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Morphology of field reversals in turbulent dynamos
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Abstract – We show that the modes involved in the dynamics of reversals of the magnetic field
generated by the flow of an electrically conducting fluid in a spherical domain, strongly depend on
the magnetic Prandtl number Pm, i.e., the ratio between viscous and magnetic diffusivities. For
Pm ∼ 1, the axial dipolar field reverses in the presence of a strong equatorial dipolar component,
whereas for Pm < 0.5, field reversals mostly involve axisymmetric modes, axial magnetic dipole
and quadrupole coupled through a broken symmetry of the flow. Using symmetry arguments, we
write a dynamical system for these three modes that qualitatively reproduces the main features
of the reversals observed in direct simulations for small Pm.

Copyright c© EPLA, 2010

Introduction. – The generation of magnetic field
by the flow of an electrically conducting fluid, i.e., the
dynamo effect, has been mostly studied to understand
the magnetic fields of planets and stars [1]. The Earth
and the Sun provide the best documented examples: they
both involve a spatially coherent large-scale component
of magnetic field with well-characterized dynamics. The
Earth’s dipole is roughly stationary on time scales much
larger than the ones related to the flow in the liquid core,
but randomly flips. Field reversals also occur for the Sun
but nearly periodically. It has been observed recently that
the magnetic field generated by a von Karman flow of
liquid sodium (VKS experiment) can display either peri-
odic or random reversals [2]. The ability of all these very
different dynamos to reverse polarity is their most striking
property. This is obviously related to theB→−B symme-
try of the equations of magnetohydrodynamics (MHD),
implying that if a magnetic field B is a solution for a
given flow, −B is another solution with the same flow.
However, this does not explain how these two solutions
can be connected as time evolves. Direct simulations of
the MHD equations for a convective flow in a rotating
sphere have displayed several possible mechanisms: a
magnetic field with a quadrupolar symmetry midway
through the transition between the two opposite dipoles
has been reported [3]. It has been found that this type
of reversals are triggered by events that break the equa-
torial symmetry of the flow [4]. However, it has also been

observed in other simulations that each reversal “can differ
greatly in various aspects from others” [5]. In contrast,
reversals observed in the VKS experiment have been found
to be very robust. Despite large turbulent fluctuations
of the flow, successive reversal trajectories can be super-
imposed and thus display the same morphology [2]. A
possible explanation for these different behaviors relies on
the value of the magnetic Prandtl number Pm = µ0σν,
where µ0 is the magnetic permeability of vacuum, σ is
the electrical conductivity of the fluid and ν is its kine-
matic viscosity. Thus, Pm is the ratio between viscous and
magnetic diffusivities. The numerical simulations of the
Earth’s magnetic-field reversals have been performed so
far for Pm of order one or larger. For liquid metals in
laboratory experiments or Earth’s core, Pm ∼ 10−5–10−6
cannot be achieved in numerical simulations owing to
computational limitations. The purpose of this work is to
show that even on the relatively narrow range of Pm acces-
sible to direct simulations, the magnetic modes involved
in field reversals, and thus the reversals’ morphology, are
indeed strongly modified when Pm is varied. To wit, we
simulate a flow driven in a spherical geometry by volumic
forces. We observe reversals of the generated magnetic field
for a wide range of parameters. We show that reversals of
the magnetic dipole involve a coupling with a quadrupole
mode only for Pm small enough. In that case, we present
a minimal three-mode model for the reversal dynam-
ics. When Pm is larger, as in most previous numerical
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Fig. 1: Magnetic-field lines obtained with a symmetric forcing
(C = 1) for Rm = 300 and Pm = 1. Note that the field involves
a dipolar component with its axis aligned with the axis z of
rotation of the propellers.

simulations, many modes are involved in the dynamics and
in particular an equatorial dipole.

Direct simulation of reversals of the magnetic
field. – The MHD equations are integrated in a spherical
geometry for the solenoidal velocity v and magnetic B
fields,

∂v

∂t
+(v ·∇)v=−∇π+ ν∆v+ f + 1

µ0ρ
(B ·∇)B, (1)

∂B

∂t
=∇× (v×B)+ 1

µ0σ
∆B. (2)

In the above equations, ρ is the density, µ0 is the magnetic
permeability and σ is the electrical conductivity of the
fluid. The forcing is f = f0 F, where Fφ = s2 sin(πsb) ,
Fz = ε sin(πsc), for z > 0, and opposite for z < 0. We
use polar coordinates (s,φ, z), normalized by the radius
of the sphere a. Fφ generates counter-rotating flows in
each hemisphere, while Fz enforces a strong poloidal
circulation. The forcing is only applied in the region
0.25a< |z|< 0.65a, s < s0. In the simulations presented
here, s0 = 0.4, b−1 = 2s0 and c−1 = s0. This forcing has
been used to model the Madison experiment [6]. It is
invariant by rotation of an angle π along any axis in the
mid-plane, hereafter called the Rπ symmetry. In order to
break it, we consider in the present study a forcing of the
form Cf , where C = 1 for z < 0 but can be different from
one for z > 0. This describes two propellers that counter-
rotate at different frequencies. Although performed in a
spherical geometry, this simulation involves a mean flow
with a topology similar to that of the VKS experiment.
We solve the above system of equations using the Parody
numerical code [7]. This code was originally developped
in the context of the geodynamo (spherical shell) and
we have modified it to make it suitable for a full sphere.
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Fig. 2: Time recording of the axial dipolar magnetic mode (in
black), the axial quadrupolar mode (in blue) and the equatorial
dipole (in red) for Rm = 300, Pm = 1 and C = 2.

We use the same dimensionless numbers as in [6], the
magnetic Reynolds number Rm = µ0σamax(|v|), and
the magnetic Prandtl number Pm = νµ0σ. The kinetic
Reynolds number is then Re=Rm/Pm. In contrast to [8]
where the dynamo onset has been studied for laminar
flows (small Re) for large enough Pm, all the simulations
of the present study are performed for Re> 300, so that
an axial dipole is obtained for symmetric forcing (C = 1)
as displayed in fig. 1. We observe that the magnetic
field bifurcates supercritically. For Rm 50% above the
threshold, the ratio of the magnetic to kinetic energy is
10−3. This is in the same range as for the VKS experiment
but significantly less than for the geodynamo.
We next break the Rπ symmetry of the forcing. Time

recordings of some components of the magnetic field
are displayed in fig. 2 for Rm = 300, Pm = 1 and C = 2,
which means that one of the propellers is spinning twice
as fast as the other one. We observe that the axial
dipolar component (in black) randomly reverses sign.
The phases with given polarity are an order of magnitude
longer than the duration of a reversal that corresponds
to an Ohmic diffusion time. The magnetic field strongly
fluctuates during these phases because of hydrodynamic
fluctuations. It also displays excursions or aborted
reversals, i.e., the dipolar component almost vanishes or
even slightly changes sign but then grows again with its
direction unchanged. All of these features are observed in
paleomagnetic records of the Earth’s magnetic field [9]
and also in the VKS experiment [2]. Despite their different
geometries, a common feature of the simulations and the
VKS experiment is that time dependent dynamics are
observed only when the two propellers counter-rotate
at different frequencies. However, the simulation for
Pm = 1 also displays strong differences with the VKS
experiment. The equatorial dipole is the mode with
the largest fluctuations whereas the axial quadrupolar
component is an order of magnitude smaller than the
dipolar modes. In addition, it does not seem to be coupled
to the axial dipolar component. In contrast, the axial
dipolar and quadrupolar modes are the dominant ones
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Fig. 3: Time recordings of the axial dipole (black), the axial quadrupole (blue) and the equatorial dipole (red). Left: Rm = 165,
Pm = 0.5 and C = 1.5. Right: Rm = 180, Pm = 0.5 and C = 2.

and strongly coupled in the reversals observed in the VKS
experiment [10].
We now turn to simulations using smaller values of
Pm, thus introducing a distinction between the viscous
and ohmic timescales. The time evolution of the magnetic
modes for Rm = 165, Pm = 0.5 and C = 1.5 is represented
in fig. 3 (left). It differs significantly from the previous case
(Pm = 1). First of all, the quadrupole is now a significant
part of the field, and reverses together with the axial
dipole. The equatorial dipole remains comparatively very
weak and unessential to the dynamics. One can argue that
Rm has also been modified when changing Pm from 1
to 0.5. However, for Pm = 1, we have observed the same
dynamics of reversals when Rm has been decreased down
to Rm = 220 below which reversals are not observed any
more.
The high amount of fluctuations observed in these

signals is related to hydrodynamic fluctuations. One could
be tempted to speculate that a higher degree of hydro-
dynamic fluctuations necessarily yields a larger reversal
rate. Such is in fact not the case. A more sensible approach
could be to try to relate the rate of reversals to the amount
of fluctuations of the magnetic modes in a phase with
given polarity. Increasing Rm from 165 to 180 does yield
larger fluctuations as shown in fig. 3 (right). However the
reversal rate is in fact lowered because C was modified to
C = 2. This clearly shows that the asymmetry parameter
C plays an important role in addition to the fluctuations
of the magnetic field. For Pm = 0.5, reversals occur only in
a restricted region, 1.1<C < 2.5, which is also a feature of
the VKS experiment. The reversal rate strongly depends
on the value of C with respect to these borders, in
good agreement with the model presented in [11]. Thus,
the transition from a stationary regime to a reversing
one is not generated by an increase of hydrodynamic
fluctuations.
Let us now investigate the details of a polarity reversal

(fig. 4). Interestingly the dipolar and quadrupolar compo-
nents do not vanish simultaneously. Instead the decrease
of the dipole is associated with a sudden increase of the
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Fig. 4: Time recordings of the axial dipole (black), the axial
quadrupole (blue) and zonal velocity (yellow) during a reversal.
Rm = 165, Pm = 0.5 and C = 1.5.

quadrupolar component, related with a burst of activity
in the axisymmetric zonal velocity mode breaking the
Rπ symmetry (i.e., linearly coupling the dipolar and
quadrupolar families). The quadrupole quickly decays as
the dipole recovers with a reversed polarity. Immediatly
after the reversal the dipole systematically overshoots its
mean value during a polarity interval. This behavior of the
magnetic modes is typical of reversals obtained with this
value of Pm and is in excellent agreement with the model
presented in [11].

A three-mode model of magnetic-field reversals
in the limit of small Pm. – These direct numerical
simulations illustrate the role of the magnetic Prandtl
number in the dynamics of reversals. When Pm is of order
one, the magnetic perturbations due to the advection of
magnetic-field lines by the velocity field, evolve with a
time scale similar to the one of the velocity fluctuations.
We thus expect these two fields to be strongly coupled.
Modification of the magnetic-field lines due to their
advection by a local fluctuation of the flow can then
trigger a reversal of the field [12]. This type of scenario
has been observed in some direct numerical simulations
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Fig. 5: Numerical integration of the amplitude equa-
tions (3)–(5). Time recording of the amplitude of the quadru-
polar mode for µ= 0.119, ν = 0.1 and Γ= 0.9.

of the geodynamo, usually performed with Pm larger
than one [13]. When Pm is small, magnetic perturbations
decay much faster and we expect only the largest-scale
magnetic modes to govern the dynamics. To illustrate this
argument in a more quantitative way, we have computed
the correlation r of the axial dipole and quadrupole for
Re= 330 and 0.3<Pm < 1. r is obtained by dividing the
covariance of the real parts of both modes by the product
of their standard deviations. When Pm is decreased from
1 to 0.3, r increases from 0.4 to 0.9.
We now write the simplest dynamical system that

involves the three modes that display correlation in the
low Pm simulations: the dipole D, the quadrupole Q, and
the zonal velocity mode V that breaks the Rπ symmetry.
These modes transform as D→−D, Q→Q and V →−V
under the Rπ symmetry. Keeping nonlinear terms up to
quadratic order, we get

Ḋ= µD−V Q, (3)

Q̇=−νQ+V D, (4)

V̇ = Γ−V +QD. (5)

A nonzero value of Γ is related to a forcing that breaks
the Rπ symmetry, i.e. propellers rotating at different
speeds. The dynamical system (3)–(5) with Γ= 0 occurs in
different hydrodynamic problems and has been analyzed
in detail [14]. The relative signs of the coefficients of the
nonlinear terms have been taken such that the solutions
do not diverge when µ> 0 and ν < 0. Their modulus
can be taken equal to one by appropriate scalings of the
amplitudes. The velocity mode is linearly damped and its
coefficient can be taken equal to −1 by an appropriate
choice of the time scale. Note that similar equations were
obtained with a drastic truncation of the linear modes of
MHD equations [15]. However, in that context µ should
be negative and the damping of the velocity mode was
discarded, thus strongly modifying the dynamics.
This system displays reversals of the magnetic modes D

and Q for a wide range of parameters. A time recording
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Fig. 6: Numerical integration of the amplitude equa-
tions (3)–(5). Top: three-dimensional phase space. Bottom:
probability density function of D (µ= 0.119, ν = 0.1 and
Γ= 0.9).

is shown in fig. 5. The mechanism for these reversals
results from the interaction of the modes D and Q coupled
by the broken Rπ symmetry when V %= 0. It is thus
similar to the one described in [11] but also involves an
important difference: keeping the damped velocity mode
into the system generates chaotic fluctuations. It is thus
not necessary to add external noise to obtain random
reversals. This system is fully deterministic as opposed
to the one of reference [11]. The phase space displayed
in fig. 6 (top) shows the existence of chaotic attractors
in the vicinity of the ±B quasi-stationary states. When
these symmetric attractors are disjoint, the magnetic field
fluctuates in the vicinity of one of the two states ±B
and the dynamo is statistically stationary. When µ is
varied, these two attractors can get connected through a
crisis mechanism, thus generating a regime with random
reversals [16].
We do not claim that this minimal low order system

fully describes the direct simulations presented here. For
instance, in the case of exact counter-rotation (C = 1,
i.e. Γ= 0), eqs. (3)–(5) do not have a stable stationary
state with a dominant axial dipole. The different solu-
tions obtained when µ is increased cannot capture all
the dynamo regimes of the VKS experiment or of the
direct simulations when Rm is increased away from the

49001-p4



Morphology of field reversals in turbulent dynamos

threshold. Taking into account cubic nonlinearities
provides a better description of the numerical results for
Pm = 0.5. However, this three-mode system with only
quadratic nonlinearities involves the basic ingredients of
the reversals observed in the present numerical simulations
for low enough values of the magnetic Prandtl number.
Geomagnetic reversals have been modeled since a long
time using low-dimensional dynamical systems [15,17] or
equations involving a noisy forcing [11,18]. The above
model (3)–(5) does not rely on an external noise source
to generate random reversals. Compared to previous
deterministic models [15,17], it displays dynamical and
statistical properties that are much closer to the ones of
our direct simulations at low Pm or of the VKS experi-
ment. For instance, the direct recordings of D or Q do not
involve the growing oscillations characteristic of reversals
displayed by the Rikitake or Lorenz systems [17] but
absent in dynamo experiments or in direct simulations.
Correspondingly, the probability density function of D
displayed in fig. 6 (bottom) is also much closer to the one
obtained in experiments or direct simulations than the
one of previous deterministic models [16].

Conclusion. – We have shown that different types
of random reversals of a dipolar magnetic field can be
obtained by varying the magnetic Prandtl number in a
rather small range around Pm = 1. This may be of interest
for simulations of the magnetic field of the Earth that have
been mostly restricted to values of Pm larger than one.
We have observed that axisymmetric dipolar and

quadrupolar modes decouple from the other magnetic
modes while getting coupled together when Pm is
decreased. Although we do not claim to have reached
an asymptotic low Pm regime which is out of reach of
the present computing power, we observe that dominant
axial dipole and quadrupole are also observed in the VKS
experiment for which Pm ∼ 10−5.
Finally, using symmetry arguments, we have written

a three-mode dynamical system for the dipolar and
quadrupolar magnetic modes coupled together with a
zonal velocity mode. This model differs from the one
in [11] because the random field reversals are not induced
by external noise but by deterministic chaos. It also differs
from the previous low-dimensional models, the shape of
the reversals and their probability density function being
much closer to the experimental observations.
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