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Abstract. The Von Kármán Sodium experiment yields a variety of dynamo regimes, when asymmetry is
imparted to the flow by rotating impellers at different speed F1 and F2. We show that as the intensity
of forcing, measured as F1 + F2, is increased, the transition to a self-sustained magnetic field is always
observed via a supercritical bifurcation to a stationary state. For some values of the asymmetry parameter
θ = (F1−F2)/(F1+F2), time dependent dynamo regimes develop. They are observed either when the forcing
is increased for a given value of asymmetry, or when the amount of asymmetry is varied at sufficiently high
forcing. Two qualitatively different transitions between oscillatory and stationary regimes are reported,
involving or not a strong divergence of the period of oscillations. These transitions can be interpreted
using a low dimensional model based on the interactions of two dynamo modes.

1 Introduction

While still being quite far from the parameter regime that
characterizes natural objects, dynamo experiments using
liquid metals have the advantage of having adjustable con-
trol parameters. They also display dynamical evolutions
that can be recorded over long durations compared to the
Joule characteristic time. The Riga [1] and Karlsruhe [2]
experiments have established the central role of helicity
and shear in the dynamo process, with dynamo character-
istics well predicted by laminar models – although the un-
derlying flows are turbulent, with a moderate turbulence
rate. In the recent VKS experiment (see [3] and references
therein), the situation is different since non axisymmetric
velocity components (in the bulk and near the impellers)
play a leading role in the magnetic field generation: the
observed axisymmetric dynamo mean field cannot be gen-
erated by the axisymmetric mean flow alone. Another cen-
tral observation in the VKS experiment lies in the variety
of dynamo regimes observed when the flow driving param-
eters and magnetic Reynolds number are varied [3]. We re-
port here on the bifurcations observed in the VKS dynamo
based on a thorough study of the parameter space. The
von Kármán flow of sodium is generated inside a cylinder
by the counter rotation of coaxial impellers at frequencies
(F1, F2) (see Fig. 1a). When both impellers rotate at the
same frequency F1 = F2, the driving and hence the mean
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Fig. 1. (Color online) Experimental setup, showing the loca-
tion of the Hall probes. x is the axial coordinate directed from
impeller 1 to impeller 2, r and φ the radial and azimuthal
coordinates.

flow structure are symmetric with respect to any rotation
Rπ of π around any radial axis in its equatorial plane.
When the frequencies F1 and F2 are different, this sym-
metry is broken. One possible variable to quantify this
asymmetry is the parameter θ = (F1 − F2)/(F1 + F2).
In addition, the choice of frequencies (F1, F2) imposes a
mean shear F = (F1 +F2)/2. When the parameters (F, θ)
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are varied, various types of dynamos are observed. We
concentrate on the following issues:

(i) characteristics of the bifurcation to a dynamo regime
when F increases, for a fixed value of the asymmetry
parameter θ. Our observation is that a (statistically)
steady dynamo is always generated first, via a super-
critical bifurcation. Time-dependent regimes can de-
velop as a secondary bifurcation when F is increased
further for particular intervals of θ.

(ii) Transition between dynamo regimes (above critical),
in particular changes from stationary to oscillatory dy-
namics when θ is varied at constant F .

In some cases, we observe a divergence of the period of os-
cillation during transitions or bifurcations. In other cases
the period remains finite.

The next section describes the experimental set-up and
gives a summary of the dynamo capacity of the various
flows configurations studied so far in the VKS experiment.
The parameter space and the bifurcations observed when
increasing the forcing at a given value of asymmetry are
presented in Section 3. Section 4 describes how the dy-
namo undergoes transitions between various regimes as
the asymmetry is varied at a given forcing. In Section 5,
we show that these observations can be understood using
the predictions of a low dimensional model, involving the
interactions of two dynamo modes. A final discussion is
given in Section 6.

2 Experimental set-up and configurations

2.1 Set-up

The present set-up is displayed in Figure 1. A von Kármán
swirling flow is generated in a cylindrical vessel (radius
Rvessel = 289 mm, length L = 604 mm) by two counter-
rotating impellers 371 mm apart. The flow is surrounded
by sodium at rest enclosed between the copper outer ves-
sel and an inner copper cylinder (radius Rcyl = 206 mm,
length H = 524 mm). The impellers are made of soft
iron disks (radius Rimp = 154.5 mm) fitted with 8 curved
blades with height h = 41.2 mm. Their rotation rate
can be adjusted independently to (F1, F2). The arrows
in Figure 1 define the positive rotation rate F1, F2 > 0.
It corresponds to the case where the curved blades are
counter-rotating and “unscooping” the fluid (pushing the
fluid with the convex side of the blades). The fluid is
liquid sodium (density ρ = 930 kgm−3, electrical con-
ductivity σ = 9.6 × 106 Ωm−1, kinematic viscosity ν =
6.7 × 10−7 m2 s−1, at 120 ◦C). The driving motor power
is 300 kW and cooling by an oil circulation inside the wall
of the outer copper vessel allows experimental operation
at constant temperature in the range 110–140 ◦C. This
set-up is a slightly modified version of the one previously
described in [3]: the inner copper ring that was located in
the mid-plane has been removed. A hydrodynamic study
of this configuration has been done in [4] and the influence
of the inner ring on the flow has been studied in details
in [5].

The magnetic field is measured with Hall probes in-
serted inside the fluid, as shown in Figure 1. Unless oth-
erwise stated, the measurements presented in this paper
were made using the probe at location 1. Because of the
small number of probes that were available for the exper-
imental data studied here, no statement will be made on
the spatial distribution of the observed dynamo modes.
They will only be distinguished by their amplitude and
time dynamics at the point of measurement.

In the following subsection, we give a brief summary
of the main results obtained with the different configura-
tions studied so far in VKS: the inner copper wall and
ring can be inserted or removed and the impellers ma-
terial can be varied independently. We define the kinetic
Reynolds number of the flow: Re = 2πRimpFR/ν with
R = Rcyl if the inner cylinder is present and R = Rvessel

otherwise. The corresponding magnetic Reynolds number
is defined in the same way: Rm = 2πRimpFRµ0σ, where
µ0 is the magnetic permeability of vacuum. This definition
is different from the one used in previous publications (it
leads to 25% higher values for Rm) but it was chosen here
because it contains explicitly the flow scale R and thus
allows quantitative comparisons between cases with and
without the inner cylinder. Since the asymmetry between
the rotation rates of the impellers is a key ingredient in the
results presented here, we also define individual magnetic
Reynolds numbers based on the velocity of each impeller:
Rm1,2 = 2πRimpF1,2Rµ0σ. Finally, note that the conduc-
tivity of sodium is quite sensitive to temperature varia-
tions in the vicinity of its melting point (±2% on Rm for
a temperature variation of ±6 ◦C around 125 ◦C). These
variations are taken into account in the computation of
Rm.

2.2 Configurations and dynamo capacity

The first observation of the dynamo effect in our experi-
ment was made with inner copper wall, inner ring and iron
impellers in place. By removing the inner ring, dynamo ac-
tion is observed for F1, F2 > 0, but the main change is that
no dynamo regime is observed when both impellers still
counter-rotate, but in the opposite (“scooping”) direction
(F1 = F2 < 0) up to the maximum operational power.
The disappearance of the dynamo regime with “scoop-
ing” blades is also observed in kinematic simulations us-
ing measured mean velocity fields in an equivalent water
experiment [6], although the context is different since the
dynamo modes in this case are non-axisymmetric. Note
that changing the direction of rotation of the impellers
changes the ratio of poloidal over toroidal components of
the velocity field because of the curvature of the blades.
In the case where the median copper ring is present, dy-
namo regimes are observed for both directions of rotation
of the impellers, although the thresholds differ by about
6%. These observations indicate that some aspects of the
flow structure (poloidal/toroidal ratio, position of recircu-
lation loops, stability of the shear layer, level of fluctua-
tions, ...) do play a role in the onset of the instability.
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Table 1. Summary of the dynamo/non dynamo regimes observed in the different VKS configurations. Label “A” corresponds
to the “unscooping” exact counter-rotating case (F1 = F2 > 0), label “B” to the “scooping” exact counter-rotating case
(F1 = F2 < 0), labels “C” and “D” to the cases with a single impeller rotating, respectively F1 > 0, F2 = 0 and F2 > 0, F1 = 0,
these two cases being different when two impellers of different materials are used (middle line in the table). Light grey cells are
cases where no data is available yet. The values indicated are either the observed critical impellers rotation rate when dynamo
is present, or the maximal rotation rate achieved, due to power limitations, without observing dynamo. The correspondance
between rotation rate and Rm, as defined in this paper, is indicated for each configuration. The dark grey cell corresponds to
the configuration presented in this paper.

Inner cylinder + ring Inner cylinder alone No inner cylinder, No ring

Impeller 1/impeller 2 (Rm = 2.42F @ 120 ◦C) (Rm = 2.42F ) (Rm = 3.40F )

SS/SS no dyn. @ F < 29 Hz no dyn. @ F < 28 Hz no dyn. @ F < 24 Hz

A: F c = 15 Hz

Iron/SS B: no dyn. @ F > −22 Hz

C: F c
1 = 17 Hz

D: no dyn. @ F2 < 25 Hz

A: F c = 17 Hz A: F c = 17 Hz A: F c = 12 Hz

Iron/Iron B: F c = −18 Hz B: no dyn. @ F > −25 Hz B: no data

C/D: F c
1,2 = 16 Hz C/D: F c

1,2 = 16 Hz C/D: no data

For the configuration with the inner wall removed, the
dynamo threshold is reached for a rotation rate 1.4 times
lower for exact counter-rotation, compared to the case
with inner wall, corresponding to the same critical Rm,
as defined in Section 2.1.

Other experimental configurations have been studied,
in which the iron impellers are replaced by stainless steel
(SS) ones (with and without inner walls and ring). In these
cases, no dynamo is observed at the highest Rm achievable
with our experiment. A hybrid configuration has also been
tested in which one of the impellers is made of soft iron
and the other of stainless steel (no inner walls or ring).
In the exact counter-rotating case, dynamo generation is
observed above F c = 15 Hz. When the iron impeller only
is rotating and the stainless steel impeller is kept at rest,
dynamo is observed above a different critical rate F c =
17 Hz and no dynamical regimes are evidenced in this
case. When only the stainless steel impeller is rotating,
no dynamo could be observed up to a maximum rotation
rate of 25 Hz. In addition, no dynamo is observed in exact
corotation.

Table 1 presents a summary of these results, including
the dynamo thresholds based on the rotation frequency,
obtained in the various configurations which produced a
dynamo. The study presented in this paper corresponds to
one specific configuration, where the parameter space has
been explored in details. It includes iron impellers and the
inner copper cylinder, without the copper ring in the mid-
plane. Nevertheless, similar parameter spaces have been
observed in all VKS flows driven by 2 iron impellers. For
instance, when the inner cylinder is removed, the parame-
ter space still has non-dynamo to dynamo transitions with
supercritical bifurcations to statistically stationary mag-
netic fields and regimes with oscillations and reversal are
observed, with the restriction that only one window of
time dependent behavior is evidenced.
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Fig. 2. (Color online) (Rm1, Rm2) parameter space explored,
varying independently the rotation rate of each impeller (top
left, where blue crosses indicate no dynamo regimes, red cir-
cles stationary dynamo regimes and green stars time depen-
dent regimes), and schematic of accessible dynamical regimes
(bottom right) – boundaries between different regimes are vol-
untarily smoothed due to lack of experimental resolution. The
type of transition is also indicated, as well as some paths along
F or θ constant, followed during the experimental investiga-
tions.

3 Parameter space and bifurcations

The flow and dynamo configurations spanned in the
results reported here are summarized in Figure 2. It
shows the (Rm1, Rm2) parameter space (only in the case
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F1, F2 > 0), where each Rm is defined based on the
rotation rate of one impeller. Since we observe almost no
asymmetry in this parameter space under the exchange
F1 ↔ F2, the actual experimental points are represented
only in the upper left half of the plane (see Fig. 6b
for an estimate of the experimental imperfections). Color
codes are used, corresponding to the dynamo regime ob-
served at each location, broadly characterized as non dy-
namo, (statistically) stationary magnetic field and time-
dependent regimes. We also indicate the paths that have
been followed in the experimental measurements at F or
θ constant (note that θ = constant also corresponds to
F1/F2 = constant) along which dynamo transitions are
discussed in more details below. In the lower right part of
the graph in Figure 2, a schematic view of the regimes is
sketched.

We start by exploring the bifurcations that develop
at a constant asymmetry parameter θ as the magnetic
Reynolds number is increased. At all investigated values
of θ, we observe that increasing Rm, the first instability is
a supercritical bifurcation to a stationary dynamo, with
time-dependent regimes possibly developing at larger Rm

values. We note that the possibility of a direct bifurca-
tion to time-dependent dynamo cannot be excluded, for
instance near |θ| ∼ 0.12 where non dynamo and oscillating
regimes are observed in Figure 2 in very close proximity.
We first discuss the case where time dependent regimes do
not appear, the dynamo field remaining statistically sta-
tionary at the highest Rm values achieved in the exper-
iment (due to power/torque limitations). Figure 3 shows
examples of this type. The amplitude and standard de-
viation of the magnetic field are plotted as a function
of Rm = (Rm1 + Rm2)/2. In the case of exact counter-
rotation (θ = 0, top figure), a clear transition to dynamo
can be observed at Rc

m ∼ 39 after an initial slowly growing
phase (Rm < 38), which we interpret as induction from
the ambient magnetic field. Above the threshold, the am-
plitude of the magnetic field is observed to grow linearly
with Rm − Rmc up to Rm ∼ 55, after which the trend is
less clear. This is different from the case when the inner
ring is present [3], where a best fit of dynamo field growth
lead to a power law increase (Rm−Rmc)α, with α ∼ 0.77.
Note that, due to the imperfection of the bifurcation curve
already discussed in presence of the inner ring, the deter-
mination of the exponent depends strongly on the chosen
value for the threshold Rc

m, leading to a larger uncertainty.
Simple arguments from bifurcation theory [7] would lead
one to expect an α = 1/2 value. For such a bifurcation
from a turbulent state, the existence and universality of
critical exponents is still an open problem.

At θ = −0.158 (bottom figure), we also observe a su-
percritical bifurcation, but the amplitude of the dynamo
field is much lower, by almost an order of magnitude. We
thus call this regime “STAT LOW” as opposed to the
“STAT HIGH” regime observed in exact counter-rotation.
The change in behavior from an induction regime to a low
field dynamo regime is best seen in the lin/log plot in
the inset, showing a clear break in the slopes at about
Rm ∼ 41–42. It is a low amplitude dynamo, and the ef-
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Fig. 3. (Color online) Bifurcation to stationary dynamos,
magnetic field amplitude and standard deviation. (a) Exact
counter-rotation, θ = 0, STAT HIGH regime; (b) θ = −0.158,
STAT LOW regime. In this case, as indicated by the arrows,
data points measured with increasing Rm are shown in blue
(amplitude) and red (standard deviation), while data points
measured with decreasing Rm are shown in green (amplitude)
and magenta (standard deviation). The inset shows the same
plot with vertical log scale, in the case of increasing Rm.

fect of the slight magnetization of the iron disks cannot be
ignored; hence the magnetic field is different if the mea-
surement is made after a dynamo run (green and magenta
symbols in 3b – measured when decreasing Rm) or follow-
ing a non dynamo configuration (blue and red symbols –
measured when increasing Rm). Note that induction ef-
fects from the ambient field are also present, which can
add up to the starting dynamo. Because in this case the
dynamo is a low amplitude one, both effects can be of
the same order of magnitude, so that the behavior near
threshold is non trivial. The standard deviations follow
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Fig. 4. (Color online) Examples of dynamo bifurcations with a secondary bifurcation to a time-dependent regime (left) and
corresponding periods of oscillation (middle). The error bars represent the standard deviation for the series of measurements.
In the case where only one (or one half) period is observed, the error has been arbitrarily set to one third of the period. The
separation between stationary and oscillatory regimes is indicated by a vertical line. For each case, one point (magenta symbol
in each of the left and middle plots) has been chosen in the oscillating region, for which the corresponding time signal is shown
in the right plots.

the same evolution, with an amplitude about half of that
of the mean fields.

Figures 4a, 4d, 4g shows bifurcation curves for other
values of θ, for which we observe the development of time
dependent regimes as Rm is increased. A stationary dy-
namo is first generated at Rmc1 ∼ 25–30, then oscillations
develop as Rm > Rmc2 ∼ 30–40 (examples of the time
signals shown in Figs. 4c, 4f, 4i). For the larger values of
θ, the dynamical change is also associated with a discon-
tinuity in the amplitude of the magnetic field. It indicates
that this second bifurcation is not supercritical, although
the observation of the discontinuity may depend on the
choice of the order parameters. When the regime becomes
oscillatory, the mean value vanishes for each component,
as can be seen by the equality between the field ampli-

tude and its standard deviation. Another interesting ob-
servation, evidenced in Figures 4b, 4e, 4h, is that at low
(θ = −0.09) and high (θ = −0.5) asymmetry, the period
diverges at the secondary bifurcation threshold. At the in-
termediate value θ = −0.25 the oscillations develop with
a finite period.

4 Transitions between regimes

The observation of a variety of dynamo regimes when the
asymmetry is varied can also be explored in the parameter
space along lines of constant F , at varying θ values. This
corresponds to a fairly constant global magnetic Reynolds
number Rm, save for small changes due to variations in
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Fig. 5. (Color online) (a) Transition plots as asymmetry (θ)
is varied at fixed F . (a) F1 + F2 = 36 Hz. Color code as in (b).
The inset shows the corresponding evolution of the period of
oscillation in the oscillating/reversing regimes. (b) F1 + F2 =
40 Hz. (c) F1 + F2 = 44 Hz. Color code as in (b).

the temperature of the sodium. We first consider the be-
havior for F1 + F2 = 36 Hz (Rm = 34.8 ± 0.6) as |θ|
increases – shown in Figure 5a. Close to exact counter-
rotation (θ ≈ 0), the dynamo is a STAT HIGH type.
Then, the region θ ∈ [−0.25,−0.1] corresponds to the
STAT LOW regime (identified as a STAT LOW dynamo
when the field amplitude is larger than 3 G), before reach-

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

Rm
2
−Rm

1

(µ
0σ 

2 R
cy

l
2

<B
2 >/

ρ 
)1/

2 /(
R

m
−R

mc
)

 

 

a)

F
1
+F

2
=36 Hz

F
1
+F

2
=40 Hz

F
1
+F

2
=44 Hz

STAT HIGH
osc
reversal
STAT LOW

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

|Rm
2
−Rm

1
|

T os
c*F

 

 

STAT

HIGH

STAT

LOW

STAT

HIGH

b)

R
m1

<R
m2

R
m1

>R
m2

Fig. 6. (Color online) (a) Rescaling of the 3 transition plots
of Figure 5, with ∆Rm = Rm2 − Rm1 for the abscissa and
|B|σRcyl

√
µ0/ρ/(Rm −Rc

m) for the ordinate (Rc
m = 39). Sym-

bols correspond to the different values of Rm, colors show the
different dynamo regimes. (b) Evolution of the period of oscil-
lations on either side of several windows of stationary dynamos.
In this plot, since the oscillations period are not expected to
depend on the sign of ∆Rm all data points are shown, using
different colors for points corresponding to ∆Rm positive and
negative. The solid lines are (|∆Rm|− |∆Rm

c|)−1/2 fits, where
∆Rm

c is the value of ∆Rm at the onset of each of the 3 tran-
sitions that display a period divergence.

ing again a STAT HIGH regime, as θ increases. At higher
values (θ < −0.45) the stationary dynamo looses its sta-
bility for a regime with random reversals before turning
into an oscillating one. As shown in the inset, as the oscil-
lating/reversing regime approaches the stationary regime
(decreasing |θ|), the period at the transition diverges. As
Rm is increased, the main change is the occurrence of re-
versal and oscillating regimes on each side of the STAT
LOW region. This is confirmed in Figure 5b and 5c, where
the transition plots are shown respectively in the case
F1 + F2 = 40 Hz (Rm = 38.6 ± 0.5) and F1 + F2 = 44
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Hz (Rm = 41.8 ± 0.7). Note that the oscillating region
at high θ observed in Figure 5a could also be present at
higher forcing, but it was not possible to reach regimes
at θ < −0.4 for F ≥ 40 Hz, due to torque limitations on
the motors driving the impellers. It is interesting to ob-
serve that these transition plots display a similar shape.
Actually, a qualitative collapse of the 3 plots shown in
Figure 5 can be obtained (see Fig. 6a) if the variable
∆Rm = Rm2−Rm1 is used for the abscissa and the ampli-
tude of the magnetic field in the ordinate is normalized by
(1/σRcyl)

√
ρ/µ0(Rm−Rc

m) (with Rc
m = 39), as suggested

from the linear growth observed in Figure 3a. Similarly to
the θ variable, ∆Rm is also representative of the amount
of asymmetry in the flow and seems to provide a better
collapse of these data.

As was observed earlier, windows of oscillating dy-
namo can be present between two stationary modes. Fig-
ure 6b displays the periods measured in all the time de-
pendent cases of the parameter space, as a function of
|∆Rm|. Using this variable, the evolution of the oscilla-
tion periods collapses on a single plot. Note that the col-
lapse is slightly better when only the points related to a
given sign of ∆Rm are plotted. This traces back to exper-
imental imperfections that slightly break the symmetry
of the parameter space when F1 and F2 are exchanged.
In the cases of transition from time dependent to STAT
HIGH regions, the oscillation period diverges, displaying
a (|∆Rm|− |∆Rm

c|)−1/2 behavior, where ∆Rm
c is defined

as the value of ∆Rm at the onset of each oscillating regime.
On the other hand, when oscillatory regimes approach the
STAT LOW region, the transition develops with a finite
period.

5 Low dimensional dynamics

5.1 Observations

In order to understand better the observed transitions, we
can display a cut in the phase space for the magnetic field
recorded in one location, by representing a component of
the field as it evolves in time, versus the same compo-
nent delayed by a time τ . Figure 7a shows examples of
such trajectories in the phase space for different regimes:
two fixed points are observed, corresponding to the STAT
HIGH regime (green curve) and to the STAT LOW regime
(blue, where a transient regime can also be seen). Then
the two limit cycles (magenta and red) correspond respec-
tively to a periodically oscillating regime and a randomly
reversing one. Examples of the 4 types of dynamo regimes
are shown in Figure 7b to 7e. The transition between the
STAT LOW and the STAT HIGH regimes, via the two
time dependent regimes, corresponds to the rising branch
in Figure 5c, in the region of 0.2 < θ < 0.27.

5.2 Comparison with a model

Several studies have shown how features of the earth pa-
leomagnetic records [8,9] or sunspots activity [10,11], can
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Fig. 7. (Color online) (a) Phase space for the axial component
recorded at the location #2, for several kinds of dynamos ob-
tained for different values of θ. The time signal were low-pass
filtered at 2 Hz and τ = 1 s. Examples of the corresponding
time signals for: (b) the low stationary dynamo with a part of
transient regime (blue in the phase space plot) (c) a periodic
reversing dynamo (magenta), (d) a random reversing dynamo
(red) and (e) a high stationary dynamo (green). For these cases
Rm is roughly constant around 41.2 (F1 + F2 = 44 Hz).

be described as the dynamics of a low dimensional sys-
tem. In the VKS experiment, the low dimensional nature
of the dynamics of the magnetic field has been empha-
sized in [12]. A model based on the interactions of two
magnetic modes having the symmetry of a dipole and of a
quadrupole has been introduced in [13]. In this framework
two types of bifurcations from stationary to oscillatory dy-
namo regimes have been introduced. When the stationary
state is far enough from the dynamo threshold, the tran-
sition to an oscillatory regime occurs via a saddle-node
bifurcation [13]. When both instability modes are nearly
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marginal, i.e. in the vicinity of a codimension-two bifurca-
tion, bistability of stationary and oscillatory states occurs
and the dynamics is more complex [14]. We expect that
the STAT HIGH and STAT LOW stationary dynamos bi-
furcate to time dependent regimes in related ways.

The STAT HIGH regime is at finite distance from the
dynamo threshold when it undergoes a time dependent
instability, and we ascribe this transition to a saddle-node
bifurcation. The fixed point related to STAT HIGH col-
lides with an unstable fixed point and a limit cycle is gen-
erated (see Fig. 7a), which connects the system to the
opposite polarity. As expected in the vicinity of a saddle-
node bifurcation, a divergence of the period of oscilla-
tion is observed with a (∆Rm −∆Rm

c)−1/2 behavior (see
Fig. 6b). Random reversals (Fig. 7d) appear at the bor-
der between the STAT HIGH stationary state (Fig. 7e)
and the periodic regime (Fig. 7c). Indeed, slightly before
the saddle-node bifurcation, small fluctuations are enough
to push the system beyond the unstable fixed point and
thus generate a field reversal [15]. Although fluctuations
are necessary to escape from the metastable fixed point
STAT HIGH, most of the trajectory that connects this
point to its opposite in phase space is driven by the de-
terministic low dimensional dynamics. This explains why
trajectories related to different reversals are robust and
can be superimposed [3]. But the time between two re-
versals is random because turbulent fluctuations acting as
noise trigger the escape from STAT HIGH. This waiting
time is governed by the distance to the saddle-node bifur-
cation and by the intensity of the fluctuations. It can be
very long compared to the duration of a reversal when the
distance to the saddle node bifurcation increases because
the mean exit time depends exponentially on the system
parameters (see Eq. (6) in [15]).

We propose that the STAT LOW regime bifurcates to
a time dependent regime in a different way, similar to the
transitions observed near the regime where only one im-
peller is rotating, a situation described in details in [14].
The transition from STAT LOW occurs in the vicinity of
non-dynamo regimes, as shown in Figures 1 and 4. As-
cribing the bifurcation to the features of a codimension
2 point, one has the existence of two stationary states with
opposite polarities which are encircled in phase space by
two limit cycles, an unstable one and a stable one. The un-
stable orbit separates the stationary states and the stable
oscillatory one. When Rm is increased from the stationary
state in the bistable regime, the unstable limit cycle bifur-
cates via a double saddle homoclinic connection with zero,
generating two unstable limit cycles located around each
stable fixed point. Then, these limit cycles shrink on the
fixed points which become unstable. The system jumps to
the stable limit cycle with finite oscillation period. When
the forcing is decreased from the oscillatory state in the
bistable regime, the system stays on the stable limit cycle
until it collides with the unstable one and disappears. The
magnetic field then jumps to one of the stationary states.
This scenario is in agreement with our observations. It
also predicts a region of bistability, clearly evidenced for
the one-impeller flow (at θ = 1) [14] and also observed
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Fig. 8. (Color online) Example of time signal at F1 = 16.75 Hz
and F2 = 25.25 Hz (θ = 0.2).

in a narrow range of parameters around θ = 0.2, as can
be seen in Figure 8, showing a time signal where the dy-
namo spontaneously jumps from a STAT LOW regime to
an oscillatory regime [16].

6 Discussion

We first consider several aspects related to dynamo gen-
eration and then discuss the modeling of the dynamical
regimes. Our results indicate that the iron impellers play
a crucial role. As shown in Table 1, no dynamo is gen-
erated when driving the flow by impellers made of other
materials. In addition, when the flow is driven by an iron
impeller and a stainless steel one, only the rotation of
the iron impeller gives rise to a dynamo and no further
time dependent regime is observed. The exact influence
of the iron impellers is still an open question, although it
has been emphasized in several studies: modeling [17], ex-
perimental [18] and numerical [19,20]. New experimental
runs, using impellers with disks and blades made of dif-
ferent materials are underway in the VKS set-up, and will
hopefully contribute to the understanding of this issue.

We have also observed that the dynamo threshold can
depend on the flow characteristics. For instance, with-
out the inner ring, the threshold has not been reached
when the impellers are rotated in the scooping direction.
This observation, together with others mentioned in Sec-
tion 2.2, implies that certain aspects of the flow charac-
teristics play a role in the onset of the instability.

Once the threshold is reached for which a dynamo is
generated, we have shown that owing to the asymmetry
that can be introduced by rotating both impellers at differ-
ent frequencies, a rich variety of dynamical regimes arises.
Experiments in an equivalent water device have been per-
formed in order to check whether the dynamics of the
magnetic field is related to instabilities of the flow in the
non dynamo regime. They showed that a hysteretic bi-
furcation is observed at |θ| = 0.09, between a flow with
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two recirculation cells and a flow with one recirculation
cell [5]. In the same set-up, adding the inner ring in the
median plane, this hydrodynamic bifurcation is moved to
a larger asymmetry (|θ| = 0.16), showing that the presence
or absence of the inner ring can strongly change the flow
characteristics. As to the magnetic bifurcations observed
in the VKS experiment, we have seen that at |θ| = 0.09,
a transition between high amplitude and low amplitude
steady dynamo occurs, sometimes via a time-dependent
one. But this feature is robust whether the inner ring is
present or not (see Fig. 18 in [3]). Other magnetic bifurca-
tions are present around |θ| = 0.16 with the inner ring and,
without inner ring, at higher |θ| values (0.2 < |θ| < 0.3,
dependent on Rm) (see Fig. 5).

We also evidenced other situations where some tran-
sitions take place that are not driven by hydrodynamics
instabilities: for example, we have observed that a peri-
odically oscillating regime observed at T = 145 ◦C bifur-
cates to a chaotically reversing one when the temperature
drops to T = 120 ◦C (see Fig 22 in [3]). In this case the
flow presumably remains unchanged (|θ| = 0.16), while
Rm is changed from 42.3 to 44.4 via variations of the
sodium electrical conductivity. More generally, one may
argue that flows driven at a constant |θ|, for which bifur-
cations of magnetic behaviors are observed, as discussed
in Section 3, evolve with the same geometrical charac-
teristics. In VK flows, erratic changes in the structure of
the flow have however been reported even when the driv-
ing (and everything else such as temperature) had been
kept to steady values [5,21]. Thus, one can infer that hy-
drodynamic bifurcations are not necessary for a magnetic
bifurcation to occur, but in some cases, a correlation can
exist.

As explained above, the dynamics of the magnetic
field reported in this study can be captured by a min-
imal model which involves the interactions of two mag-
netic modes. These two modes have the symmetries of
an axial dipole and of a quadrupole. The dynamics re-
sulting from the non-linear interactions of two competing
modes [13] describes the transitions between neighboring
regimes, if one assumes that the two modes are simulta-
neously marginally stable. Dipole and quadrupole modes
have been observed to have nearly the same threshold, in
analytical studies of earthlike systems [22] as well as in
numerical simulations of the Earth dynamo [23]. In addi-
tion, numerical studies aimed at modelling the VKS ex-
periment show that axial dipolar and quadrupolar modes
have nearly the same threshold and that their interaction
leads to a time dependent regime when the impellers ro-
tate at different rates [20].

In this description using amplitude equations for the
dipolar and quadrupolar components of the magnetic field,
the fluid parameters, the flow characteristics and the
boundary conditions determine the values of the coeffi-
cients of the equations. The level of turbulent fluctuations,
which changes with θ [5], is taken into account through
multiplicative noise in the model. However, the determin-
istic part of the dynamics does not explicitly involve ve-
locity modes. Besides describing the bifurcations reported

in this paper, this two-dimensional phase space of the de-
terministic dynamics is crucial to explain why the mean
value of the magnetic field should vanish in the time pe-
riodic regime, and to correctly predict the shape of the
reversals [13]. Including velocity modes will modify the
geometry of the phase space and this will be likely to
generate behaviors in disagreement with the experimen-
tal observations. More generally, no experimental evidence
about the dynamics of the magnetic field requires the in-
clusion of any additional velocity mode in the framework
of this model.

There are of course other issues in the VKS exper-
iment besides the dynamical regimes and transitions
described here. For instance, the detailed mechanisms of
magnetic field generation and saturation still need to be
clarified. A future study combining informations from
torque measurements and local velocity measurements
(using either potential measurements [24] or Doppler
velocimetry [25,26]) could contribute to a better under-
standing of magnetohydrodynamics features in the VKS
dynamo.
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Curie (2008)
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