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Effect of magnetic boundary conditions on the dynamo threshold
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Abstract – We study the effect of different boundary conditions on the kinematic dynamo
threshold of von Kármán type swirling flows in a cylindrical geometry. Using an analytical test
flow, we model different boundary conditions: insulating walls all over the flow, effect of sodium
at rest on the cylinder side boundary, effect of sodium behind the impellers, effect of impellers
or side wall made of a high-magnetic-permeability material. We find that using high-magnetic-
permeability boundary conditions decreases the dynamo threshold, the minimum being achieved
when they are implemented all over the flow.
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Dynamo action, i.e., self-generation of magnetic field
by the flow of an electrically conducting fluid, is at the
origin of planetary, stellar and galactic fields [1]. Fluid
dynamos have been observed only recently in laboratory
experiments in Karlsruhe [2] and Riga [3] by geometri-
cally constraining the flow lines in order to mimic laminar
flows that were known analytically for their dynamo effi-
ciency [4]. More recently, the VKS experiment displayed
self-generation in a less constrained geometry, e.g. a von
Kármán swirling flow generated between two counter-
rotating impellers in a cylinder [5]. However, until now,
dynamo action in the VKS geometry has been found only
when the impellers are made of soft iron. It is thus of
primary importance to understand how the dynamo prob-
lem is modified by the presence of magnetic material at
the flow boundaries. We address this problem here using
a kinematic dynamo code in a cylindrical geometry. Two
important approximations are made to simplify the study.
First, an analytic test flow that mimics the geometry of the
mean flow of the VKS experiment is considered. Second,
the magnetic boundary conditions are taken in the limit of
infinite magnetic permeability of the boundaries compared
to the one of the fluid. This seems a reasonable approxi-
mation for soft iron compared to liquid sodium. Our main
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result is that the critical magnetic Reynolds number, Rmc,
for dynamo generation is significantly decreased with
boundaries of high magnetic permeability all over the flow.
The VKS experimental set-up is sketched in fig. 1. A

turbulent von Kármán flow of liquid sodium is generated
by two counter-rotating impellers (rotation frequencies
F1 and F2). The impellers are made of iron disks of radius
154mm, fitted with 8 iron blades of height 41.2mm, and
are placed 371mm apart in an inner cylinder of radius
206mm and length 524mm. It is surrounded by sodium
at rest in another concentric cylindrical vessel, 578mm
in inner diameter. This has been shown to decrease the
dynamo threshold in kinematic computations based on the
mean flow velocity [6]. When the impellers are operated
at equal and opposite rotation rates F , a statistically
stationary magnetic field is generated above a magnetic
Reynolds number Rm ∼ 30 [5]. The large-scale field
involves an azimuthal component and a poloidal one
which is dominated by an axial dipole. This geometry has
been understood with a simple α−ω dynamo model [7]
by taking into account the helical nature of the flow that
is ejected by the centrifugal force close to each impeller
between successive blades. Relying on the mean flow alone
to compute the kinematic dynamo, smoothes out these
non-axisymmetric velocity fluctuations and thus cannot
generate an axisymmetric field according to Cowling
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Fig. 1: Sketch of the VKS experiment [5]. The inner and outer
cylinders are made of copper (in gray). The dimension are given
in millimeter (left) and normalized by the radius of the inner
cylinder (right).

theorem. A non-axisymmetric field is obtained, domi-
nated by an equatorial dipole [6,8].
When the disks are counter-rotating at the same

frequency, the structure of the mean flow (averaged
in time) has the following characteristics: the fluid
is ejected radially from the disks by the centrifugal
force and loops back towards the axis in the mid-plane
between the impellers. A strong differential rotation
is superimposed on this poloidal flow, which generates
a high shear in the mid-plane. We approximate the
experimental configuration with impellers of radius R
(i.e. extending up to the inner cylinder boundary). We
use cylindrical coordinates (s,φ, z). In this cylindrical
domain ([0, 1]× [0, 2π]× [−1, 1]), the flow is well described
by the following analytical expression:

u=∇× (ψ eφ)+ sω eφ , (1a)

with angular velocity ω and recirculation ψ, respectively,
given by

ω= 4 ε (1− s) sin
(
π
2 z
)
, (1b)

ψ=
s

2
(1− s)2 (1+2s) sin (πz) . (1c)

This flow has been shown to generate a similar kinematic
dynamo as the one computed using the experimentally
measured mean flow [9]. In the above expression, ε is a
parameter controlling the ratio between the poloidal and
toroidal components of the flow. We take ε= 0.7259 as
in previous numerical studies using this flow, in order
to minimize the critical magnetic Reynolds number for
dynamo threshold [9,10].
Although we are aware that the experimentally observed

dynamo cannot be captured with a kinematic calculation
using the mean flow alone, we use this simple model here
in order to study the effect of the magnetic boundary

conditions on the dynamo threshold. We hope that
the qualitative behaviors will be unchanged with other
dynamo modes in the presence of a turbulent flow.
We perform direct numerical simulations of kinematic

dynamos, solving the induction equation governing the
evolution of the solenoidal magnetic field B,

∂B

∂t
=Rm∇× (u×B)+∆B , (2)

written in dimensionless form, using the diffusive
timescale. The magnetic Reynolds number Rm is defined
as Rm= µ0σRUmax, where R is the cylindrical radius of
the domain of the flow defined by (1a–c) and Umax is the
peak velocity of the flow.
Equation (2) with the flow given by (1a–c) is solved

using a finite volume code adapted from [11]. To circum-
vent the severe CFL restriction induced by cylindrical
coordinates, we ensure numerical stability near the axis
using a low pass Fourier filter in the φ-direction. Also a
centered second-order scheme has been preferred fo to an
up-wind scheme to discretize the inductive term, as resis-
tive effects are here important enough to regularise the
solution. As in [11], we ensure that ∇ ·B = 0 is exactly
satisfied using a constraint transport algorithm. The finite-
volume solver is fully three-dimensional. We have not
used the decoupling of Fourier modes in the φ-direction.
The initial magnetic field obviously needs to satisfy
the divergence-free constraint as well as the boundary
conditions. In practice, an arbitrary divergent free field is
initialized away from all boundaries.
We investigate several types of magnetic boundary

conditions. The classical approach is to use insulating
boundaries, matching the internal magnetic field to
the vacuum magnetic potential. The continuity of the
magnetic field results in a non-local set of boundary
conditions, which can be expressed via a “Neumann to
Dirichlet” operator. We rely here on such an approach,
using the boundary element formalism, as introduced
in [12].
We investigate the effects introduced by using ferro-

magnetic boundaries. This boundary condition can be
expressed in a local form in the limit of infinite perme-
ability. Jump conditions at a boundary between media of
different magnetic permeability are well established

B ·n|2 =B ·n|1 , (3)

B×n|2 =
µ2
µ1
B×n|1 , (4)

where subscripts 1 and 2 denote the two different regions
and n is normal to the boundary. Ferromagnetic disks yield
µ$ µ0, one can therefore reasonably approximate these
jump relations, by using boundary conditions on the fluid
side of the form

B×n= 0 . (5)

This set of boundary conditions trivially implies that
normal currents vanish.
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We will consider the effect of iron disks in two different
ways. The first, and probably simpler, approach is to
assume that the field is normal to the disks, namely

B× ez = 0 , (6)

on the top and bottom of the cylinder. This boundary
condition is well known in magnetohydrodynamics, in
particular in the astrophysical community, and is sufficient
to close the system of equations we investigate. Another,
and more subtle approach, allows to take into account the
effect of the blades on the disks. Assuming that the field
becomes normal to radial blades as it approaches the end
of the cylinder yields

B× eφ = 0 . (7)

This is an extremely simplified approach which does not
take into account each individual blade, but accounts for
their average effect on the large-scale field. This set of
boundary conditions is far less common, and deserves
some care to ensure it provides the required constraints
on the field. The solenoidal nature of the magnetic field
(∇ ·B = 0), together with the fact that Bs is identically
zero on the boundary, then imply

∂Bφ
∂φ
=−s ∂Bz

∂z
. (8)

This yields the solvability condition

∮ 2π

0

∂Bz
∂z
dφ= 0 . (9)

As the flow we consider here is axisymmetric, modes in the
φ-direction decouple, and we know from Cowling’s theo-
rem that the magnetic eigenmode cannot be axisymmetric.
The solvability condition is therefore obviously satisfied
(this would not be the case for a non-linear simulation).
For non-axisymmetric modes, one can write

∮ 2π

0
Bφ dφ= 0 , (10)

which together with (8) determines the Bφ field
completely. The numerical implementation is twofold, we
first compute

B′φ(φ) =−s
∮ φ

0

∂Bz
∂z
dφ , (11)

up to an arbitrary constant. Then we correct this function
setting by the constant to meet (10).
This implementation is mathematically consistent and

maintains the divergence-free property of the magnetic
field. We shall, however, stress again that this very ideal-
ized condition can only be used here because the modes
decouple in the azimuthal direction and the axisymmetric
mode cannot be unstable.

Fig. 2: The magnetic eigenmode obtained with potential
boundary conditions. The rotation axis is vertical. An iso-
surface of the magnetic energy (25% of the maximum value) is
represented on the left. Magnetic-field lines are plotted on the
right.

The convergence of the numerical implementation has
been carefully validated comparing simulations at different
resolutions. We report results obtained with a resolution
of 200× 200× 256 points. When an additional domain of
sodium at rest is included, we use the same resolution in
the inner flow domain defined by (1a-c), which leads for the
full domain to 240 points in the radial direction and 250
points in the z-direction to maintain a uniform accuracy.
As in previous studies, all simulations yield magnetic

eigenmodes with an m= 1 azimuthal symmetry. The
structure of this eigenmode essentially corresponds to an
equatorial dipole. This mode is represented in fig. 2.
Previous numerical studies [13,14] compared the thresh-

old values in configurations including and excluding the
effect of fluid behind the disks. We reproduce here a simi-
lar behaviour of the threshold: using insulating boundary
conditions directly on the disks yields a threshold value
Rmc = 63. This last value is in good agreement with [14].
Adding a layer of thickness 0.25 of fluid at rest between
each disk and insulating boundaries increases the dynamo
onset up to Rmc = 72. This is illustrated in fig. 3. Simula-
tions, not discussed here, show that if the sodium behind
the disks is not at rest, the threshold is even further
increased.
When we consider the case of ferromagnetic disks, the

threshold for dynamo action is Rmc = 60.5 for a magnetic
field normal to the disks and Rmc = 58 for a magnetic
field in the φ-direction. These two thresholds are very
close and lower than in the case of a potential field (see
also fig. 3). We thus observe that the high-permeability
boundary condition on the disks appears to do more than
just screening the inhibition of electromagnetic induction
due to the flow behind the disks.
Implementation of a cylindrical layer of sodium at rest

on the side can easily be included in the simulations. Since
all electrical quantities are continuous, and in particular
there is no jump in the conductivity, this does not involve
any extra boundary condition. In some sense, the model
assumes a continuous fluid whose velocity field goes to
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Fig. 3: Growth rate of the magnetic field as a function of Rm
for different types of boundary conditions. We can see that
replacing sodium at rest behind the disks by vacuum leads to
a reduction of the dynamo threshold. Moreover, ferromagnetic
conditions lead to additional reduction of threshold (about
10% for azimuthal conditions). Note that using high-magnetic-
permeability boundary conditions on the disks but also on the
side yields the best configuration, with an onset at Rmc = 41.5.

Table 1: Dynamo thresholds for different types of boundary
conditions on the disks and on the sides of the cylinder. Bn and
Bφ denote ferromagnetic boundaries (respectively, normal to
the disks and normal to the blades), −∇Φ denotes the vacuum
condition and Na indicates the presence of a layer of sodium
at rest between the flow and the boundary. For the disks, cases
Na &Bφ , Na &Bn or Na&−∇Φ correspond to the presence of
a layer of sodium at rest, outside which the relevant boundary
condition is applied. The sodium lies behind the disks, and the
boundary conditions are implemented on the lids.

!!!!!!!!Disks
Side

Na &Bn Bn Na&−∇Φ −∇Φ

Bφ 39 41 45 58
Bn 40 41.5 45.5 60.5
−∇Φ 44 43.5 48.5 63
Na &Bφ 46 47 53 71
Na &Bn 47 47.5 53.8 71.5
Na&−∇Φ 47.5 48 54.7 72

zero outside a given domain. Table 1 reports critical para-
meters calculated for different combinations of boundary
conditions on the side and on the disks. The sodium at
rest leads to an important reduction of dynamo thresholds
when it is added on the side. It is known [10,13,14] that
this effect increases with the width of the layer, but satu-
rates relatively rapidly. In all the simulations presented,
the width of the layer of sodium at rest on the side is set
to 0.4 in order to study a configuration close to the VKS
experiment. This positive impact on the onset appears to
be independent of the boundary conditions on the disk.
Finally, observing the strong effect produced by ferro-

magnetic disks, it is tempting to investigate the effect of

high-permeability material for the entire vessel. We thus
perform simulations for which the magnetic field is normal
to all boundaries (see fig. 3). This configuration appears
to be the most efficient and it leads to a critical magnetic
Reynolds number Rmc = 41.5. It is clear from table 1 that
in the presence of sodium at rest, ferromagnetic bound-
aries still yield a strong reduction of the onset, despite
the fact that the boundary is now remote from the flow
domain. No significant modification of the global magnetic
structure can be observed in our simulations when we
compare ferromagnetic and vacuum boundary conditions.
The magnetic eigenmodes in the bulk are similar with both
sets of boundary conditions.
The effect of the electrical conductivity of the bound-

aries on the dynamo threshold has been studied since a
long time [15]. It has been shown that the addition of a
layer of electrically conducting fluid at rest around the
flow can either decrease or increase the threshold [16].
This has also been observed in the case of von Kármán
flows, depending on the location of the layer at rest [13,14].
Thus, general rules for the dependence of the dynamo
threshold on the electrical conductivity of the boundary
do not seem to exist. Such may not be the case with the
magnetic permeability of the bounding domain. Previous
studies on the Ponomarenko dynamo with high-magnetic-
permeability boundaries have displayed a decrease of
the threshold [17,18]. A similar improvement has been
observed in the case of convectively driven dynamos [19].
In the present study, we find that boundaries with a
high magnetic permeability always decrease the dynamo
threshold whatever their location.
Two important aspects of the VKS experiment are

not taken into account in the present study. First, the
magnetization of iron can lead to an additional amplifying
factor of the dynamo as discussed in [7]. However, the
coercitive field of pure iron being much smaller than
the fields generated by the dynamo, the iron disks do
not impose any permanent magnetization. Reversals of
the generated magnetic field are indeed observed [20].
Second, the geometry of the magnetic field generated in
the VKS experiment differs from the one computed from
the axisymmetric mean flow. Non-axisymmetric velocity
fluctuations generate a poloidal field with a dominant axial
dipole, together with a strong azimuthal component. Thus
the poloidal field is roughly normal to the disks, whereas
the toroidal field is normal to the blades. It would therefore
be of interest to check whether the dynamo threshold can
be reached by using only ferromagnetic disks or blades.
These two cases would correspond respectively to our
boundary conditions (6) and (7).
Another interesting set of modifications suggested by

this numerical study, would be to replace the copper side
wall by a ferromagnetic one in the VKS experiment. If the
experimentally realised dynamo mode behaves similarly
to the simulations, we expect the threshold to be even
lower in such configuration than that associated with only
ferromagnetic disks and blades.
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