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Understanding the physics of fragmentation is important in a wide range of industrial and geophysical
applications. Fragmentation processes involve large strain rates and short time scales that take place during
crack nucleation and propagation. Using rubber membranes, we develop an experimental analysis that
enables us to track the fragmentation process in situ in both time and space. We find that bursting a highly
stretched membrane yields a treelike fragmentation network that originates at a single seed crack, followed
by successive crack tip-splitting events. We show that a dynamic instability drives this branching
mechanism. Fragmentation occurs when the crack tip speed attains a critical velocity for which tip splitting
becomes the sole available mechanism of releasing the stored elastic energy. Given the general character of
the fragmentation processes, this framework should be applicable to other crack networks in brittle
materials.
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Fragmentation encompasses a wide spectrum of physical
processes that occur in both human activities and natural
phenomena. Besides liquid atomization [1], examples where
matter is fragmented into smaller pieces abound, such as
breakup of heavy nuclei [2], comminution [3], armor
penetration, shell case bursting [4], meteoric cratering
[5,6], and collision of asteroids [7]. The academic interest
originates from the association of fragmentation processes
with understanding both the dynamics of crack propagation
[8–10] and the various ways of partitioning a given topology
into smaller discrete entities [11]. Since Mott’s seminal
observations and theoretical concepts [4,11], fragmentation
of ductile and brittle solids under high strain rates has been a
topic of intense research [11–16]. The main objective of
these studies is the theoretical prediction of the distribution
of fragment sizes resulting from a fragmentation event.
However, the extreme conditions associated with large strain
rates and small time scales involved in crack nucleation
events and dynamics make experimental studies challenging
and thus prevent the emergence of a clear scenario of the
fragmentation process.
Our study stems from a phenomenon that everyone can

observe (see Fig. 1 and Movie 1 in Ref. [17]). When a
moderately inflated toy balloon is pricked, a crack races
around it, slicing the membrane into few fragments. The
crack either runs straight or curved or wiggles, leaving
different patterns on the edges of the fragments [19,20]. On
the other hand, a highly tensed balloon bursts into a large
number of shreds, whether the explosion is spontaneous or
triggered. A natural question that arises is, what drives the
transition from a single crack propagation to a fragmenta-
tion process? While illustrations of balloon fragmentation
are ubiquitous, we are not familiar with a controlled study
of this phenomenon.

In order to have a more tractable system than a
commercial rubber balloon, we have devised an experiment
to perform the fragmentation of latex membranes. A flat
sheet of natural rubber, whose thickness ranges from 350 to
1100 μm, is clamped to a circular frame of diameter 52 mm
(Fig. 1). The front side of the frame is opened to allow the
expansion of the membrane and the closed rear side is
connected to a compressed air inlet. When air is injected,
the sheet stretches, taking the form of a growing axisym-
metric balloon, characterized by an equatorial radius rmax,
until it hits an acute indenter (X-ACTO blade) that triggers
the explosion. In all experiments, the tip of the blade is
placed on the axis of symmetry of the inflated membrane,
so that the cracks propagate away from the “pole” of the
balloon. The control parameter of the experiment is the
distance between the indentor and the frame and prescribes
the stored elastic energy in the membrane. If the blade is
positioned far enough away, the balloon may pop sponta-
neously and fragmentation nucleates at a random position.
In the study of rubber fracture, crystallization is known to
yield irreversible deformations [21], and working at high
temperatures allows us to avoid this effect [22]. Instead, we
have chosen to rapidly inflate the membrane such that the
experiment lasts less than 15 s. We have checked the
effectiveness of this protocol by examining that the frag-
ments of the postmortem samples recover their initial size
with a residual elongation smaller than 5%. Using a fast
camera (Photron APX RS) that is placed in front of the
setup (camera 1 in Fig. 1), the explosion of the membrane
is recorded at frequencies of 30 000 fps or 60 000 fps. A
second camera (camera 2 in Fig. 1) working at 25 fps
records a side view of the balloon while a sensor connected
to the frame monitors the overpressure ΔP. Combining the
side view imaging and the pressure measurement allows a
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measurement of the tension T in the membrane (see
methods in Ref. [17]).
Similarly to toy balloons, two different behaviors are

observed in our experiment (Movie 2 in Ref. [17]). The first
case corresponds to an opening regime that occurs for a
short distance between the blade and the frame [Fig. 2(a)].
Once the membrane meets the blade, a hole is formed and
expands with the progression of two or three radial cracks
cutting the sample into a few large fragments. The second
case corresponds to the fragmentation regime and occurs
when the explosion is either spontaneous or triggered by a
blade placed beyond a critical distance. Several cracks
expand radially from the initial puncture [Fig. 2(b)], turning
the membrane into a large number of fragments in the shape
of elongated shreds (our current best is 64 fragments).
The analysis of the postmortem samples reveals the

scenario leading to a large number of fragments. Figure 2(c)
shows that the crack network form a treelike structure with
junctions of Y shape and that only a few fragments emanate
from the center of the sample. This observation proves that
the whole crack network is not nucleated at the initial
puncture but results from several branching events during a
fragmentation process. The fast imaging confirms this
scenario: in the first image on Fig. 2(b), only four cracks
are present while 14 can be counted 67 μs later. Figure 2(d)
shows the mechanism of generation of new cracks: an
initial single crack splits spontaneously, giving birth to two
branches that can in turn split again. Therefore, the large
number of fragments originates from a germ of two or three
crack tips that undergoes successive tip-splitting events. For
all experiments, the tip-splitting events occur in the region
of the balloon limited by r≲ 0.8rmax and additional
branching is rarely observed beyond it.
The phenomenon of branching is a generic dynamic

instability of crack propagation in a variety of different

brittle materials [9,10,23]. Beyond a critical velocity a
single crack can undergo local crack branching events,
where a single mother crack gives birth to successive short-
lived daughter cracks. Some aspects of this instability,
known as the microbranching instability, are described in
the framework of linear elastic fracture mechanics [24,25].
Using energy balance arguments, the branching of a single
crack propagating in a two-dimensional material is found to
be energetically possible when its speed exceeds a certain
critical value. However, this approach focuses on a scenario
of a two-dimensional crack tip splitting, while micro-
branching appears to be intrinsically a three-dimensional
instability [9,10]. In the footsteps of the classical branch-
ing, the following will address the fragmentation problem
in terms of loading and dynamics.
The final number Nf of cracks depends on both the

applied tension T and the initial membrane thickness e [17].
Nevertheless, membranes with different thicknesses exhibit

FIG. 1 (color online). Cross section of the experimental setup.
The dotted line represents the initial flat state of the latex sheet
before its inflation. Notations for the inflated membrane: sðzÞ
represents the arc length and rðzÞ the distance to the axis of
symmetry.
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FIG. 2 (color online). The two different regimes of explosion
are visualized using fast imaging. (a) Opening regime. A single
fracture splits the membrane in two. The vertical line appearing
on the images is the rod that supports the blade used to trigger the
explosion. (b) Fragmentation regime. From a single initial
fracture, a network of cracks develops, eventually turning the
membrane into numerous shreds (presently 15). In this example,
the explosion is spontaneous. In (a) and (b), the dark disk in the
center of the images is the circular frame, its inner diameter
(52 mm) sets the scale. (c) Postmortem sample (e ¼ 350 μm).
(d) Close-up extracted from the movie corresponding to the
sample shown in (c). The time interval between two successive
images is 1=60 000 s. Two successive tip splittings has turned an
initial single crack into three cracks. The colored circles and
arrows indicate the corresponding events on the postmortem
sample.
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the same behavior. For small tensions, a plateau at 2 or 3
final cracks is observed and corresponds to the opening
regime. Above a critical tension Tc, the final number of
cracks increases quasilinearly with T. Figure 3 shows that
the number of cracks varies with the single parameter T=e
and that the transition from opening to fragmentation
regimes is controlled by a critical value Tc=e ¼
1.8� 0.2 MPa. Thus, the physical control parameter of
the fragmentation process is the stress experienced by the
membrane. One notes that T=e is not the actual stress, as a
stretched membrane gets thinner. Assuming that rubber is an
incompressible material, the actual stress in the material is
given by σ ¼ Tλ2=e, where λ is the strain, defined as the
ratio of the stretched length to the original length. In the
fragmentation regime, the value of λ is estimated by
comparing the distance that separates two consecutive tip-
splitting events on the fast camera movies and the length of
the corresponding crack on the postmortem samples. Within
the accuracy of this method, we find that in all samples
λ ¼ 7.0� 0.5 independently of the applied tension. This
value appears to be a limiting strain. Indeed, a divergence of
the tension at a finite stretch is expected when the polymeric
chains of the material reach their maximal extension [26].
One concludes that the fragmentation process occurs when
the material experiences a tensile stress larger than a
threshold σc ¼ 88� 15 MPa.
In addition to material loading, dynamics is a key feature

to understand fast propagating cracks and their potential
branching [10]. The fast imaging allows us to follow the
instantaneous crack extension during the explosions. In the
opening regime and over the region of interest, we find that

cracks progress at a constant speed that increases with the
membrane tension T [Fig. 4(a)]. Similar crack dynamics
behavior has been observed in flat membranes submitted to
anisotropic stretching of magnitude smaller than that
reached in our experiments [22,27]. In the fragmentation
regime, the tip splitting hinders the following of a single
crack. Nevertheless, due to the triggering at the pole of
the inflated membrane, the instantaneous radial lengths of
all cracks are equal within the experimental accuracy.
Figure 4(a) shows that the extensions sðtÞ of the crack
network for various tensions T > Tc are superimposed
straight lines, confirming that the velocity in the fragmen-
tation regime is not only constant over the network
development but is also independent of the membrane
tension. These experimental results show that when the
stress in the membrane attains the threshold σc, the crack
propagation reaches a limit velocity vl ¼ 570� 15 m=s. At
larger stresses, a single crack does not increase its speed;
instead, it undergoes a tip-splitting instability. This behav-
ior raises the question of the nature of the transition whether
it is controlled by a dynamic or a mechanical instability.
A striking feature of the cracks that is illustrated in

Figs. 2(a) and 2(b) is their V-shaped opening, confirming
that cracks propagate at velocities larger than the shear
wave speed cS of the material [22]. The cracks are thus
intersonic since their velocities are upper bounded by the
longitudinal wave speed cL of the material. One concludes
that in the opening regime a single crack is propagating at a
constant intersonic velocity that increases with the applied
tension [27]. At the transition to the fragmentation regime,
a limiting velocity is observed above which a single crack
becomes unstable. It is natural to associate this limiting
velocity to the upper limit of the intersonic domain, i.e., the
longitudinal wave speed cL. The assumption vl ¼ cL is
also consistent with the examination that the membrane
ahead of the tips of the cracks remains undeformed until the
arrival of the fracture network. Even if they need to be
confirmed by direct measurements of the wave speeds,
these results confirm that the transition to the fragmentation
regime is driven by a dynamic instability.
Admitting that fragmentation occurs with all cracks

propagating at the terminal velocity cL allows us to perform
a quantitative characterization of the latex fracture energy Γ
under extreme loading. The stored elastic energy in the area
AðtÞ of the spherical cap that encompasses the crack
network at time t is estimated by Eel ¼ TAðtÞ. Since the
cracks propagate at the longitudinal wave speed cL, only
the part of the membrane inside the area AðtÞ releases
stresses while the rest of the balloon remains at its inflated
state. Thus, the variation of the elastic energy during an
extension ds of the crack network is given by

dEel ¼ TdAðtÞ ¼ 2πTrðtÞds: ð1Þ
This energy should be compared to the work done for the
creation of a new fracture area. Crack progression by a
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FIG. 3 (color online). Final number of cracks Nf as a function
of the ratio T=e, where T is the membrane tension measured at
the pole of the balloon and e the initial membrane thickness. The
results for four different thicknesses are displayed. Filled (open)
symbols represent triggered (spontaneous) explosions. Since
each measurement of T=e has a relative uncertainty of the order
of 2%, the dispersion of the data points illustrates the stochastic
aspect of the fragmentation.
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distance ds on the stretched balloon corresponds to an area
eds=λ in the unstretched membrane. The energy dissipated
for the creation of this new fracture surface is then given by

dEd ¼ NðtÞΓe ds
λ
; ð2Þ

where NðtÞ is the instantaneous number of cracks in the
network. The elastic energy released during crack exten-
sion should be larger than the dissipated energy for crack
opening: dEel ≥ dEd. Indeed, the excess energy that is not
included in the energy balance is the one released during
relaxations of the ragged membrane inside the area AðtÞ.
This inequality gives an upper limit for the value of Γ:

Γ ≤ G≡ 2πλT
e

rðtÞ
NðtÞ : ð3Þ

To be physically relevant, the elastic energy release rate G,
thus the ratio rðtÞ=NðtÞ, should be time independent.
Figure 4(b) shows that, during the early stages of the
explosion, the number of cracks NðtÞ increases linearly
with distance rðtÞ and reaches a maximum value Nf at
rf ≈ 50 mm, beyond which tip-splitting events are rare. The
energy release rate can then be estimated using the slopes of
NðrÞ at small times. Data points in Fig. 4(c) represent these
values for several experiments with membranes of different
thicknesses. The dashed curve in Fig. 4(c) corresponds to the
approximation rðtÞ=NðtÞ ≈ rf=Nf with Nf extracted from a
linear fit of the data shown in Fig. 3(e). Both methods
display a decrease of G with T=e, thus with the number of
cracks.

To rationalize the behavior of G, one notices that due to
the radial geometry of fracture, a small number of cracks in
the network leaves in its wake large triangular sections of
the membrane under tension [see Fig. 2(b)]. The corre-
sponding stored elastic energy is released through kinetic
relaxation (vibrations, coiling, etc.). When the number of
cracks increases, the total area of these sections decreases
and the energy that is actually dissipated for fracture
becomes closer to G. Therefore, an estimate for the fracture
energy Γ is given by the asymptotic value of G for a large
number of cracks, or equivalently for large T=e. Using the
experimental results of Fig. 4(c), we find Γ ≈ 190 kJ=m2,
which is very large compared to the energy needed to break
chemical bonds (≈1 J=m2) and to the fracture energy of
torn rubber sheets. Indeed, using the “trouser” test [28], we
measured a fracture energy that ranges from 18 to
50 kJ=m2. Nevertheless, a dependance of Γ with crack
tip speed in rubber has been observed in peeling and tearing
experiments and was interpreted in terms of viscoelastic
dissipation [29]. At fixed temperature, Γ increases with the
crack velocity v in proportion to v0.24 [30]. Extrapolating
the results of the tearing experiment, for which the crack
progresses through a succession of jumps of typical speeds
v ≈ 1 m=s, yields a fracture energy at v ¼ cL that is
consistent with our measurements.
Similarly to rubber membranes, the formation of a treelike

crack network is a generic feature in impacted brittle
materials [8,9]. Although fragmentation occurs at subsonic
crack speeds, the process of dynamical instability we have
described is a common behavior between these different
systems. Consequently, the prediction of the distribution of
fragment sizes resulting from a fragmentation process does

FIG. 4 (color online). (a) Distance sðtÞ covered by the fractures since their creation for membranes with initial thickness e ¼ 800 μm.
Black symbols represent the progression of cracks in the opening regime. The velocity is constant and increases with the tension of the
membrane. Colored symbols represent the progression of the extremity of a crack network in the fragmentation regime. The cracks
propagate at a constant velocity, now independent of the membrane tension. The limit velocity is vl ¼ 570� 15 m=s. (b) Number N of
cracks as a function of the coordinate r for experiments with e ¼ 800 μm. In the opening regime (black symbols), the number of cracks
is constant. In the fragmentation regime (colored symbols), N starts to increase linearly and eventually saturates. Panels (a) and
(b) display data from the same experiments and share the same symbols. (c) Values of G as defined by Eq. (3) as a function of T=e. As
the calculation holds for the fragmentation regime, no data point is displayed in the opening regime (colored rectangle). The dashed line
represents the behavior of G that is consistent with the data of Fig. 3. The red dotted line indicates the estimate of Γ as the asymptotic
value of G.
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not only involve given rules of geometric division of a
surface [11] but it should also include modeling of dynami-
cal processes leading to branching instabilities.

The authors thank Benjamin Crépin for his help with the
experiment.
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