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When averaged on a few thousands years, the Earth’s magnetic field can be
roughly described as the one of an axial dipole. As shown by paleomagnetic
records, it has frequently reversed its polarity on geological time scales. Field
reversals have also been reported in several numerical simulations of the geo-
dynamo and more recently, in a laboratory experiment involving a von Kar-
man swirling flow of liquid sodium (VKS). We first recall some of the main
experimental results and understand them using phenomenological models
and numerical simulations. In particular, we show that all the regimes of the
magnetic field observed in the experiments reported so far, can be understood
in the framework of low dimensional dynamical system theory: two modes of
the magnetic field, with dipolar (respectively quadrupolar) symmetry, can be
generated by the turbulent flow of liquid sodium, and their interaction can
lead to the observed dynamics (oscillations, random reversals, symmetric or
asymmetric bursts). Turbulent fluctuations alone do not drive these dynamical
regimes that only occur when a symmetry of the flow is broken. Although the
flow in the Earth’s core strongly differs from the one of the VKS experiment,
a similar model but based on a different broken symmetry, can be used. It
explains several features observed in paleomagnetic recordings of the Earth’s
magnetic field reversals.

1 A dynamo generated by a von Karman swirling flow

The generation of magnetic field by the flow of an electrically conducting
fluid, i.e., the dynamo effect, is an instability that has been mostly studied to
understand the magnetic fields of planets and stars [1]. Flows in the interiors
of planets or stars have huge kinetic Reynolds numbers, Re = V L/ν, where
V is the typical velocity, L is its integral length scale and ν is the kinematic
viscosity. For instance, Re ∼ 109 in the Earth’s liquid core or Re ∼ 1015

in the convective zone of the Sun. The main control parameter for dynamo
action is the magnetic Reynolds number, Rm = μ0σV L. It relates transport
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and stretching of the magnetic field by the flow to Ohmic diffusion (σ is
the electrical conductivity and μ0

Pm = Rm/Re = μ0σν is the magnetic Prandtl number of the fluid. For
planetary or stellar interiors, Pm < 10−6. For liquid metals used in laboratory
experiments, its maximum value is obtained with liquid sodium Pm ∼ 10−5.
A necessary condition for dynamo action being Rm large enough in order to
overcome Ohmic dissipation (in the range 10 − 100 for many dynamos), the
dynamo threshold can be reached only when the flow is strongly turbulent (Re
of order 106 or larger). This provides both the difficulty and the interest of the
problem. An instability that develops on a fully turbulent flow involves several
open questions: Do turbulent fluctuations inhibit or enhance the growth rate of
the magnetic field? What is the magnetic energy density that can by generated
by a turbulent flow [2]? At which spatial scales is it maximum [3]? The first
successful experiments on fluid dynamos involved flows with a geometrical
confinement to aim at the suppression of large scale turbulence [4]. In contrast,
the motivation for the von Karman geometry was to study the generation of a
magnetic field by a strongly turbulent flow. The flow of liquid sodium is driven
in a cylinder by two counter-rotating disks fitted with eight blades (see figure
1a). Re ∼ 5 106, thus Rm ∼ 50 can be reached, and turbulent fluctuations are
comparable to the mean flow (time averaged). The motivation for choosing
this flow resulted from its strong differential rotation and the absence of mirror
symmetry (in the counter-rotating case). In addition, this flow was known to
generate tornado-like vorticity filaments [5] involving large velocity increments
as displayed by pressure measurements [6]. All these features were known to
favor dynamo action [7]. The generation of magnetic field by the VKS flow
has been widely reported [8, 9, 10, 11] and we refer to these publications
for a description of the experimental results. Our purpose here is to present
various models and numerical simulations that provide an explanation for
several experimental observations.

Fig. 1. a) Sketch of the von Karman swirling flow geometry. b) Sketch of the mean
magnetic field generated for exact counter-rotation of the propellers, F1 = F2.

is the magnetic permeability of vacuum).
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2 Geometry of the mean magnetic field: equatorial

versus axial dipoles

flow and to understand the underlying mechanisms were presented in [12]. An
equatorial dipole was found (as the one displayed in figure 2 (left) whereas
the magnetic field observed in the experiment involved a strong axial dipolar
component (see figure 1, right). These calculations were based on the mean
flow of the VKS experiment. This one being axisymmetric, the generated
magnetic field should break axisymmetry according to Cowling theorem [7]
and this is achieved by an equatorial dipole. The experimental observation
of an axial dipole thus shows that non axisymmetric velocity fluctuations
play an important role in the VKS dynamo that is not generated by the
mean flow alone. It has been proposed that the vortical flow radially ejected
by the blades of the rotating impellers generate an axial mean field from an
α−ω mechanism [13]. This mechanism has been qualitatively illustrated using
the mean field induction equation [14]. It has been checked using the direct
numerical simulation displayed in figure 2 (right) [15]. It has been also shown
by direct simulations of a flow generated by two propellers in a spherical
domain, that an axial dipole is generated as soon as turbulent fluctuations
are large enough [16].

Fig. 2. Numerical simulations of the magnetic field at dynamo threshold: left: an
equatorial dipole is obtained when only the mean flow is taken into account. Right:
an axial dipole is generated when non axisymmetric components in the form of
vortices generated by the blades are included in the velocity field.

Thus, the VKS dynamo is not generated by the mean flow alone in contrast
to Karlsruhe and Riga experiments, and non-axisymmetric fluctuations play
an essential role in the dynamo process. Note also that it has been observed so
far only when impellers made of soft iron have been used. It has been shown

Several early attempts to predict the magnetic field generated by the VKS
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that magnetic boundary conditions corresponding to the high permeability
limit significantly decrease the dynamo threshold [17]. However, other mech-
anisms due to the iron disks can be also put forward (see for instance [13]).

3 Broken symmetries and dynamics of the large scale

magnetic field

The most striking feature of the VKS experiment is that time dependent
magnetic fields are generated only when the impellers rotate at different fre-
quencies [9]. We will show that this can be related to the additional invari-
ance under Rπ when F1 = F2 (rotation of an angle π along any axis in the
mid-plane). We indeed expect that in that case, the modes involved in the
dynamics are either symmetric or antisymmetric. Such modes are displayed
in figure 3. A dipole is changed to its opposite by Rπ, whereas a quadrupole
is unchanged. More generally, we name “dipole” (respectively “quadrupole”),
modes with dipolar (respectively quadrupolar) symmetry even though they
might involve a more complex spatial structure.
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Fig. 3. Possible eigenmodes of the VKS experiment. The two disks counter-rotate
with frequency F1 and F2. Left: magnetic dipolar mode. Right: magnetic quadrupo-
lar mode. Poloidal, BP , and toroidal, Bθ , components are sketched.

We assume that the magnetic field is the sum of a dipolar component
with an amplitude D and a quadrupolar one, Q. We define A = D + i Q and
we assume that an expansion in power of A and its complex conjugate Ā is
pertinent close to threshold in order to obtain an evolution equation for both
modes. Taking into account the invariance B→ −B, i.e. A→ −A, we obtain

Ȧ = μA + νĀ + β1A
3 + β2A

2Ā + β3AĀ2 + β4Ā
3 , (1)

where we limit the expansion to the lowest order nonlinearities. In the general
case, the coefficients are complex and depend on the experimental parameters.
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Symmetry of the experiment with respect to Rπ when the disks exactly
counter-rotate, amounts to constraints on the coefficients. Applying this trans-
formation to the magnetic modes, changes D into −D and Q into Q, thus
A → −Ā. We conclude that, in the case of exact counter-rotation, all the
coefficients are real. When the frequency difference f = F1 − F2 is increased
from zero, we obtain that the real parts of the coefficients are even and the
imaginary parts are odd functions of f . When the coefficients are real, the
growth rate of the dipolar component is μr + νr and that of the quadrupolar
component is μr − νr. The dipole being observed for exact counter-rotation
implies that νr > 0 for f = 0. By increasing f , we expect that νr changes
sign and favors the quadrupolar mode according to the experimental results
(see figure 3 in [10]). We will explain in the next section how modifying the
parameters of (1) leads to bifurcation to time dependent solutions.

4 A mechanism for oscillations and reversals

As shown in [18], the planar system (1) explains the dynamical regimes ob-
served so far in the VKS experiment [10]. It is invariant under the transforma-
tion B→ −B. Thus, in the case of counter-rotating impellers, F1 = F2, it has
two stable dipolar solutions ±D and two unstable quadrupolar solutions ±Q.
When the frequency difference f is increased, these solutions become more
and more mixed due to the increase of the strength of the coupling terms
between dipolar and quadrupolar modes. Dipolar (respectively quadrupolar)
solutions get a quadrupolar (respectively dipolar) component and give rise to
the stable solutions ±Bs (respectively unstable solutions ±Bu) displayed in
figure 4. When f is increased further, a saddle-node bifurcation occurs, i.e. the
stable and unstable solutions collide by pairs and disappear. This generates a
limit cycle that connects the collision point with its opposite. This result can
be understood as follows: the solution B = 0 is unstable with respect to the
two different fixed points, and their opposite. It is an unstable point, whereas
one of the two bifurcating solutions is a stable point, a node, and the other is
a saddle. If the saddle and the node collide, say at Bc, what happens to initial
conditions located close to these points? They cannot be attracted by B = 0
which is unstable and they cannot reach other fixed points since they just
disappeared. Therefore the trajectories describe a cycle. The associated orbit
contains B = 0 since, for a planar problem, in any orbit, there is a fixed point.
Suppose that the orbit created from Bc is different from the one created by
−Bc. These orbits being images by the transformation B → −B, they must
intersect at some point. Of course, this is not possible for a planar system
because it would violate the uniqueness of the solutions. Therefore, there is
only one cycle that connects points close to Bc and −Bc.

This provides an elementary mechanism for field reversals in the vicinity of
a saddle-node bifurcation. First, in the absence of fluctuations, the limit cycle
generated at the saddle-node bifurcation connects ±Bc. This corresponds to
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Fig. 4. A generic saddle-node bifurcation in a system with the B→ −B invariance:
below threshold, fluctuations can drive the system against its deterministic dynamics
(phase a). If the effect of fluctuations is large enough, this generates a reversal
(phases b and c). Otherwise, an excursion occurs (phase a’).

periodic reversals. Slightly above the bifurcation threshold, the system spends
most of the time close to the two states of opposite polarity ±Bc. Second, in
the presence of fluctuations, random reversals can be obtained slightly below
the saddle-node bifurcation. Bu being very close to Bs, even a fluctuation of
small intensity can drive the system to Bu from which it can be attracted by
−Bs, thus generating a reversal.

The effect of turbulent fluctuations on the dynamics of the two magnetic
modes governed by (1) can be easily modeled by adding some noisy component
to the coefficients [18]. Random reversals are displayed in figure 5 (left). The
system spends most of the time close to the stable fixed points ±Bs. We
observe in figure 5 (right) that a reversal consists of two phases. In the first
phase, the system evolves from the stable point Bs to the unstable point
Bu (in the phase space sketched in figure 4). The deterministic part of the
dynamics acts against this evolution and the fluctuations are the motor of the
dynamics. That phase is thus slow. In the second phase, the system evolves
from Bu to −Bs, the deterministic part of the dynamics drives the system
and this phase is faster.

The behaviour of the system close to Bs depends on the local flow. Close
to the saddle-node bifurcation, the position of Bs and Bu defines the slow
direction of the dynamics. If a component of Bu is smaller than the corre-
sponding one of Bs, that component displays an overshoot at the end of a
reversal. In the opposite case, that component will increase at the beginning
of a reversal. For instance, in the phase space sketched in figure 4, the compo-
nent D decreases at the end of a reversal and the signal displays an overshoot.
The component Q increases just before a reversal.

For some fluctuations, the second phase does not connect Bu to −Bs but
to Bs. It is an aborted reversal or an excursion in the context of the Earth
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dynamo. Note that during the initial phase, a reversal and an excursion are
identical. In the second phase, the approaches to the stationary phase differ
because the trajectory that links Bu and Bs is different form the trajectory
that links Bu and −Bs. In particular, if the reversals display an overshoot
this will not be the case of the excursion (see figure 5 (right) and the sketch
of the cycle in figure 4).

Other regimes observed in the VKS experiment such as symmetric or asym-
metric bursts [10] have been also described in the vicinity of more complex
bifurcations of equation (1) [18].
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Fig. 5. Reversals of the magnetic field modeled by (1).

5 A simple model for Earth’s magnetic field reversals

The above model of reversals of magnetic field in the vicinity of a saddle-node
bifurcation in a system with the invariance B → −B explains many intrigu-
ing features of the reversals of Earth magnetic field [19]. The most significant
output is that the mechanism predicts specific characteristics of the field ob-
tained from paleomagnetic records [20], in particular their asymmetry: the
Earth’s dipole decays on a slower time scale than it recovers after a reversal.
In addition, it displays an overshoot that immediately follows the reversals.
Other characteristic features such as excursions as well as the existence of
superchrons are understood in the same framework.

Although the symmetries of the flow in the Earth’s core strongly differ
from the ones of the VKS experiment, dipolar and quadrupolar modes can
be defined with respect to equatorial symmetry such that model (1) can be
transposed for Earth’s magnetic field. From an analysis of paleomagnetic data,
it has been proposed that reversals involve an interaction between dipolar and
quadrupolar modes [21]. We thus obtain an interesting prediction about the
liquid core in that case: if reversals involve a coupling of the Earth’s dipole
with a quadrupolar mode, then this requires that the flow in the core has
broken mirror symmetry. In contrast, another scenario has been proposed in
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which the Earth’s dipole is coupled to an octupole, i.e., another mode with
a dipolar symmetry. This does not require additional constraint on the flow
in the core in the framework of our model. In any case, the existence of two
coupled modes allows the system to evolve along a path that avoids B = 0.
In physical space, this means that the total magnetic field does not vanish
during a reversal but that its spatial structure changes.

Finally, we note that reversals are also observed in purely hydrodynamic
systems, in which a large scale flow driven by a turbulent background in
thermal convection or in periodically driven flows, randomly reverses its di-
rection [22]. A similar type of models can be used to understand the large
scale dynamics that result from these bifurcations from turbulent flows.
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