shown in Fig. 5 is very different,
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FIG. 5: Parameter space (Ha,Rm) explored at a given Reynolds number Re = 5000. Black circles correspond to the stable
solution depicted in Fig. 2, where the flows are homogeneous in r. Blue points also correspond to flows homogeneous in r, but
associated to very small flowrates (classical stalling instability). Red squares correspond to simulations with inhomogeneous

flows as the ones shown in Fig. 4. Low frequency pulsation (see text), when present, is indicated by green circles.

with the presence of two boundaries for the generation of the instability associated to an inhomogeneous flow (and the related
decreased flow rate). In addition, the presence of a negative flow rate, with fluid moving backward with respect to the driving
magnetic field, seems in strong contradiction with the simple usual description of MHD induction machines.

In fact, this large scale destabilization of the flow can be regarded as an effect of a local stalling of the flow, in which different
regions of fluid (for different values of r) can be considered as several elementary electromagnetic pumps. Since the total flow
rate must be equal to the sum of the flow rate in each elementary region, and if we suppose that the applied magnetic field is
almost independent of r, the individual pumps are connected in parallel hydraulically and in series electrically. In this case, each
different region is associated to identical control parameters Rm and Ha.

The colorplot shown in Fig. 4 suggests that only the region close to the inner cylinder stalls, whereas the fluid located near the
outer cylinder stays in synchronism. We therefore consider the simplest composite model containing two hydraulically parallel
and electrically independent sub-channels. Suppose that channel 1 corresponds to the quarter of the domain close to the coils
(say pump 1), while channel 2 corresponds to the last quarter close to the inner cylinder (pump 2). Since it corresponds to a
transition zone, the central part of the fluid is not described here.

Figs. 6(a) and (b) show the evolution of the normalized flow rate Qi = 1
Si

∫
Si

Uz

c dS of the two elementary pumps of section
Si as a function of Rm and as a function of Ha, respectively, as the system enters the instability region.

At small Rm and relatively large Ha, the total flow rate (black curve) is nearly independent of r, yielding identical Qi in both
sub-channels. The total flow rate then abruptly decreases for Rm > Rmc, with Rmc ∼ 90 (see Fig. 6(a)). The evolution of the
two elementary channels shows clearly that this decrease is essentially due to a stalling of the pump 2 with a flow rate dropping
to Q2 ∼ 0.1, whereas the flow rate of the fluid close to the coils keeps values surprisingly close to synchronism (Q1 > 0.8). The
evolution of Q2 alone is very similar to the results obtained in low-Re simulations for the whole channel. In particular, the local
values of the magnetic Mach number Mb in channel 1 are all much smaller than one, while inhomogeneous flow are generated
when local Mb in channel 2 reaches a critical value M c

b ∼ 0.1. This last point highlights the fact that flux expulsion is still the
physical mechanism generating the inhomogeneous flow observed here, except that it only occurs locally.

If Ha is decreased at fixed Rm (Fig. 6(b)), two transitions are observed. For Ha < 1200 a first bifurcation occurs, corre-
sponding to the one described above, i.e. the stalling of the inner region of the channel only. As Ha is decreased further, a
secondary bifurcation is observed, in which the flow rate in the outer region, close to the coils, also drops to zero. This second
transition is closer to the behavior observed for asynchronous motors, and corresponds to a global stalling of the flow.

It is instructive to compute the typical Pressure-Flow rate characteristic curve of the system. To do this, a set of simulations
for parameters outside the instability pocket (Ha = 1000, Rm = 60) was performed, imposing an increasing flowrate to the
whole system, from Q = −1.5 to Q = 1.5. For each run, time and space averaged velocity, pressure drop and Laplace force
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FIG. 6: (a) Flowrate as a function of the magnetic Reynolds number for Ha = 1200. (b) Flowrate as a function of the
Hartmann number for Rm = 90. In both cases, the black points represent the values considering the full channel, while the red

and blue lines stand for pump 1 and pump 2 respectively.
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FIG. 7: PQ curve for Rm = 60, Ha = 1000. The black line represents the theoretical model considering the flowrates obtained
for the full channel, while the red and blue points stand for pump one and pump two respectively.

were measured inside the whole channel, but also in each region corresponding to the two individual pumps.
Fig. 7 shows the Laplace force as a function of the flowrate in each sub-channel, computed only for 7 < z < 15, in order to

exclude the fluctuations occurring at the inlet/outlet boundaries. The most striking result is the fact that although the PQ curve
for the total channel in this turbulent regime is more complex than the theoretical one, each elementary channel seems to lie on
a single common curve. Once again, it must be kept in mind that there is a variation of the Laplace force with r as we move
along the sub-channels, so the pumps are not fully in series electrically. As a consequence, it appears from Fig. 7 that the fluid
in region 1(near the coils) always moves in synchronism, while pump 2 can either be in synchronism (upper stable region of the
parameter space) or exhibit smaller velocity.

This reinforces the interpretation of two hydraulically parallel pumps, with similar control parameters Rm and Ha but lying
on different regions of their characteristic. More exactly, for a given imposed total flow rate Q, there is always one solution
corresponding to both sub-channels delivering identical discharge. When Q is large enough, this solution is the only one and
both sub-channels flow in synchronism with the wave (on the descending branch of the PQ-curve). As the total flow rate
decreases, both elementary pumps move along their characteristic until the maximum of the curve is reached. Below this critical
value of Q, a second solution corresponding to different elementary discharges is possible, the total flow rate being the sum of
the two elementary ones. In this regime, Fig. 7 shows that the functioning point of channel 1 (red dots) is always located on the
descending branch of the PQ curve, close to synchronism, whereas only the internal part of the fluid (’pump 2’) moves on the
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FIG. 8: (a) Time series of the normalized axial velocity Vz in the central part of the pump, averaged in r, for Rm = 90 and
various values of Ha. The inset shows an enlarged view of the pulsation for Ha = 1200. (b) The same for the Lorentz force.

As Ha is increased, a low frequency pulsation develops in both fields.

ascending branch. For instance, when the imposed flow rate is Q = 0.2, the fluid located in the inner region exhibits a strongly
negative flow rate (Q2 = −0.6) in order to compensate the large positive flow rate Q1 = 0.9 close to the coils and satisfy
incompressibility. In order to highlight this interpretation, we added to Fig. 7 the solution expected in the framework of simple
solid-body theory (eq. 2.17 in [7], with H = 2.7 and R = 5.6).

However, there are also important differences between this simple composite model and our numerical simulations. First, the
assumption of only two pumps in parallel is very restrictive. For instance, this description ignore the central part of the annulus,
or the boundary layers in which the velocity vanishes. In addition, the magnetic field being imposed only at the boundaries, the
simulations involve a local Hartmann number which depends on the radial direction, in contradiction with the assumption of
pumps connected in series electrically. Finally, some of the numerical points in Fig. 7 significantly differ from the theoretical
curve (in particular the presence of two maxima for the Lorentz force in channel 2, at Q2 ∼ 0.7 and Q2 ∼ 0.9). This departure
finds its origin in the fact that very close to synchronism, flux expulsion vanishes and electrical currents generated at the outer
cylinder can propagate easier through the radial gap, thus leading to an amplification of the induced field close to the inner
cylinder. This behavior is reminiscent of the localized nature of the forcing, which is not described by the classical solid body
theory.

The above description is almost equivalent to the composite model discussed in [1]. In this article, Gailitis and Lielausis
proposed that an electromagnetic pump can be modeled, in the limit of small gap, as a combination of many elementary pumps
connected in φ, therefore predicting a loss of homogeneity of the velocity distribution along the azimuthal direction above some
critical value of the magnetic Reynolds number. In its simplest form, this model involves two elementary pumps, similarly to the
results reported here. Even in axisymmetric configurations such as the simulations reported here, a similar mechanism occurs,
except that the loss of homogeneity is achieved in the radial direction instead. This inhomogeneous structure, associated to a
strong radial shear, is likely to produce destabilization of the flow in the azimuthal direction. Although additional 3D runs will
be necessary to conclude, this destabilization would provide a new scenario, different from the mechanism proposed in [1], for
the occurence of non-axisymmetric states in such annular induction pumps.

V. LOW FREQUENCY PULSATION

Despite strong turbulent fluctuations, the large scale vortex flow observed in Fig. 4 is statistically stationary when the system
is located deep inside the instability pocket (represented by red dots in Fig. 5). However, a more complex time behavior is
systematically observed close to the marginal stability line. Green symbols in Fig. 5 indicate solutions in which a periodic
modulation of the flow rate is obtained. Figs. 8(a) and (b) show the time series for the z component of velocity field and Lorentz
force for runs performed at Rm = 90 and different values of Ha. The pulsation due to the forcing, at twice the wave frequency,
is clearly visible on both fields for all the values. As H is increased above H = 800, a slower modulation, associated to a typical
frequency one order of magnitude larger than the driving frequency, develops. As the applied field is increased, the oscillation
becomes strongly non-linear, as this dynamics exhibits slowing down close to synchronism, as indicated in the inset of Fig. 8(a).

As shown in Fig. 5, this Low Frequency (LF) pulsation occurs both inside and outside the instability pocket (for instance, at
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FIG. 9: Colorplot of four different snapshots of the axial velocity for run with Rm = 90, Ha = 1200. A vortex near the upper
boundary appears and disappears (from top to bottom) following a cycle with τ ∼ 30.
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FIG. 10: Time series of the axial velocity Vz in the central part of the pump, averaged in r, for fixed different values of Rm.
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Rm = 60, Ha = 1400, or at Rm = 120, Ha = 1600, as indicated by green points in Fig.5), but always close to the marginal
stability line. Fig. 9 shows snapshots of the flow at four different times during the oscillation shown in the inset of Fig. 8(a). It
can be seen that this regime corresponds to localized vortices, which periodically appear near the pump outlet with decreasing
amplitude until they disappear.

The appearance of this regime displays a strong hysteresis, and can exhibit more complex dynamics. Fig. 10(a) shows the
time evolution of the axial velocity Vz as Rm is increased (starting each simulation using as initial condition the output from the
previous one) at a fixed Hartmann number Ha = 1200. At Rm = 90, the pulsation appears with a single frequency roughly ten
times the frequency driving. As Rm is increased beyond Rm = 95, a second frequency appears in the spectrum, whereas for
Rm = 100, the LF pulsation goes back to a single frequency. For this value of Rm, the system is inside the instability pocket,
where the vortices are statistically stationary (red points in Fig.5).

Such a Low Frequency pulsation has been reported both in experiments and simulations with comparable values [5]. In this
last reference however, the pulsation was associated with a loss of homogeneity of the fluid in the azimuthal direction when the
forcing was non-axisymetric. The above results show that such a behavior may be generated even in axisymetric configuration.

VI. DISCUSSION AND CONCLUSION

In this article, we have extended the numerical study presented in the first part, describing an MHD flow driven by a travelling
magnetic field in an annular channel, and aiming to describe linear annular induction electromagnetic pumps. Here, we report
results using larger values of the flow Reynolds numbers, and also introducing the presence of inlet/outlet boundary conditions
in the axial direction, giving a better description of experimental configurations.

For the turbulent case studied here, we have shown that the stalling instability previously described for laminar flows takes the
form of a loss of homogeneity in the flow, for which a strongly negative velocity appears in a given region of the channel. We
have identified this behavior as a local stalling of the flow, characterized by the coexistence of two regions of fluids with very
different velocity and induced magnetic field.

This is consistent with a simple model of several pumps operating in parallel hydraulically, although not electrically in series.
This arises from the fact that, since the magnetic field is imposed only at the boundaries, the simulations involve a local Hartmann
number which depends on the radial direction. As a consequence, the inner part of the fluid always becomes unstable before the
region of fluid close to the outer cylinder, where the electrical currents are imposed. In this case, the flow exhibits a Poiseuille-like
profile close to the inner cylinder, and an Hartmann-like profile close to the outer cylinder.

The use of 2D simulations allowed us to explore a large region of the parameter space (Ha,Rm,Re). At large Re, the single
marginal stability curve observed for laminar flows is replaced by a pocket of instability involving inhomogeneous velocity
profiles. Although more simulations are necessary to give a definitive conclusion, our results suggest that the upper boundary
of the instability pocket is consistent with the scaling involving the Alfvenic Mach number Mb >constant . As explained in the
first part of our article, this scaling law indicates that magnetic flux expulsion is responsible for the loss of synchronism close to
the inner side of the pump, where the magnetic field, and therefore the force, are weaker. It is important to note that an adverse
pressure gradient is necessary for a pump to lie on the negative part of its characteristic curve. In our turbulent simulations, such
a load is created by the inlet/outlet conditions at the ends of the pump.

Finally, consistently with previous experimental and numerical results on annular linear induction EMPs, we have also
observed the appearance of a periodic modulation of the fields with a typical frequency approximately 30 times smaller than the
applied external frequency. This modulation takes here the form of axisymmetric pulsating vortices which systematically occur
close to the upper marginal stability line of the reversed flow instability.

It is now interesting to compare these numerical results to existing experimental configurations. Medium size EMPs can reach
magnetic Reynolds numbers higher than 10 and Hartmann numbers larger than 800 (with our definition of Rm and Ha), while
the largest EMPs reported in the literature correspond to Rm > 50 and Ha > 105 [5, 8]. This suggests that the axisymmetric
loss of homogeneity reported here may be relevant to experimental configurations using similar types of forcing, in which the
electrical currents are applied only on one side of the pump. In this perspective, it would be interesting to understand how this
intrinsically axisymmetric instability is modified by the presence of electrical currents on both sides of the annular channel.
Similarly, secondary bifurcations towards non-axisymmetric states should be expected in both single-sided or double-sided
configurations, and the study of this fully 3d states will be reported in a future work.
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