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We report a laboratory study of the transport of angular momentum by a turbulent flow of an electrically
conducting fluid confined in a thin disk. When the electromagnetic force applied to the liquid metal is large
enough, the corresponding volume injection of angular momentum produces a turbulent flow characterized
by a time-averaged Keplerian rotation rate Ω̄ ∼ r−3=2. Two contributions to the local angular momentum
transport are identified: one from the poloidal recirculation induced by the presence of boundaries and the
other from turbulent fluctuations in the bulk. The latter produces efficient angular momentum transport

independent of the molecular viscosity of the fluid and leads to Kraichnan’s prediction NuΩ ∝
ffiffiffiffiffi
Ta

p
. In this

so-called ultimate regime, the experiment, therefore, provides a configuration analogous to accretion disks,
allowing the prediction of accretion rates induced by Keplerian turbulence.
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The transport of angular momentum by turbulence is one
of the most active research areas in astrophysical fluid
dynamics. The best example is accretion disk theory, which
aims to understand the dynamics of thin astrophysical disks
in which turbulent gas is in Keplerian rotation around a
massive central body. Observations of disks around black
holes and protostars indicate enormous accretion rates
which must necessarily be compensated for by a massive
outward transport of angular momentum. Unfortunately,
the exact mechanisms by which this transport occurs or the
nature of the turbulence in these discs remain mostly
unknown [1–4]. These open questions have led to a
tremendous work over the past decades and different
mechanisms have been proposed [5,6], but the most
accepted scenario is the so-called magnetorotational insta-
bility (MRI) [7], which explains how a conducting fluid in
differential rotation subjected to a magnetic field can be
destabilized. Although extensively studied numerically, the
experimental observation of MRI remains a major chal-
lenge for modern fluid dynamics [8–10], partly due to the
parasitic effect of boundaries and the low saturation level of
the instability in the laboratory [11].
Alternatively, many studies have focused on purely

hydrodynamical Taylor-Couette (TC) flow in order to
investigate the efficiency of turbulent shear flows to
transport angular momentum at large kinetic Reynolds
numbers [3,12–14]. A central question is whether a so-
called ultimate regime, in which the angular momentum
transport becomes independent of molecular viscosity ν at
an arbitrary large Reynolds number Re, can be observed.
The term ultimate refers to the regime of thermal con-
vection predicted by Kraichnan [15] in which heat transport

relies entirely on convective turbulent structures and no
longer depends on the molecular diffusivity.
However, observation of this ultimate regime is com-

promised by three properties specific to TC setup which
have no equivalent in astrophysical disks. First, the angular
momentum is injected through the rotating radial bounda-
ries, while accretion disks are dominated by gravitation
which can be regarded as a volume injection of angular
momentum. Second, only a quasi-Keplerian rotation profile
can be obtained, where the Keplerian rotation rate Ω ¼
uθ=r ∼ r−3=2 is replaced by a (presumably laminar) linearly
stable flowΩ ¼ Aþ B=r. The transport of angular momen-
tum, then, strongly depends on the exact value of the
rotation ratio of the cylinders and the distance to the
Rayleigh line. Third, finite size effects due to axial
boundaries may, in some cases, contribute significantly
to the turbulent transport [16,17]. The first two difficulties
can be partially overcome by modifying Kraichnan’s theory
in order to correctly describe the effect of radial boundary
layers [18] and by rescaling the transport with an empirical
function of the rotation ratio when extrapolated to
Keplerian astrophysical objects [13]. The role of end caps
in TC setups is more problematic and has been the focus of
a fairly active debate on the degree of turbulence generated
in quasi-Keplerian flows [3,4,17]. In addition, recent
observations [19] have suggested that turbulence in accre-
tion disks may be weaker than expected, renewing interest
in new laboratory models [20–22] and predictive measure-
ments of angular momentum transport by Keplerian tur-
bulence. In this Letter, we present a new laboratory
experiment based on a radically different setup, aimed at
elucidating some aspects of the turbulent transport of
angular momentum and modeling accretion disks. It relies
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on the generation of a fully turbulent flow in an electrically
conducting fluid driven by a volume Lorentz force in an
axisymmetric thin disk geometry.
The KEPLER experiment (see Fig. 1) is an annular

channel filled with liquid Galinstan and subjected to a
homogeneous vertical magnetic field (up to B0 ∼ 110 mT)
generated by two large Helmholtz coils. While the end caps
are Plexiglas plates, the cylinders are brass nickel-plated
electrodes subjected to an electric current (up to I0 ∼ 3000
amperes) injected radially. The resulting Lorentz force
generates a turbulent flow dominated by its azimuthal
component and measured from potential probes. Because
the magnetic Reynolds number Rm ¼ μ0σUR1 (with σ the
electrical conductivity and μ0 the magnetic permeability)
always remains below unity in our experiment, induction
effects are negligible, and the induced Maxwell stress is
much smaller than the Reynolds stress.
The experimental setup as well as the main flow regimes

in parameter space were presented in Ref. [23], where it
was shown that a new regime, fully turbulent, which
exhibits large fluctuations and a Keplerian mean rotation
profile is obtained as long as the forcing is strong enough
and the disc sufficiently thin. It can be understood as
resulting from the volume force balance between the
Reynolds stress ρðu�Þ2=δ (assuming a fully turbulent bulk)
and the Lorentz force I0B0=ð2πrδÞ. Here, δ is the size of the
turbulent boundary layer at the end caps and, similar to
[15], the fluctuation velocity u� ≪ ūθ is related to the mean
flow by ūθ=u� ¼ log Re=κ, where κ is the von Karman
constant and Re ¼ ūθh=ν. This leads to the solution [23]

ūθðrÞ ¼
log Re

κ

ffiffiffiffiffiffiffiffiffiffi
I0B0

4πρr

s
; ð1Þ

where the bar denotes an average over time. The velocity
measurements reported in Vernet et al. [23] are in very good

agreement with this prediction. Except very close to the no-
slip radial boundaries, the time-averaged flow exhibits a
Keplerian rotation profile ūθ ∝ 1=

ffiffiffi
r

p
over a large region of

the gap, surprisingly similar to the rotation profile of an
accretion disk, despite a very different origin (the gravita-
tion, here, being replaced by the Lorentz force).
The turbulent transport of angular momentum reported

in the present Letter shares many similarities with heat
transport in thermal convection, and an exact mapping
between rotational flows and Rayleigh-Benard (RB) con-
vection can even be obtained in the limit of small radial
gap and large radius [12,14]. The relevant quantity analo-
gous to the heat flux is the transverse current of azimuthal
motion hJΩi ¼ r3hurΩ − ν∂rðΩÞi where h…i denotes
an average over time and a cylindrical surface. In the
KEPLER experiment, the stationary state is given by (see
Supplemental Material [24])

∂rJΩ −
I0B0

2πρh
r ¼ 0: ð2Þ

Taylor-Couette flows satisfy the same equation with
I0B0 ¼ 0, the flux JΩ then being conserved radially as
in RB convection. Here, the volume injection of angular
momentum rather provides an analogy with internal or
radiative heating [25,26], the magnetic term playing the
role of a nonhomogeneous internal heating rate. Similarly,
the Taylor number Ta ¼ ð4r2ū2θ=ν2Þ which represents the
magnitude of the rotational flow is the analog of the
Rayleigh number. The level of turbulence in such rotational
flows is well probed by the turbulent radial wind, which is
quantified by the Reynolds number Rew ¼ ðru�r=νÞ based
on the fluctuations of the radial velocity u�r, here, computed
from the standard deviation of local measurements of urðtÞ.
The wind Reynolds number Rew reported in Fig. 2 rapidly

FIG. 1. Left: the experimental setup is an annular cylindrical
channelwith inner radiusR1 ¼ 6 cm, outer radiusR2 ¼ 19 cm and
height h ¼ 1.5 cm, subjected to a radial current (I0 ¼ ½0–3000� A)
and a vertical magnetic field (B0 ¼ ½0–110� mT). Right: a series of
potential probes extending from the top plate to midheight provide
measurements of both azimuthal and radial velocity field in the
midplane. The blue probesmeasure product urΩ and derivative ∂rΩ
involved in JΩ.

FIG. 2. Wind Reynolds number Rew versus Ta for an applied
magnetic field B0 ¼ 60 mT, and compared to theoretical pre-
dictions. Inset: Same, but compensated by

ffiffiffiffiffiffi
Ta

p
.
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converges to a well defined self-similar behavior at large
Ta. Kraichnan [15] predicted for turbulent convection that
Rew ∝ Ra1=2 lnðRaÞ1=2, while Grossmann and Lohse [18]
have shown that Rew ∝ Ra1=2 (without log correction)
should be expected in turbulent flows where dissipation
essentially occurs in the inertial sublayer of the turbulent
boundary layers. Our data indicates an effective exponent
very close to 1=2 on almost two decades, suggesting that
this last argument holds here, and that the turbulent bulk
supplies most of the angular momentum transport.
In the limit of an inductionless thin disk, the transport of

angular momentum can be described by two additional
dimensionless numbers (defined in the Supplemental
Material [24]): the Nusselt number NuΩ ¼ JΩ=Jlam which
measures the local efficiency of the angular momentum
transport compared to the laminar case, and the magnetic
number H measuring the strength of Lorentz force.
Integration of Eq. (2) leads to a first relation NuΩ ∝
H=

ffiffiffiffiffiffi
Ta

p
, the factor of proportionality being a geometrical

factor of order 1. Combining this result with the assumption
of Keplerian turbulence [Eq. (1)] then gives

NuΩ ∝
ffiffiffiffiffiffi
Ta

p
× log−2ð

ffiffiffiffiffiffi
Ta

p
Þ: ð3Þ

Note that this prediction can also be recovered by a naive
dimensional argument in which we suppose a simple
relation NuΩ ∝ TaαHβ: the requirement of a flux JΩ
independent of the molecular viscosity ν leads to a similar
result NuΩ ∝

ffiffiffiffiffiffi
Ta

p
, sometimes referred to as the ultimate or

Kraichnan regime in the literature. Turbulent RB convec-
tion leads to exponents smaller than 1=2, generally between
0.31 [27,28] and 0.5 [26,29] depending on the experimental
setup (see [30] for a recent review). Because of the effect of
radial boundary layers, TC flows rather converge to NuΩ ∝
Ta0.38 [14,31], casting doubts on the relevance of
Kraichnan’s 1=2 prediction for astrophysical objects.
For a sufficiently large magnetic field, Fig. 3 shows that

the NuΩðTaÞ curve follows a scaling law close to prediction
(3), suggesting a turbulent transport mostly independent of
the molecular viscosity. These results somehow contrast
with TC flows in which the Grossman-Lohse scaling is
observed, reflecting the boundary layer effects associated to
the rotation of the cylinders. The KEPLER experiment
exhibits an ultimate regimewith smaller (although nonzero)
logarithmic corrections, which naturally stems from the
volume injection of angular momentum by the Lorentz
force.
At a smaller magnetic field, however, there is a clear

departure from the Kraichnan regime. This dependence of
the scaling law with the magnetic field should not come as a
surprise. As described in [23], for large enough B0, the
mean flow becomes two dimensional for all scales larger
than h. In this case, a quasibidimensional turbulent flow is
produced, in which the poloidal recirculation is confined to
thinner and thinner boundary layers as B0 increases. This is

one of the advantages of the present setup compared to TC
flows, because a strong magnetic field decouples the bulk
turbulence from the influence of axial boundaries. The
three values of B0 have been chosen accordingly to this
criterion, with B0 ¼ 110 mT corresponding to a flow
significantly more bidimensional than B0 ¼ 40 mT.
One may expect this contribution from the poloidal

recirculation to disappear with torque measurements or by
averaging the flux along the z direction. By contrast, our
local measurements of JΩ in the midplane are necessarily
polluted by the mean radial flow ur. This highlights the
need to discriminate the contribution of this poloidal flow.
To this end, we introduce the quantities

JΩ� ¼ JΩ − r3ur Ω and Nu�Ω ¼ JΩ�

Jlam
: ð4Þ

Here, the expression of the flux J�Ω depends only on the
turbulent fluctuations and is related to the Reynolds stress
tensor, ρu�rΩ�, where � denotes the fluctuations.
Experimentally, it is obtained from direct measurements
of the fluctuations, by amplifying the voltage from our
potential probes through a low noise impedance matching
transformer (Princeton Applied Research Model 1900).
The corresponding Nusselt number Nu�Ω reported in

Fig. 4 can, therefore, be considered as a good estimate
of the transport ignoring the mean poloidal recirculation
∝ ur Ω. The values are markedly smaller than NuΩ, but
the most striking feature is the clear-cut scaling law
Nu�Ω ∼

ffiffiffiffiffiffi
Ta

p
, now satisfied independently of the magnetic

field with an exponent 1=2 constant over two decades. This
can be regarded as a measure of the angular momentum
transport solely due to the turbulence in the bulk. Note that
the open symbols correspond to the low frequency

FIG. 3. Nusselt number NuΩ versus Taylor number Ta for
typical applied magnetic fields B0 ¼ ½40; 80; 110 mT�, compared
to theoretical predictions.
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oscillation reported in [23], which does not follow
Kraichnan’s prediction, as expected.
Previous experiments pointed out contrasting conclu-

sions on the role of the boundary-driven recirculation:
while some studies [13] reported large angular momentum
transport and turbulence in TC flows through torque
measurements, others [3,32] have concluded from velocity
measurements in the bulk that well-controlled quasi-
Keplerian flows cannot efficiently transport angular
momentum. More recently, both numerical [17] and exper-
imental [33] studies partly reconcile this contradiction, by
showing that the turbulence in quasi-Keplerian flows at
large Re tends to recede to the boundary layers, thus,
leaving a relatively laminar bulk [34]. Our results offer a
different perspective to this long-standing controversy: the
predominance of JΩ over J�Ω also confirms that midplane
measurements, such as the torque measured in the central
section in [13], will most likely be dominated by poloidal
recirculation, in our case driven by the Bödewadt boundary
layers [23].
As long as the electric current is kept large enough to

produce a turbulent regime, increasing the magnetic field
brings the flow into two-dimensional turbulence and
provides an effective means of reducing this secondary
flow, as illustrated by Fig. 3. The total torque is then close
(although slightly different) to Kraichnan’s regime. On the
other hand, in contrast to [3], the bulk flow in our
experiment is never laminar, as shown by Fig. 4 in which
a viscosity-free ultimate regime is observed when poloidal
recirculation is ignored.

The present experiment should not be regarded as a study
of the transition to turbulence in Taylor-Couette setups or in
accretion disks, which both correspond to different sys-
tems. However, it provides a turbulent flow exhibiting a
mean Keplerian rotation rate and a diffusivity-free transport
of angular momentum, two properties presumably satisfied
by accretion disks, independently of the mechanism for the
transition to turbulence. A central question is, then, to
understand to what extent the present laboratory experi-
ment can be extrapolated to astrophysics. Following
[6,12,35,36], we define a dimensionless energy dissipation
(sometimes called β) as G�=Re2 ¼ ν−2JΩ�=Re2, where G�
is a dimensionless torque applied to the fluid. This quantity
is related to the accretion rates _M of disks by G�=Re2 ¼
_M= _M0 (see Supplemental Material [24]), and any deviation
from G� ∼ Re2 can be interpreted as an effect of the
viscosity. Similarly, we have also computed the quantity
G=Re2 ¼ ν−2JΩ=Re2 taking into account the effect of the
poloidal recirculation. Figure 5 first shows that, except for
B0 ¼ 40 mT, this dimensionless energy dissipation
seems to rapidly converge to a plateau, as expected for a
viscosity-free regime. The two horizontal lines indicate the
range of values given by Fig. 6 of Paoletti et al. [13], which
gathers data obtained from quasi-Keplerian TC flows
(G=Re2 ∼ 10−3, dash-dotted line) to counter-rotating cyl-
inders (G=Re2 ∼ 3 × 10−2, dashed line). Our results for the
total dissipation G=Re2 ≈ 1.8 × 10−2, dominated by the
poloidal recirculation, correspond to the upper bound of
this previous work, related to Rayleigh-unstable Taylor-
Couette flows. The dissipation due to bulk turbulence,

FIG. 4. Fluctuation-based Nusselt number Nu�Ω versus
Taylor number Ta for typical applied magnetic fields B0 ¼
½40; 80; 110 mT�. The red dashed line corresponds to the ultimate
regime NuΩ ∝

ffiffiffiffiffi
Ta

p
, only observed for large enough B0 and Ta.

Open symbols correspond to the oscillatory regime (see text).
Inset: compensated scaling law.

FIG. 5. Dimensionless energy dissipation G=Re2 and G�=Re2
versus Re. The dashed lines indicate the range of values obtained
by Paoletti et al. [13] for both quasi-Keplerian and Rayleigh-
unstable flows. The flow tends to an ultimate regime as the
applied field is increased. (*) denotes G�=Re2 values. Open
symbols correspond to the oscillatory regime (see text).
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G�=Re2 ∼ 4 × 10−4, is much smaller and relatively close to
the results obtained previously for quasi-Keplerian TC
flows. This weak value, comparable to the lower bound
obtained for disks around T Tauri stars [36], may be
regarded as an accurate prediction for the turbulent trans-
port in accretion disks, for which no recirculation is
present.
By exhibiting an ultimate transport of angular momen-

tum in a turbulent and magnetized Keplerian thin disk, the
KEPLER experiment provides an interesting laboratory
analog of accretion disks. Naturally, these results do not
aim at investigating the origin of the turbulence in astro-
physical disks but are likely to provide an interesting new
constraint to the amount of angular momentum that can be
transported by the turbulent fluctuations of a Keplerian
disk. In this regard, it would be interesting to precisely
compare these results to recent investigations claiming that
some disks may be in a regime of weak turbulence [19].
Finally, by increasing both the size of the disk and the
conductivity of the fluid, the Keplerian flow reported here
may become MRI-unstable. Such an electromagnetically
driven MRI has been previously proposed as a promising
setup due to the reduction of boundary effects by the
presence of the Lorentz force. [37]. It would be interesting
to see the effect of the corresponding Maxwell stress on the
angular momentum transport in such a large scale
experiment.
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