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ABSTRACT
We present kinematic simulations of a galactic dynamo model based on the large-scale dif-
ferential rotation and the small-scale helical fluctuations due to supernova explosions. We
report for the first time direct numerical simulations of the full galactic dynamo using an un-
parametrized global approach. We argue that the scale of helicity injection is large enough to
be directly resolved rather than parametrized. While the actual superbubble characteristics can
only be approached, we show that numerical simulations yield magnetic structures which are
close to both the observations and the previous parametrized mean field models. In particular,
the quadrupolar symmetry and the spiraling properties of the field are reproduced. Moreover,
our simulations show that the presence of a vertical inflow plays an essential role to increase
the magnetic growth rate. This observation could indicate an important role of the downward
flow (possibly linked with galactic fountains) in sustaining galactic magnetic fields.
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1 INTRODUCTION

It is widely accepted that magnetic fields of planets, stars and galax-
ies are generated by dynamo action, i.e. by the magnetic field ampli-
fication due to electromagnetic induction associated with the motion
of an electrically conducting fluid (Moffatt 1978). The flow of gas in
the interstellar medium appears to convey the essential ingredients
for such dynamo action (Rosner & Deluca 1989; Wielebinski 1990).
A differential rotation in the galactic disc creates a strong shear
along the radial direction. This shear is very efficient at stretching
radial magnetic field lines in the azimuthal direction (this is known
as the ω-effect). In combination with this large-scale effect, the tur-
bulent motions at small scales provide a cyclonic flow generating
poloidal magnetic field (this is the so-called α-effect). Together, both
effects suggest the possibility of an α–ω type of dynamo that might
be responsible for generating the galactic magnetic field (Parker
1971; Vainshtein & Ruzmaikin 1971). Let us note that alternative
models for dynamo action in galaxies have been proposed through
the action of cosmic rays (Hanasz et al. 2004) or in a cosmological
context (Wang & Abel 2007), which will not be discussed here.
The apparent scale separation between the shear and the turbulent
motions has often been invoked to introduce a mean field approach
for the galactic dynamo (Beck et al. 1996; Ferriere 1998). In such
formalism, an equation only for the large-scale magnetic field is
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solved, the effect of small scales being parametrized by an α term
(Krause & Raedler 1980). Relying on mean field equations has
proven to be a very efficient approach to the galactic dynamo prob-
lem (Ferriere 1992). It is, for example, an efficient way to achieve
moderate simulation time. However, the results of mean field simu-
lations are intrinsically limited by strong assumptions such as scale
separation or the statistical properties of turbulence. It is thus in-
teresting to study galactic dynamos with direct simulations of the
full problem by properly treating the small-scale flow associated
with the turbulence in the interstellar medium and thus solve for the
magnetic field at all scales.

It is often assumed that the most importance source of turbu-
lence in the interstellar medium comes from supernova explosions
(McCray & Snow 1979). The positions of these explosions are not
completely random in the disc but they often occur in cluster. This
produces giant expanding cavities of gas known as superbubbles.
These explosions occurring in a rotating galaxy, the expansion is
affected by a Coriolis force. This yields cyclonic motions and thus
a strong helicity in the gas flow (Ferriere 1998). In such a frame-
work, however, it is worth noting that the scale separation mentioned
above is not dramatic. Superbubbles have typical sizes of the order
of a few hundreds parsec (see Oey & Clarke 1997). This is smaller,
but not dramatically smaller than the typical vertical scale of the
galaxy (∼1 kpc). Given modern day computational resources, these
numbers suggest that direct numerical simulations (i.e. numerical
simulations that do not rely on an ad hoc parameterization of the
small scales, e.g., through the α-effect) are within reach. Indeed,
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Gressel et al. (2008) recently presented such simulations. To cope
with the large resolution still needed to address this problem, they
adopted a local approach based on the shearing box model. Their
results indicate a good agreement of the local approach with mean
field models. However, the local approach they used precludes any
global diagnostics, such as the global structure of the field, to be
established.

The purpose of this Letter is to present such global numerical
simulations, resolving the magnetic field at all relevant scales in the
galaxy (i.e. from 100 pc to 10 kpc). To reduce the computational
burden that would be associated with full magnetohydrodynamics
simulations, we work in the kinematic regime: we solve the induc-
tion equation using a prescribed and time-dependent gas flow. The
latter is set by using an analytical velocity field which intends to re-
produce the large-scale shear associated with rotation and the effect
of superbubble explosions on the interstellar medium.

2 NUMERICAL MODEL

The direct numerical simulations presented in this Letter are fully
three-dimensional. We solve the induction equation governing the
evolution of the solenoidal magnetic field B in a cylindrical coordi-
nate system (r, φ, z):

∂B
∂t

= ∇ × (u × B) + Rm−1%B, (1)

written in a dimensionless form using the advective time-scale. The
magnetic Reynolds number Rm is defined as Rm = µ0σ r0U0, where
µ0 is the permeability of vacuum, the typical length scale r0 = 10
kpc is the radius of the galactic disc, the typical velocity scale U0

is the velocity of the large-scale flow (i.e. the differential rotation
of the galaxy) and σ is the conductivity of the plasma.1 In our
simulations, the vertical extent of the galactic disc is H = r0/10,
z, thus range from −0.05r0 to +0.05r0. We restrict our attention
here to the kinematic problem, ignoring the back reaction of the
magnetic field on the flow. The velocity field u used in equation (1)
is analytical and represents the differential rotation of the galaxy and
the supernova explosions. This approach also means that we do not
explicitly consider important effects such as density stratification in
the vertical direction or the induction effect which would be due to
interstellar turbulence (Ruzmaikin, Sokolov & Shukurov 1988).

Equation (1) is solved using a finite volume approach. The method
is described in details by Teyssier, Fromang & Dormy (2006): it uses
the MUSCL–Hancok upwind method. The solenoidal character of
the magnetic field B is maintained through the constrained trans-
port algorithm (Yee 1966; Evans & Hawley 1988). We rely here on
the so-called pseudo-vacuum boundary conditions for the magnetic
field. This corresponds to imposing B × n = 0 at all boundaries of
the computational domain. These boundary conditions are not fully
realistic, but they are often used in parametrized models of galac-
tic dynamos and simple to implement. These boundary conditions
are known to modify quantitative results (such as the threshold
value for dynamo action) but not the global qualitative solution
(Gissinger et al. 2008). We now turn to a detailed description of the
velocity field being used. It is the sum of two terms: rotation around
the vertical axis and modification of the flow by superbubbles. In

1 We could have adopted alternative definitions of the Reynolds number, for
example Rm′ = µ0σHVs/2, where Vs is the sound velocity, which is equal
to the terminal velocity of the superbubbles (see later in the text). With this
definition, Rm′ = Rm/200 and the maximum value achieved in this work
would be Rm′ = 500.

our simulations, we use the following prescription for the rotation:
U = U0 eφ , with a constant U0. This is a good approximation since
the angular velocity is observed to be roughly proportional to 1/r in
galaxies. The effect of supernova explosions is more subtle to im-
plement. We decided to consider the effect of superbubbles only and
ignore here isolated supernovae, as the energy input of the former is
largely dominant (Ferriere 1998). Considering superbubbles rather
than smaller isolated supernovae yields larger scales which directly
translate into resolutions affordable with modern days computing
resources. Let us consider first the explosion of one superbubble, in
a local spherical coordinate system (r′, θ ′, φ′). Following the work
of Ferriere (1998), we work under the simplifying assumption that
each explosion remnant has a perfectly spherical shape. We thus
use the simple radius evolution law (Weaver et al. 1977):

r ′
sb = Atν . (2)

During the expansion of each superbubble, the rotation of the galaxy
yields a Coriolis force which tends to deflect the initially radial
expansion and create cyclonic motions. This is an essential step
in classical mean field α–ω description of the galactic dynamo
(Ferriere 1998). This Coriolis effect can be evaluated by solving the
equation of gas motion:

∂v

∂t
= Fe − 2! × vr ′ , (3)

where Fe is a force leading to the radial expansion described by
equation (2). Integrating equation (3) in the radial direction leads
to the expansion equation (2). The azimuthal velocity is obtained
by integrating the equation (3) in the azimuthal direction. In doing
so, we made the approximation that the Coriolis force on the super-
bubble is only due to the radial expansion of the shell. Inside the
superbubble, we assume a linear variation of velocity in radius. An
important parameter is r′

c, the critical size reached by the superbub-
ble, for which the pressure in the cavity becomes comparable to that
of the surrounding medium. At this point, we consider that the bub-
ble merges with the interstellar medium. This situation generally
occurs when the radial velocity of the shell becomes comparable to
the velocity of sound in the medium. In our modelling, this critical
velocity numerically determines the end of existence of a super-
bubble. The velocity field associated with a superbubble therefore
vanishes when the radial velocity reaches this critical velocity vc.
This radial expansion and the associated Coriolis force totally deter-
mine the flow at small scales. In most observed galaxies, the spatial
distribution of explosions in the galaxy is rapidly decreasing away
from the mid-plane of the disc. For simplicity, we will assume here
that all explosions occur in the mid-plane only, but with random
position in the disc. In actual galaxies, there is a large observed
dispersion of data about superbubbles, yet averaged values for the
explosions rate of superbubbles are f 0 = 4.5 × 10−7 kpc−2 yr−1

(Elmegreen & Clemens 1985). Such parameters, however, are still
out of reach of present computations (especially because of the high
explosion rate which implies large numbers of superbubbles to be
handled at the same time). We use here a lower rate of superbubbles,
but more powerful explosions, thus leading to a similar helicity in-
put. In the simulations reported here, f = f 0/50, r′

c = 0.4, A = 0.35
and ν = 0.6. This corresponds to about 150 superbubbles expand-
ing in the galactic disc at a given time in the simulations. In some
cases, we will also take into account a downward flow. Due to the
simplicity of our model, this velocity could be attributed to turbu-
lent diamagnetism (Sokoloff & Shukurov 1990) or to the galactic
fountain mechanism (Shapiro & Field 1976; Bregman 1980). As
an attempt to describe these effects, we add the following vertical
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velocity to the flow:

vz(z) = −γ z√
2π2β

e−z2/2β2
. (4)

It is antisymmetric with respect to the mid-plane and vanishes for
z = 0. Moreover, the infall velocity decreases far away from the
mid-plane. The parameter β controls the extension of the infall re-
gion and we use here β = r′

c/3 so that the maximum of the infall
is near the region where superbubble explosions tend to accumu-
late the matter. γ is a free parameter controlling the amplitude of
the vertical velocity. We will use γ = 0.03 throughout this Letter
corresponding to a typical velocity of 6 km s−1. Despite the simpli-
fications implied by working in the kinematic regime, large spatial
resolutions are still needed in order to correctly describe the evolu-
tion of the superbubbles at small scales. In the runs presented here,
we used a resolution of Nr = 200, Nφ = 640 and Nz = 36.
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Figure 1. Growth rate of the magnetic energy as a function of the magnetic
Reynolds number. Black circles correspond to simulations without infall
(γ = 0), whereas the filled red square corresponds to a simulation with
γ = 0.03.

Figure 2. Field lines of the magnetic field (blue) are represented for Rm = 7000. Both the spiral structure of the magnetic field and its quadrupolar symmetry
can be identified. Isosurface corresponding to 1 per cent of the peak kinetic energy is also represented (red).

3 RESULTS

3.1 General features

We performed simulations for seven different magnetic Reynolds
number ranging from Rm = 100 to 105 (this would correspond to
Rm′ between 0.5 and 500). We choose to stop the simulations after
a few resistive times, when the growth rate of the magnetic energy is
statistically invariant and the exponential growth is well established.

For all of these simulations, we measure the growth rate of
the magnetic energy. It is displayed on Fig. 1 as a function of
the magnetic Reynolds number, Rm. It is negative when the mag-
netic Reynolds number, Rm, is smaller than Rmc ∼ 500. It is positive
for larger Rm, indicating exponential amplification in that case. For
Rm = 105, the growth rate is σ = 0.6 Gyr−1. Such growth times are
comparable to the ones obtained by Gressel et al. (2008), although
they seem to be larger in our case.

The result of a typical simulation (Rm = 105) once the exponen-
tially growing phase is reached is illustrated in Fig. 2, which shows
simultaneously the structure of the magnetic field and that of the
flow. Many superbubbles (red isosurfaces) are present at a given
time in the model. We also show field lines (plotted in blue) of the
magnetic field. The observed magnetic structure is the results of the
combined effects of the superbubble explosions and the differential
rotation of the disc. The coloured slice shows the magnetic energy
in the equatorial plane. It is strongly fluctuating due to the compli-
cated nature of the flow. The overall topology of the magnetic field
is complex. We now turn to a detailed study of its structure.

3.2 Structure of the magnetic field

The structure in the (r, φ) plane is complicated and varies with the
altitude z. Fig. 3 shows the magnetic field in the mid-plane of the
galaxy (the solid lines represent field lines projected in this plane
and the colour code indicates the strength of Bz).

In the mid-plane, the field is organized in a spiral structure. The
sign of Bφ is constant along the radial direction. Near the axis of
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Figure 3. Structure of instantaneous magnetic field in (r, φ) plane in the
mid-plane of the galaxy at z = 0. Magnetic field lines projected in the (r, φ)
plane are represented by black lines and the colour code reflects the strength
of Bz.

rotation of the disc, the azimuthal field largely dominates all others
components, but rapidly goes to zero at the inner boundary in order
to satisfy the boundary conditions. At larger radii, the vertical field is
negligible while Bφ and Br are now comparable. Their relative value
is given by the magnetic pitch angle defined as pB = atan(Br/Bφ).
It is remarkable that, despite the fact that numerical parameters are
far from actual values, pB is very close to the observations: except
near the unrealistic boundaries of the domain, the pitch angle is,
in general, close to −15◦, which is in agreement with the range
[−30◦, −10◦] observed in real galaxies (Shukurov 2007). An av-
erage of the pitch angle in radius from r = 0.2 to 0.8 gives pB (
−15◦. This is also in agreement with Gressel et al. (2008) although
smaller, as they report a pitch angle around −10◦.

At higher altitudes, the structure of the field is much more com-
plicated. By increasing z, we observe that Bφ can change sign. We
always observe opposite sign of Bφ between the mid-plane (z = 0)
and the halo (z = +z0) (see Fig. 4). At intermediate altitudes, Bφ

can also reverse sign along the radial direction itself, as it is shown
in Fig. 5.

While the structure in the (r, φ) plane is not very sensitive to the
resistivity, the magnetic field in the (r, z) plane presents different
behaviours depending on the value of the Reynolds number, Rm,
as shown in Fig. 6. A quadrupolar structure is ubiquitous in all
simulations but the location of the magnetic loops does depend on
Rm. Indeed, the effect of superbubbles is located near the mid-
plane and produces strong expulsion of magnetic field in the halo of
the galaxy. For weak Rm, the magnetic resistivity counteracts this
effect through vertical diffusion. For larger Rm, the weak magnetic
resistivity cannot balance anymore the strong vertical expulsion
of magnetic field due to multiple explosions. As a consequence,
the quadrupole becomes unrealistically confined to the halo of the
galaxy (Fig. 6c), far from the active region. Although the creation of
this external shell does not totally inhibit dynamo action, it clearly
decreases the magnetic growth rate.

Figure 4. Magnetic field just before the top of the domain. Note that the
magnetic field is smooth due to the weak effect of the superbubbles at this
altitude. The sign of Bφ is reversed compared to the mid-plane.

Figure 5. Magnetic field at z = z0/2. Note that Bφ changes sign when the
radius is increased.

3.3 Effect of vertical infall

This behaviour indicates how the diffusion of magnetic field can
play two opposite roles: on one hand, it is obviously defavourable
to dynamo action by increasing resistivity in the induction equa-
tion. On the other hand, diffusion can be favourable by preventing
magnetic flux expulsion away from the mid-plane region where the
small-scale flow is important. However, for weak resistivity (as is
the case in real galaxies), superbubbles expel the magnetic field out
of the active region of galactic disc, thus inhibiting dynamo action.
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Figure 6. Magnetic structure of φ-averaged magnetic field in the (r, z) plane
for: Rm = 1000 (a), Rm = 3000 (b) and Rm = 104 (c and d). Flux expulsion
is clearly visible on plot (c). Plot (d) corresponds to a simulation including
vertical infall. Flux expulsion can thus be counteracted.

In that case, adding a vertical inflow by using equation (4) proved
to be an essential ingredient to dynamo action. This vertical flow
indeed pumps the magnetic field from the halo to the mid-plane,
which increases considerably the growth rate of magnetic energy.
For Rm = 104, for example, the growth rate increases from σ =
0.7 Gyr−1 without inflow to σ = 1.4 Gyr−1 with vertical inflow
(filled red square on Fig. 1). As seen on Fig. 6(d), the magnetic field
structure is again quadrupolar in that case and spread out over the
whole galaxy.

4 CONCLUSION

We have shown that according to our simple model, it is possible
to perform numerical simulations of the galactic dynamo without
the need for a mean field formalism. We thus avoid assumptions in
the scale separation and can control more rigorously the origin of the
source term in the induction equation. Our simulations yield mag-
netic field with two main characteristics: a quadrupolar symmetry
in the (r, z) plane and a roughly axisymmetric spiral configuration
in the (r, φ) plane. Both characteristics are in good agreement with
observations and confirm previous studies that used a mean field
approach. A detailed study of the magnetic field topology shows
a complicated structure, with reversals of Bφ along the radial or
vertical directions. Another interesting features of this work are the
paradoxical role of superbubbles in the limit of very weak magnetic
diffusion. Indeed, the turbulent flow due to explosions is, with the
differential rotation, an essential ingredient of the α–ω dynamo but

also inhibits dynamo action by confining the magnetic field in the
halo of the galaxy. In this context, the vertical inflow of interstellar
gas appears as the third main ingredient needed for dynamo action.
The downward flow observed in galaxies could thus be an essential
mechanism of galactic dynamo theory.
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