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Abstract – The compaction of elastic rods in rigid cylindrical cavities is experimentally performed.
The results show two main packing behaviours: an ordered regime in which the rod spools on the
internal surface of the cavity and a disordered phase where the orientation of the coils is randomly
distributed. The phase diagram separating these two packing configurations is determined as a
function of the aspect ratio of the container and of the intrinsic curvature of the rod. A theoretical
stability analysis and an experimental study of the dynamics of the rod at the injection point allow
to describe different instability mechanisms that drive the transitions from ordered to disordered
packing, leading to the identification of the different disordering scenarios.

Copyright c© EPLA, 2013

Many natural phenomena and man-made systems fea-
ture confined elastic structures, such as plates and rods,
which are mechanically and geometrically constrained by
some outer embedding receptacle [1–7]. In order to fit
into a smaller space than their normal linear extension,
these elastic structures are forced to undergo large defor-
mations whereupon geometrical self-avoidance looms in
the form of intricate non-local interactions. These fold-
ing, wrinkling and crumpling processes range from the
nano- to the macro-scale and the confinement itself can
either serve a biological purpose, such as the protective
bud enclosing growing tree leaves [1,2], or an engineer-
ing objective, such as self-deployable solar sails [3] or drill
strings in oil ducts [4]. In this case, the post-buckling
behaviour of a twisted elastic rod under axial compres-
sion or tension while being simultaneously tightly secured
inside a cylindrical cavity is of particular importance for
the oil extraction industry [4]. In microbiology, physical
models based on the elasticity of rods are used to deter-
mine the mechanical forces that are involved in the packing
of DNA filaments, the evolution of their complex folding
configurations and their subsequent ejection in and out of
virus capsids, i.e. processes essential to the life cycles of
viruses [5–7].

Confined macroscopic elastic structures have come forth
as a novel class of frustrated and disordered systems

elevating them, alongside granular materials, as a model
of complex athermal systems. In fact, it has been shown
that many aspects of glassy systems such as logarithmic
ageing [8,9] and the pertinence of statistical distributions
are well-suited tools to investigate the complex energy
landscape experienced by tightly packed elastic plates and
rods [10–14]. Besides their elastic properties, the crucial
ingredients responsible for the analogy between athermal
glassy systems and tightly packed elastic rods and plates
are geomerical self-avoidance and energy dissipation via
friction. One important difference with molecular glasses
stems from the fact that thermal fluctuations play no role
in the phase-space exploration of a macroscopic folded
elastic rod thereby raising challenging questions such as
potential ergodicity breaking.

An important stepping stone still standing in the way
concerns the necessity of achieving a more precise under-
standing of the possible compaction morphologies. Pre-
vious studies of confined elastic rods inevitably required
elaborate experimental techniques in order to visualize
and measure the geometrical properties of the folded
rods [15–17]. This is because the interior of the confin-
ing cavity cannot easily be accessed by traditional image
analysis tools [17]. Here, we propose a new approach based
on the analysis of the rod dynamics at both the injec-
tion point and inside the cavity that allows to describe
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Fig. 1: (Colour on-line) Lateral (a) and top (b) views of the
experimental setup for the injection of a flexible rod inside a
cylindrical cavity. (c) Two examples of confined configurations
showing both spooling (left) and disordered packing (right).

accurately the geometrical and dynamical properties of
the packing process. This letter addresses the origin of the
emerging ordered and disordered packing configurations,
and culminates with a prediction about the transition be-
tween these two phases depending on the geometrical pa-
rameters of the experimental system.

The experimental setup consists of a cylindrical plexi-
glass chamber with a circular hole in the top cover to allow
the entrance of the elastic rod. The role of the top cover
is to prevent the rod from possibly leaving the cylindri-
cal chamber during compaction. Two rollers turning at
constant speed push the rod through an injector into the
cylindrical chamber (fig. 1(a)). The feeding speed v has
been checked to be small enough for the compaction pro-
cess to be quasistatic. The tip of the injector is placed
along the centre of the container at 10 mm above the top
cover. A CCD camera registers the lateral view of the
system during packing at a rate of 10 images per second.
A mirror is placed behind the injection point at 45◦ with
respect to the optical axis of the camera (fig. 1(b)) in or-
der to recover the local position of the rod in the plane
lying parallel to the cylinder’s top cover. The diameter of
the entrance hole insures that the rod does not touch the
cover, so that the injection dynamics is not affected. In the
captured images (fig. 1(c)), the real and reflected images
on the mirror determine directly the x and y positions of
the rod, respectively (the distance from the camera to the
rod is much larger than the distance between the mirror
and the rod).

Circular rods of three different materials (latex, nylon
and optical fiber) and various diameters were used. In
all experiments, deflections of the rods under their own
weight are large compared to the radius of the cylindrical
chamber R, that is R � (B/ρgR0)1/4, where B ∼ ER4

0
is the bending rigidity of a rod with elastic modulus E,

density ρ and cross-section radius R0 � R. This condition
ensures that gravity can be neglected. Rods also present
variable intrinsic radii of curvature that depend on their
stocking conditions before experiments. The intrinsic cur-
vature Ri is determined by the natural curvature adopted
by a rod deposited on a vibrating horizontal plane. Only
the intrinsic radius of curvature of the optical fiber is in-
dependent of stocking conditions and can be considered
as infinite. In the following, we are interested in pack-
ing properties for which the main control parameters are
the aspect ratio H/R, the dimensionless intrinsic radius
of curvature Ri/R and the friction of the rod on the con-
tainer. The aspect ratio of the chamber is varied by using
different plexiglass tubes of radius R varying from 13 mm
to 100 mm and height H between the injection point and
the bottom of the cavity varying from 10 mm to 130 mm.

A qualitative analysis of experimental results allows to
distinguish two main regimes in the rod packing: an or-
dered phase, which consists of the formation of a regular
coil against the walls of the cylindrical chamber and a dis-
ordered phase in which the packing of the rod occupies the
space in an apparent random way (see fig. 1(c)). In the
following, we aim at identifying and characterizing these
two types of compaction as functions of the experimental
parameters.

Ordered packing. – In this phase, a progressive coil-
ing of the rod against the interior wall of the chamber takes
place (see fig. 1(c)). Starting from the bottom of the cavity
at an initial distance H from the injection point, spooling
continues until a critical distance hc is achieved for which
the rod jumps inside the existing spool. At this critical
point, two scenarios are observed: either the rod makes a
new coil or starts to pack in a disordered way. Indepen-
dently of the evolution of packing after the destabilisation
has occurred, the critical height hc was experimentally de-
termined for various chamber sizes and intrinsic radii of
curvature for the rods. To isolate the effect of each pa-
rameter, the compaction of elastic rods without intrinsic
radius of curvature (that is with Ri → ∞) was studied
as a function of the sizes of the container. In this case,
the scaled critical height hc/R is found to increase with
the initial distance H , having a minimal value hc/R ≈ 1
when H → hc. Actually, a large initial height H requires
large number of windings in the coil before the critical
hc is achieved. The feeding system of fig. 1(a) induces
torsion of the rod during injection. Assuming that each
new winding twists the free of the rod by a fixed angle,
the accumulated twist τ is then proportional to the total
number of turns n = (H − h)/(2R0). Figure 2 shows the
experimental results of hc as a function of nc.

Experiments on the variation of the critical height hc

with the intrinsic radius of curvature Ri show that hc is
approximately constant as long as Ri � R. However, hc

drastically increases when Ri/R � 4, reaching a maximum
value hc/R � 3 for Ri/R � 3. Further reduction of the
intrinsic radius of curvature with respect to the radius of
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Fig. 2: (Colour on-line) Critical height hc as a function of
the critical winding number nc = (H − hc)/(2R0) for various
rods made of materials without intrinsic curvature (that is with
Ri → ∞).

the cylindrical chamber leads to a disordered regime where
no coiling states are observed.

The critical height hc for the limit case Ri → ∞ can be
estimated by solving the elastic problem for the free part
of the rod between the injection point and the first contact
point with the container at the top of the coil (the curve
AB in fig. 3). The dimensionless equilibrium equations of
an element of a rod of arc length ds are given by [18–20]

dr
ds

× d3r
ds3

+ τ
d2r
ds2

= F × dr
ds
, (1)

where r(s) = (x(s), y(s), z(s)) is the position vector, τ is
the twist and F = (Fx, Fy , Fz) is a constant force applied
on the rod. Spatial quantities are dimensioned by the
radius of the cylinder R and the force by B/R2. The
tangent vector of an inextensible rod can be characterized
by two angles θ(s) and ψ(s) through

x′(s) = cos θ cosψ, y′(s) = sin θ cosψ, z′(s) = sinψ,
(2)

where primes denote derivatives with respect to s. Using
conditions (2), the projection of eq. (1) on the xy-plane
and on the z-axis yields

ψ′′ + θ′2 sinψ cosψ − τθ′ cosψ =
(Fx cos θ + Fy sin θ) sinψ − Fz cosψ, (3)
θ′′ cosψ − 2θ′ψ′ sinψ + τψ′ = Fx sin θ − Fy cos θ. (4)

To complete the formulation of the problem, one needs
to specify the boundary conditions. The rod has a vertical
tangent at the injection point A (s = �) and a horizontal
tangent at the contact point with the cylinder B (s = 0):

ψ(0) = 0, ψ(�) = π/2, θ(0) = π/2. (5)

In addition, the length � is a free parameter and the rod
is supported at both endpoints. Therefore, the curvature
ψ′(�) at A is imposed by the injection nozzle and the prin-
cipal curvature θ′(0) at B is imposed by the cylinder [20]:

ψ′(�) = 0, θ′(0) = −1. (6)

Fig. 3: (Colour on-line) The scaled critical height hc/R as a
function of the applied twist τ . The results are deduced from
the numerical resolution of the elastic problem of a rod clamped
at the injection point A and supported by the container at the
top of the coil B (see the inset).

Finally, the coordinates of the injection point A and of the
contact point with the cylinder B are defined by (1, 0, hc)
and (0, 0, 0), respectively. This gives three additional con-
straints:
∫ �

0
x′(s)ds = 1,

∫ �

0
y′(s)ds = 0,

∫ �

0
z′(s)ds = h. (7)

The equilibrium equations (3), (4) together with the
boundary conditions (5)–(7) can be solved numerically for
fixed values of τ and h. The length � and the components
of the force are an outcome of the resolution process.

Spooling is possible as long as the rod remains above
the existing coil (i.e. the plane z = 0), which thus im-
poses a condition on the curvature at the contact point B.
The mechanical stability of spooling is related to the sign
of ψ′(0) that defines the curvature of the rod along the
z-axis at the contact point with the container: ψ′(0) > 0
(respectively, ψ′(0) < 0) corresponds to stable (respec-
tively, unstable) configurations. Numerical results show
that, for a fixed twist τ , the curvature ψ′(0) is an increas-
ing function of h and changes sign for a critical h = hc(τ)
which defines the threshold height above which ordered
coiling configuration occurs.

Figure 3 shows that the stability threshold of a twist-
free rod (τ = 0) is obtained for a value of hc = 1.467R,
retrieving the result of coiling of a flexible rope on a surface
when inertial and gravity effects are negligible [19]. This
value is larger than the experimental one hc � R (see
fig. 2) indicating that the mechanical stability of spooling
is closely influenced by friction of the rod with both the
container and the previously formed coil. Nevertheless,
fig. 3 shows that the critical height hc/R increases with
increasing applied twist τ which is qualitatively consistent
with experimental observations of fig. 2, confirming the
hypothesis of twist being the source of variation of the
critical height hc.
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(a)

(d)

(b) (c)

Fig. 4: (Colour on-line) (a)–(c) Lateral and bottom views of
the rod during packing for various heights h. (a) h ≈ hc: the
simultaneous inspection of both views shows that the contact
with the container occurs at the point B that defines the end
of the spool. (b) h > hc: the rod contacts first the container
at a point B′ defining a separate segment B′B in contact with
the internal wall of chamber. (c) Above a critical height Hc:
pressure on B′B is so large (and so is friction) that coiling is
not possible. (d) Length L of the segment B′B as a function
of the distance h between the injector and the coil. Lower (hc)
and upper limits (Hc) for ordered coiling to occur are shown.

Experimental results show that for a coiled state to ex-
ist, the initial distance H should be larger than hc, defin-
ing a necessary condition. However, there is also an upper
limit for H beyond which the coiled state is not observed.
Figures 4(a)–(c) show the initial stages of coiling for var-
ious distances h. For h > hc, simultaneous lateral and
bottom views of the system show that starting from the
injection point A, the first contact of the rod with the
inner wall of the container occurs at a point B′, where
ψ(B′) > 0, that is different from the endpoint B of the
existing coil, where ψ(B) = 0. To achieve a coiled state
the segment B′B of the rod should slide on the walls of the
chamber overcoming friction forces induced by the normal
forces of the container wall on the rod. Therefore, the
coiled state depends on the material’s friction coefficient
and on the length L of the segment B′B that quantifies the

Fig. 5: (Colour on-line) Phase diagram of the different pack-
ing regimes as a function of the physical parameters H/R and
Ri/R. The filled dots in the lower limit of the ordered coil-
ing region correspond to the experimental critical values hc for
low twisted rods (small number of windings in the coil before
hc is reached). The empty dots in the upper limit correspond
to the critical values Hc for the nylon-plexiglass configuration.
The dashed line is a guide to the eye. The shadowed region
corresponds to Ri < R for which the rod can coil without even
touching the walls of the container.

magnitude of the applied pressure. Figure 4(d) shows the
variation of L as a function of the distance h between the
points A and B: it increases with h from 0 for h ≈ hc.
When h reaches a critical value Hc, friction becomes so
large that the segment B′B does not slide, forming first
a helix standing against the chamber walls (see fig. 4(c))
and thus leading to a disordered packing of the rod.

Figure 5 summarizes the resulting phase diagram where
the region of existence of coiled state is delimited by both
hc and Hc.

Disordered packing. – A disordered phase is consid-
ered to be any packing state that is different from regular
coiling. It can occur after regular coiling or at the begin-
ning of the compaction process. To illustrate better the
dependence of ordered and disordered states on the exper-
imental parameters, we shall make reference to the phase
diagram shown in fig. 5. The lower limit of the ordered
packing phase is determined by the critical height hc for
τ → 0 while the upper limit is fixed by Hc. It must be
pointed out that the upper limit strongly depends on the
sliding conditions of the rod over the interior walls (the
upper limit of the phase diagram in fig. 5 corresponds to
nylon on plexiglass friction conditions only).

To study the dynamical and possible statistical prop-
erties of both ordered and disordered configurations, we
focus on the analysis of the dynamics of the rod at the
entrance of the chamber. We track the position of the in-
tersection of the rod with a horizontal plane a few millime-
ters under the injector (the dotted line (A) in fig. 1(b)).
We will particularly focus on the temporal evolution of
two parameters: the distance r(t) of the rod to the axis
of the chamber and the coiling direction Ω(t) defined by
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Fig. 6: (Colour on-line) Three experimental realisations of packing generated in the different regions defined in fig. 5. From top
to bottom: ordered coiling (region I), and disordered packing in regions II and III, respectively. From left to right, (a) trajectory
of the rod at the entrance of the cavity and the corresponding dynamic evolutions of r(t) (b) and Ω(t) (c).

Ω(t) = +1 (respectively, Ω(t) = −1) for counterclockwise
(respectively, clockwise) rotation. Each region I, II and III
as defined in fig. 5 can be identified by the corresponding
temporal behavior of r and Ω.

Figure 6(I) shows a typical signal of the ordered coiling
state (region I) and the evolution of the corresponding r(t)
and Ω(t). The ordered phase is characterized by a radius
r(t) that increases gradually with time as a result of the
coiling process: the more the top of the coil approaches
the injection point, the wider the turns of the rod at the
entrance are. The evolution of r(t) presents also “jumps”
when the critical height hc is reached and then a new coil
eventually starts inside the previous one (e.g., event at
t � 260 s in fig. 6(Ib)). Moreover, this spooling phase
in characterised by Ω that does not change sign meaning
that the rod always rotates in the same direction. Figure 6
also shows that different evolutions of the system are ob-
served in the disordered regions II and III. In both cases
the evolution of r(t) is quite random and does not ex-
hibit definite measurable characteristics. However, there
are important differences in the evolution of Ω(t). While
Ω changes randomly in region II, a well-defined periodicity

in the changes of rotation direction emerges in region III.
Despite the apparent disordered packing in the container,
some order is revealed in the filling dynamics.

Figure 7 shows the probability density functions (pdfs)
of the rotating duration period Δt in either clockwise or
counter-clockwise directions for a rod packed in region III.
Noticing that in this region, the intrinsic radius of curva-
ture of the rod Ri is of the same order as the radius of
the cylindrical cavity R, the duration period is dimen-
sioned by Ri/v where v is the injection speed. Figure 7
shows that the pdfs for various Ri/R and H/R exhibit
a peak around 2π. This result is particularly important
because it reveals the formation of perversions on the
rod distant by approximately 2πRi. Perversions are local
structures that connect two helices of different chirality.
Intrinsically curved rods tend to get rid of excess torsion
by forming perversions at points where the twisting mo-
ments are negligible [20,21]. This phenomenon shows up
in twisting tendrils of climbing plants and in kinky tele-
phone cords. Analytical solutions for a twisted intrinsi-
cally curved rod shows that the length between perversions
is slightly larger to 2πRi [20,21], which is similar to our
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Fig. 7: (Colour on-line) Probability density functions (pdfs) of
the scaled rotating duration period vΔt/Ri extracted from the
dynamics of Ω(t) for a rod packed in region III. Each data set
corresponds to a given value of Ri/R for which the value of H
is varied from 5mm to 13mm with increments of 1mm.

result for disordered compaction in region III. In this re-
gion, perversion is thus the driving mechanism leading to
a disordered phase that is characterized by spooling with
periodic alternating chirality.

Conclusion. – We have characterized experimentally
the packing of an elastic rod in a rigid cylinder as a func-
tion of the aspect ratio of the container and the intrinsic
curvature of the rod. We show that the packing process
depends only on the geometrical properties of the system
and on friction between the rod and the cylinder, inde-
pendent of the rigidity of the rod. We have determined a
phase diagram (fig. 5) in which each frontier defines the
transition from spooling to disordered packing scenarios.
For cavities with small aspect ratios, experiments and nu-
merical simulations have shown that the coiling state is
dictated by the mechanical stability of the free rod be-
tween the injector and the last turn of the coil (frontier
defined by the filled dots in fig. 5). For long containers, the
friction of the rod against the wall prevents stacking of the
rod and leads to a disordered packing (frontier between I
and II). The study of the injection dynamics revealed an-
other scenario of transition to disordered configurations
(frontier between I and III). In the region of the phase
diagram where the radius of the cylinder compares to the
intrinsic radius of the rod, the rods form perversions while
injected in the confined space. We were able to differen-
tiate between these two disordered regimes by analyzing
the dynamics of the rod at the injection point. While

the disordered regime (II) does not reveal any measurable
characteristics, a temporal order emerges from the packing
dynamics in the disordered regime (III) that is cadenced
by the formation of the perversions.
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