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bPhysique et Mécanique des Milieux Hétér

Paris-Diderot, 10 rue Vauquelin, 75005, Par

Cite this: Soft Matter, 2013, 9, 8494

Received 27th March 2013
Accepted 26th June 2013

DOI: 10.1039/c3sm50861g

www.rsc.org/softmatter

8494 | Soft Matter, 2013, 9, 8494–85
Elasto-capillarity at the nanoscale: on the coupling
between elasticity and surface energy in soft solids

Joost H. Weijs,*a Bruno Andreottib and Jacco H. Snoeijera

The capillary forces exerted by liquid drops and bubbles on a soft solid are directly measured using

molecular dynamics simulations. The force on the solid by the liquid near the contact line is neither

oriented along the liquid vapor interface nor perpendicular to the solid surface, as usually assumed, but

points towards the liquid. It is shown that the elastic deformations induced by this force can only be

explained if, in contrast to an incompressible liquid, the surface stress is different from the surface

energy. Using thermodynamic variations we show that the surface stress and the surface energy can

both be determined accurately by measuring the deformation of a slender body plunged in a liquid.

The results obtained from molecular dynamics fully confirm those recently obtained experimentally

[Marchand et al., Phys. Rev. Lett., (2012), 108, 094301] for an elastomeric wire.
1 Introduction

As largely demonstrated in the last two decades, elasticity plays
an important role in surface physics. Phenomena such as
surface reconstruction,1,2 surface segregation,3 surface adsorp-
tion,4 elastic instabilities,5 self assembly,6,7 and nano-
structuration8 of crystalline solids are directly induced by
surface stresses. In parallel, and almost without any connec-
tion, the elastic deformations of sheets and rods9–16 as well as
gels and elastomers induced by capillary forces have been evi-
denced and investigated.17–33 It has remained unclear to what
extent it is important to distinguish the surface tension from
the surface stress for these elasto-capillary phenomena.

The denition and properties of surface stresses can be
derived from thermodynamics, atomistic models andmechanics.
These approaches are complementary and should in principle be
consistent with one another. The simplest situation is an inter-
face between a condensed phase and its vapor. Let us consider an
extensive quantity, the density of which varies across the inter-
face over the scale of a few molecular sizes. At the macroscopic
scale, the density can be seen as homogeneous on both sides of
the interface. However, the extensive quantity then presents an
interfacial excess. For instance, the free energy presents an
interfacial excess called the “surface energy”, denoted by g.
Dividing now the total volume of the condensed phase and its
vapor into two subsystems with a dividing plane normal to the
interface, the mechanical force between the two subsystems also
presents an excess quantity called the “surface stress”, which
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throughout the paper we refer to as Y. This is a force per unit
length acting parallel to the interface, originating frommolecular
interactions.

In the very particular situation where the condensed phase is
an incompressible liquid, it can be shown from the virtual work
principle that the surface stress and the surface energy are strictly
equal, i.e. Y ¼ g. The surface stress and surface energy are then
unied into a single name “surface tension”, and it is common to
address capillary problems using either the thermodynamic, or
the mechanical route.34,35 In a solid, by contrast, the surface
energy a priori depends on the strain in the bulk and yields an
additional elastic contribution to the surface stress.5,36 More
precisely, the difference between the surface stress and the
surface energy is the derivative of the surface energy with respect
to the strain. This result is known as the Shuttleworth equation,5,36

Yij ¼ gij þ
vgij

v3
; (1)

where 3 is the bulk strain parallel to the interface. The
subscripts refer to the phases i and j on both sides of the
interface. Indeed, the Shuttleworth equation also applies when
the interface separates two condensed phases composed of
different molecules. This is highly relevant for wetting
phenomena, for which one naturally deals with liquid–solid
interfaces. Such interfaces present an excess free energy gSL

that, according to (1), is different from the surface stress YSL.
Once again, the surface stress is the excess force parallel to the
interface and can be measured at the edge of any control
volume that includes the interface. Importantly, the force YSL is
exerted on a subsystem composed of two types of molecules, a
solid and a liquid. From a molecular perspective, YSL is the
resultant of all types of molecular forces: solid–liquid, solid–
solid and liquid–liquid interactions.
This journal is ª The Royal Society of Chemistry 2013
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Table 1 Lennard-Jones interaction parameters for the MD-simulations for liquid,
solid and gas atoms. With these values, the liquid–vapour surface tension is g ¼
3.1 � 10�2 J m�2

Interaction
pair i, j

eij/kBT
(T ¼ 300 K) d/nm

LL 1.2 0.34
SL Varied 0.34
SS 0 0
GG 0.4 0.5
SG 0.004 0.34
LG 0.7 0.42
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The aim of this paper is to explore the difference between
surface energy and surface stress in the case of so solids that are
partially wetted by a liquid. A paradigmatic example of this effect
consists of a drop (or bubble) on a deformable solid,17,18,22–24,28–33

as shown in Fig. 1. This problem has recently been explored
experimentally and theoretically, with contradicting interpreta-
tions emerging from microscopic and macroscopic descrip-
tions.24,27–30,32,33,37 Indeed, we expect a particularly strong
manifestation of the difference between surface energy and
surface stress near a three-phase contact line. On the one hand,
the liquid–vapor interface is characterized by a surface tension,
i.e. gLV ¼ YLV, and Young's law for the equilibrium contact angle

gLV cos q ¼ gSV � gSL (2)

only involves the surface energies. On the other hand, the
mechanical equilibrium of the solid involves the surface
stresses YSV s gSV and YSL s gSL.

In this work, we reveal the connection between elasto-capillary
interactions at the nanoscale and the thermodynamic concepts of
surface energy and surface stress. In Section 2, we perform
molecular dynamics simulations of drops and bubbles on so
substrates, for which we can accurately determine the elastic
deformations and the liquid-on-solid forces. We nd that the
deformation below a drop is markedly different from the defor-
mation below a bubble (Fig. 1); we measure a tangential force
oriented towards the liquid side, even for a contact angle q ¼ 90�

for which gSV ¼ gSL. To explain this tangential force, we explore
the roles of surface energy and surface tension in elastocapillarity.
Fig. 1 Molecular dynamics simulations of a drop (a) and a bubble (b) on a deformab
substrate. Top: snapshot, blue particles are liquid atoms, red particles are solid atom
liquid drop (shown by liquid isodensity contours). (b) Bubble on a soft substrate. Top:
Bottom: local displacement (red arrows) of the solid due to the presence of the bub
near the contact line is different from both situations: in the drop case the solid is p

This journal is ª The Royal Society of Chemistry 2013
In Section 3 we develop a purely thermodynamic view, in the case
of a plate partially immersed in a liquid, and compare this directly
to molecular dynamics simulations. Finally, we conclude in
Section 4 by relating the tangential forces to the difference
between surface energies and stresses.
2 Drops and bubbles
2.1 Molecular dynamics

The aim of this paper is to investigate the basic mechanisms
controlling elasto-capillary interactions in model situations. We
have therefore performed molecular dynamics simulations
using simple interactions for both the liquid and the so solid,
in a quasi-2D geometry. The simulations have been performed
using the Gromacs soware package.38 The liquid consists of a
le substrate, both with a contact angle q¼ 90� , hence gSL ¼ gSV. (a) Drop on a soft
s. Bottom: local displacement (red arrows) of the solid due to the presence of the
snapshot, red and blue particles are the same as in (a), cyan particles are gas atoms.
ble (shown by liquid isodensity contours). Note that the tangential displacement
ulled inwards whereas in the bubble case the solid is pulled outwards.

Soft Matter, 2013, 9, 8494–8503 | 8495
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Lennard-Jones uid the pair interaction potential of which is
given by:

fijðrÞ ¼ 4eij

�
dij

r

�12

�
�
dij

r

�6
" #

: (3)

Here, eij and dij are the interaction strength and the range
between particle types i and j, respectively. The potential is cut off
at 5dLL, where dLL is the liquid atom size. The simulations are
performed in the NVT-ensemble (constant number of particles N,
constant volume V, and constant temperature T using the ther-
mostat described in ref. 39). The solid consists of atoms placed
on a cubic lattice of 25 layers, with harmonic springs connecting
each atom to its neighbour and next-nearest neighbour. The
lattice spacing a ¼ 0.8dLL, while all spring constants are taken
equal with k ¼ 38.5eLL/dLL

2. There are no Lennard-Jones solid–
solid interactions, hence the solid atoms only interact with each
other through the harmonic springs. The solid (S) interacts with
the liquid (L) through Lennard-Jones interactions. By varying the
solid–liquid interaction, we explore drops of different equilib-
rium contact angles.40 In the simulations for a gas bubble, we
added gas atoms (G) that also interact according to a Lennard-
Jones potential. The addition of gas atoms in the bubble case is
required to prevent the bubble from collapsing immediately, as
would be the case for a vapour bubble. The Lennard-Jones
interaction parameters are given in Table 1. In the following
paragraph we dene the relevant dimensionless numbers.

From a macroscopic view, the elasto-capillary deformations
arise from a balance between the surface tensiong and the elastic
modulus E (for simplicity of notation we use g for the liquid–
vapor surface tension gLV). The ratio of these parameters g/E
gives the elastocapillary length, which sets the scale of the elastic
deformations. Our quasi-two-dimensional simulations have
plane-strain conditions, in which case the relevant elastic
modulus reads E ¼ ~E/(1 � n2), where ~E is the Young's modulus
and n is the Poisson's ratio. In terms of lattice parameters in our
simulations, we nd E ¼ 15k/(8a). To quantify the relative so-
ness of the substrate, one can compare the elastocapillary length
to the (liquid) atomic size dLL, which gives the dimensionless
quantity g/(EdLL). Whenever this quantity is small, the deforma-
tions are weak and one should recover the contact angles
according to Young's law.37 Here we measure the liquid–vapour
surface tension g in a separate system using a Kirkwood–Buff
integral over the stress-anisotropy near the interfaces g ¼ Ð

(pN �
pT(z))dz where, pN is the (constant) thermodynamic pressure in
the system, and pT is the tangential (relative to the interface)
component of the stress-tensor which deviates from pN near the
liquid–vapour interface.40–42 We nd, using the method outlined
in ref. 42 to determine the local pressure that g¼ 0.78eLL/dLL

2. In
this work, therefore, the parameter g/(EdLL) ¼ 8.6 � 10�3 is
indeed small, meaning that all elastic displacements are much
smaller than the atomic size (small elastic strains), and allows the
use of linear elasticity theory. The typical length scale of thermal
uctuations in the solid,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=k

p
, compared to the elastocapil-

lary deformation described before provides another dimension-

less quantity
g

ffiffiffi
k

p

E
ffiffiffiffiffiffiffiffi
kBT

p ¼ 0:18. The smallness of this parameter
8496 | Soft Matter, 2013, 9, 8494–8503
shows that the thermal uctuations in the system are much
larger than the deformation due to capillary forces. Still, as we
will show, the displacement eld can bemeasured very accurately
in the simulations aer averaging over time. Finally, we note that
in SI-units, the chosen material properties correspond to real
materials at T ¼ 300 K, E ¼ 11 GPa, and g ¼ 3.1 � 10�2 J m�2.
Surface tension coefficients of simple liquids typically lie between
2.2� 10�2 J m�2 (ethanol) and 7.2� 10�2 J m�2 (water). Young's
modulus of crystalline solids is typically around E ¼ 100 GPa
while it can be much lower for elastomers (between 10�2 and
10�1 GPa for rubber) and gels (down to 1 kPa) the elasticity of
which is entropic.

The small strains in the solid (smaller than thermal uctu-
ations) are measured by calculating the time-averaged
displacements (relative to the center of mass of the droplet or
bubble) of the solid atoms compared to a base state, obtained
from a simulation of the same solid in a vacuum. As we are
interested in the inuence of the liquid on the solid, this
procedure allows us to exclude effects associated with the
presence of a solid–vacuum interface. The contact angles of
the droplet and of the bubble are measured by determining
the time-averaged density eld of the liquid and the position
of the Gibbs interface. We refer the reader to our previous
work40 for technical details. The circular t to this liquid–vapor/
gas interface is extrapolated to the solid, which provides the
contact angle.
2.2 Elasto-capillary deformations

To illustrate that the surface energy is not sufficient to charac-
terize elasto-capillary deformations, we rst consider a case
where gSV ¼ gSL, such that the contact angle of the liquid is
close to 90�. The contact angle can be adjusted by tuning only
the Lennard-Jones interaction eSL, while keeping the liquid
parameters (eLL, sLL, sSL) xed. This way, the liquid properties
are unchanged except for the interaction with the solid. Note
that, in general, the surface stresses will be different from the
surface energies, and thus YSV s YSL.

Fig. 1 shows the elastic deformation in the solid below a
liquid drop (panel a), and below a bubble lled with gas (panel
b). Since q ¼ 90�, the shape of the liquid–vapor interface,
characterized by the iso-density proles, is very similar in both
cases. By contrast, the elastic deformations are markedly
different, as can be seen from the vector eld (red arrows); while
below the drop one observes a tangential displacement towards
the center of the drop, the displacements below the bubble are
oriented outwards. This surprising outcome has important
consequences. The drop and the bubble are perfectly symmetric
from the point of view of the surface energies, since gSV ¼ gSL in
this case. Yet, this symmetry is not reected in the surface
displacements; the deformations are not invariant under an
inversion of the phases. Instead, the solid is always pulled
towards the liquid side of the contact line (not only for the case
q ¼ 90�). Therefore, an elasto-capillary description based on
constant surface energies (i.e. on surface tensions) is not suffi-
cient to describe the elastic deformations below a drop or below
a bubble.
This journal is ª The Royal Society of Chemistry 2013
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2.3 Capillary traction and contact line force

Before turning to a fully thermodynamic description of elasto-
capillary deformations in Section 3, we rst quantify the capil-
lary liquid on solid forces at the nanoscale. Note that for a
complete description of the bulk deformations one requires
both liquid on solid forces and any solid on solid forces that are
present in the surface layer. However, since the asymmetry is
caused by the liquid on solid forces we rst quantify the liquid
on solid forces only. The common feature of the deformation
below the drop and the bubble is that, below the contact line,
the tangential deformations are oriented towards the side of the
liquid phase (Fig. 1). This is consistent with the predictions of
the density functional theory in the sharp interface approxi-
mation,29,35 which is based on a microscopic description of the
interactions. The mechanism for this asymmetry is that the
long-ranged attraction by the liquid molecules creates a resul-
tant force on the solid that is biased towards the liquid; the
solid is more strongly attracted by the phase of the highest
density. This resultant force ultimately determines the elastic
deformations, and is responsible for breaking the symmetry
between drops and bubbles in Fig. 1.
Fig. 2 Capillary traction: the liquid on solid forces per unit area of the substrate m
component of the force per area by the liquid on the solid, sn. The two peaks corres
peaks corresponds to the liquid–solid interface, where the solid gets pushed down d
liquid on the solid, st. There is only a force near the contact lines, and the force is direc
the liquid on the solid due to the contact line at varying q. The solid line corresponds t
the contact line at varying q. The solid line corresponds to 1 + cos q. The low values fo

This journal is ª The Royal Society of Chemistry 2013
In molecular dynamics, we can of course directly quantify
this effect by measuring the time-averaged forces that all liquid
molecules exert on the solid molecules. Since we wish to reveal
the capillary traction (force per area) that the liquid induces on
the solid, we integrate over the vertical depth of the solid. In
practice, the direct liquid–solid interaction only acts in the
supercial layers of the solid, due to the short range of Lennard-
Jones (van der Waals) interactions (�r�6). The resulting capil-
lary traction below a drop is shown in Fig. 2. First, the curve in
Fig. 2a shows the normal traction, sn, of the liquid on the solid
in the case of q ¼ 82�. As expected, we observe a large traction
that is localized near the two contact lines; this corresponds to
the “pulling” action of the contact line. The width of the peak is
a few molecular sizes and reects the width of the liquid–vapor
interface. At the center of the drop one observes a slightly
negative traction, corresponding to the Laplace pressure in the
bulk of the drop. As the drop is in equilibrium, this Laplace
pressure perfectly balances the upward stress at the contact
line; the total liquid-on-solid normal force is zero. Using
macroscopic thermodynamics we can estimate the normal force
exerted by the liquid on the solid in the vicinity of the contact
easured in molecular dynamics of a droplet on a substrate (q ¼ 82�). (a) Normal
pond to the contact lines, where the solid gets pulled up. The region between the
ue to the Laplace pressure. (b) Tangential component of the force per area by the
ted towards the interior of the droplet. (c) Normal component of the total force by
o sin q. (d) Tangential component of the total force by the liquid on the solid due to
r small contact angles q < 40� are likely due to finite size effects in the simulations.

Soft Matter, 2013, 9, 8494–8503 | 8497
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line. For drop sizes that are much larger than the width of the
peak in sn (which coincides with the thickness of the liquid–
vapour interface), we can separate the capillarity forces into a
contribution per unit area, P ¼ g/R, and a perfectly localized
force per unit contact line fn. Using the fact that the width of the
drop is 2R sin q and that the total force vanishes, one predicts
that the strength of the force on the solid near the contact line
should be fn ¼ g sin q (per unit contact line). We can test this
macroscopic prediction in our simulations. First, we determine
the liquid–vapor surface tension g from an independent cali-
bration, as described in Section 2.1. Then, we integrate the
normal stress over the peak located around the contact line,
yielding the total normal force per unit contact line fn. The
result for different contact angles q is shown in Fig. 2c. The
results of MD simulations are consistent with a contact line
force in the normal direction fn ¼ g sin q, shown as a solid line.

Similarly, we can determine the tangential capillary traction
on the solid, denoted by st. The result is shown in Fig. 2b. We
nd a positive traction at the contact line located on the le (i.e.
pointing towards the right), and a negative traction at the
contact line located on the right (i.e. pointing towards the le).
Indeed, we identify an effective liquid-on-solid force that is
oriented towards the interior of the drop, i.e. into the liquid
phase. This tangential force is the reason why the elastic
displacements point towards the interior of the drop. Again, we
quantify the total force exerted on the solid near the contact line
from the integral of the peaks, ft. The resulting tangential force
per unit contact line is shown in Fig. 2d, as a function of the
contact angle. We observe a nonzero inward tangential force for
all angles. This can be understood from the le-right symmetry
breaking below the contact line; the solid atoms are attracted
much more strongly by the high-density liquid phase than by
the low-density vapor phase. As the strength of the solid–liquid
interaction is directly quantied by the work of adhesion, g +
gSV � gSL, one expects below a liquid–vapour–solid triple
line:35†

ft ¼ g + gSV � gSL ¼ g(1 + cos q). (4)

This equation is shown as the solid line in Fig. 2d; it indeed
captures the features of the tangential force, which is always
positive, i.e. oriented towards the liquid side, and nicely
describes the magnitude and trend with the contact angle. This
also explains the difference between the deformations below a
drop and a bubble.

In conclusion, our simulations clearly demonstrate the
existence of a tangential capillary force exerted on the region of
the solid below the contact line. This force has a strong inu-
ence on the elastic deformation below a drop or bubble. This
effect is usually ignored in the literature on elasto-capil-
larity,17,18,22,28,30,32 likely due to the fact that in the case of an
incompressible liquid (or solid) this tangential force is exactly
balanced by a solid on solid forces and therefore is not
† In case the vapor is replaced by a second, immiscible liquid, there will be a
second “work of adhesion” contribution. This yields another tangential force on
the solid that is biased toward the second liquid, and weakens the asymmetry.

8498 | Soft Matter, 2013, 9, 8494–8503
transmitted to the bulk. However, in general for n s 1/2, this is
not the case and the tangential force (which is always pointed
towards the liquid phase, see Fig. 2d) needs to be taken into
account when considering the elastic deformation.
3 Partially immersed solid

From the preceding section it is clear that the elastic deforma-
tion below a contact line results from the detailed interactions
(capillary and elastic) at the nanoscale. We will now address the
problem in a macroscopic framework, where we relate the
elastic displacements to purely thermodynamic concepts. In
particular, the goal is to express the microscopic interactions
discussed in Section 2 directly in terms of the excess quantities
gij and Yij. For this, we consider a long elastic plate that is
partially immersed in a liquid, see Fig. 3. This geometry was
experimentally studied before using a thin elastomeric wire.43

The experiment revealed that the elastic strain in the “wet” part
of the solid was very different from the strain in the “dry” part.
Here we analyze this geometry using the thermodynamic
concepts of surface stress and then compare it directly to
molecular dynamics.

The central result of this section is that the vertical strain
above the contact line, ~3+, couples to the surface energies, while
the strain below the contact line, ~3�, is determined by the
surface stresses:

WE

2
~3þ ¼ gSV � gSL (5)

WE

2
~3� ¼ YSV � YSL: (6)

Here W is the width of a two-dimensional elastic plate, and E is
the elastic modulus, while the reference state for the strain is
Fig. 3 Partially immersed plate ofwidthW, held at equilibriumby an external force
Fext. (a) The plate is partially wetted, with the contact line located at z¼ 0. There is a
homogeneous strain above and below the contact line: 3+ and 3�, respectively. (b)
Zoomed view around the contact line. Near the contact line exists a transition region
of the strain from 3+ to 3�. The transition occurs over a length �W.

This journal is ª The Royal Society of Chemistry 2013
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the completely dry solid. By determining the strain inside the
plate, one thus directly measures the difference between surface
energies and surface stresses. This method will be applied in
our molecular dynamics simulations.
3.1 Thermodynamics: strain above and below the meniscus

To derive (5) and (6), we consider the free energy of an elastic
plate that is partially submerged in a liquid bath with
the contact line at z ¼ 0 (Fig. 3). We will assume that the
elasto-capillary length g/E is much smaller than the plate
width W, which in turn is much smaller than the total plate
length L:

g/E � W � L. (7)

The rst assumption allows one to consider the solid–liquid
and solid–vapor interfaces to be at with respect to other scales
in the problem, as can be seen from the zoomed view near the
contact line in Fig. 3b. The second assumption implies that
apart from the region directly below the contact line of widthW,
the strain is homogeneous and characterized by a constant
value for 3 ¼ duz/dz, where uz is the vertical displacement eld.
We denote the strains above and below the contact line as 3+ and
3� respectively; the contribution to the energy of the region
directly below the contact line is sub-dominant by a factor W/L.
Outside the contact line region the strains can be considered
small, since 3� � g/EW� 1. Under these assumptions, we arrive
at the following free energy functional of the system (per unit
length):

F ¼ 2

ðzcl
a

dz g 1þ h02
� �1=2 þ gSL

h i
þ 2

ðb
zcl

dzgSV

þW

ðzcl
a0

dz
1

2
E3�

2 þW

ðb0
zcl

dz
1

2
E3þ

2:

(8)

Here a and b denote the bottom and top positions of the plate,
but note that the elastic energy should be taken over a domain
of xed length L0 ¼ b0 � a0, with reference positions a0 and b0.44

We allow for variations of the shape of the liquid–vapor inter-
face h(z), the position of the contact line zcl, the top and bottom
positions of the plate b and a, and the elastic strains 3�. The
equilibrium conditions follow from

dF ¼ Fextdb, (9)

which equates the change in energy to the work done by the
external force. Note that the positions b and a are linked by the
constraint

b� a ¼ L0 þ
ðb0
a0

dz3: (10)

First, we derive the equilibrium conditions for the liquid, by
considering variations of the liquid–vapor interface dh(z), with
db ¼ d3+ ¼ d3� ¼ 0. From geometry near the contact line, this
implies a variation of the contact line position according to
dh(zcl) ¼ �h0(zcl)dzcl. One thus obtains
This journal is ª The Royal Society of Chemistry 2013
1

2
dF ¼ 0

¼ dzcl

�
g 1þ h02
� �1=2 þ gSL � gSV þ 1

2
EW

�
3�

2 � 3þ
2
��

zcl

þ dh
gh0

ð1þ h02Þ1=2
" #

zcl

�
ð
dz

gh00

ð1þ h02Þ3=2
dh: (11)

The integral expresses the Laplace pressure condition for the
liquid–vapor interface. The terms�3�

2 arise from the fact that a
variation of zcl does not affect the contact line zone, but just
gives an exchange of the elastic energies of the dry and wet
parts respectively (similar to the exchange of surface energies
gSL � gSV). Collecting the terms from the boundary condition,
using dh(zcl) ¼ �h0(zcl)dzcl, one nds the condition for the
equilibrium contact angle

cos q ¼ gSV � gSL

g
þ 1

2

EW

g

�
3þ

2 � 3�
2
�

¼ gSV � gSL

g
þ O

�
g

EW

�
:

(12)

where we replaced cos q ¼ 1/(1+h02)1/2. This shows that for
g/EW � 1 one recovers Young's law for the liquid contact angle
with respect to the undeformed solid.

Next, we explore the elastic degrees of freedom of the plate.
For convenience, we now choose the contact line position as the
reference altitude: zcl ¼ 0. Using eqn (8), one can write the free
energy F p of the plate and its interfaces with the liquid and the
vapor:

F p ¼ 2bgSVð3þÞ � 2agSLð3�Þ þ
1

2
WE

�
b03þ

2 � a03�
2
�
: (13)

Here we made explicit the strain dependence of surface energies,
which is necessary for solid interfaces. Due to the relationships

b ¼ b0(1 + 3+), a ¼ a0(1 + 3�), a0 ¼ b0 � L0, (14)

there are only three independent variables. We choose here to
parametrize the problem using b0, 3+ and 3�. From this we can
write the total variation:

1

2
dF p ¼ db0

�
gSV � gSL þ 1

2
EW

�
3þ

2 � 3�
2
��

þb0d3þ

�
gSV þ vgSV

v3
þ EW

2
3þ

�

�a0d3�

�
gSL þ vgSL

v3
þ EW

2
3�

�
; (15)

where, aer the variation, we replaced b ¼ b0 and a ¼ a0 owing
to the smallness of the strains. For the same reason, we also
anticipate that the terms of order EW3�

2 can be neglected in the
following steps.

The variation of the plate energy must be balanced with the
work done by the external force

dF p ¼ Fextdb ¼ Fextdb0 + Fextb0d3+. (16)
Soft Matter, 2013, 9, 8494–8503 | 8499
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Fig. 4 Snapshot from an MD-simulation of a plate (W/a ¼ 26 atoms wide)
partially submerged in a liquid bath. The liquid–solid interaction energy eSL was
chosen such that q ¼ 90� . Comparing the time-averaged z-position of the solid
atoms to the time-averaged position of the reference system (plate in a vacuum),
allows for the local displacement uz(z) to be measured.
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Combining (15) and (16), gives the three equilibrium
conditions. The variation of b0 gives the familiar expression for
the external force needed to hold the plate, i.e.

Fext ¼ 2(gSV � gSL). (17)

Using this expression, we nd that the strains must follow

EW3þ ¼ �2
vgSV

v3
� 2gSL (18)

EW3� ¼ �2
vgSL

v3
� 2gSL: (19)

The reference state for the strain, 30, will be the plate in
contact with the vapour only. This reference can be derived in a
similar way by minimizing the free energy of a plate in vapour
(i.e. by replacing gSL with gSV in either of the above equations):

EW30 ¼ �2
vgSV

v3
� 2gSV: (20)

The nal step is to subtract the reference state from (18) and

(19), and substitute the Shuttleworth equation Yij ¼
vgij

v3
þ gij:

~3þ h 3þ � 30 ¼ 2

EW
ðgSV � gSLÞ

~3� h 3� � 30 ¼ 2

EW
ðYSV � YSLÞ:

Indeed, this is the result anticipated in (5) and (6). In
conclusion, the immersion of a slender body allows one to
determine accurately both surface energies and surface
stresses.43
Fig. 5 MD measurement of the relative displacement ~uz(z) for plate width W ¼
8.8dLL. The derivative of this slope gives the strain ~3(z). The contact line is located
at z¼ 0, where a clear jump in ~3(z) is observed (from ~3� to ~3+, see also Fig. 3 and 4.)
This signifies an imbalance in surface stresses (YSL s YSV) even though gSL ¼ gSV

for q ¼ 90� .
3.2 Molecular dynamics

We now test this method in a MD simulation of an immersed
plate. Fig. 4 shows a snapshot of the simulation, where the solid
plate is partially immersed into a liquid reservoir. The material
of the plate is the same as that used in the previous drop and
bubble simulation, except that it is stiffer, kp ¼ 10k, such that
Ep ¼ 110 GPa whereas the liquid surface tension is unchanged,
g ¼ 3.1 � 10�2 J m�2. The container that holds the liquid
consists of the same material as the plate, except that the
container is not allowed to deform by xing the atoms to their
initial positions. To avoid a curved liquid meniscus, and hence
a difference in pressure on the wetted and dry regions of the
plate, we consider again q ¼ 90�. In this case gSV ¼ gSL and
according to (5) we expect ~3+ ¼ 0. Before each simulation we
equilibrated the solid in a vacuum to have a well-dened
reference state.

Fig. 5 shows an example of the vertical elastic displacement,
uz(z), that is induced aer immersion of the plate. The slope of
this curve directly gives the strain ~3¼ duz/dz. Indeed, we observe
very different strains above and below the contact line, which
allows for the determination of ~3+ and ~3�. In this example the
top part of the plate is hardly deformed, as expected from (5) for
8500 | Soft Matter, 2013, 9, 8494–8503
this situation where gSV ¼ gSL. By contrast, the lower part of the
plate displays a negative strain, ~3� < 0, corresponding to a
compression of the bottom part of the wire. Using (6), this
reveals a difference in surface stresses, YSV s YSL, despite the
equality of surface energies.

To quantify the difference YSV � YSL, we repeated the simu-
lations with plates of various widths W. The resulting ~3+ and ~3�
are plotted as a function of 1/W (Fig. 6). Above the contact line
we indeed nd a vanishing strain ~3+ for all plate thicknesses,
This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 MD measurements of the vertical strains ~3+ (circles) and ~3� (squares) as
functions of the inverse plate width dLL/W. Within error, there exists no strain
above the contact line (3+). This is expected for q ¼ 90� . Below the contact line,
however, the solid is compressed due to an imbalance of the surfaces stresses at
the contact line (YSL s YSV). The slope of this curve quantifies the magnitude of
this imbalance, eqn (6).
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within the error bars of the simulation. Below the contact line
we observe a nearly linear dependence on 1/W, as predicted by
(6). This conrms that our system is large enough to apply
thermodynamics and continuum elasticity. The slope of the

curve is measured at
d~3�

dð1=WÞ ¼ �ð1:4� 0:3Þ � 10�3dLL. This

slope can be related to the surface stress via eqn (6) and we nd,
for this specic solid and liquid pair:

YSV � YSL � (gSV � gSL) ¼ YSV � YSL ¼ �(0.81 � 0.17) g . (21)

This surface stress difference is clearly not a negligible effect;
it is of the same order as the liquid–vapor surface tension.
Fig. 7 Stresses acting on the circular control volume around the contact line.
Note that for solids generally YSX s gSX, hence there exists an imbalance of the
interfacial stresses in both the normal and tangential directions. This imbalance is
counteracted by elastic stresses in the solid, along the thick gray dashed line.
4 Conclusions

We have shown from thermodynamic considerations that the
elastic deformation of a partially wetted solid crucially depends on
the difference between surface stress and surface energy. This
result is conrmed using molecular dynamics simulations,
revealing how deformations emerge from interactions at the
nanoscale. To complete the picture of elasto-capillary interactions,
we nally give a purely mechanical interpretation of our ndings.

Describing the partially immersed wire of Fig. 3 using
continuum elasticity, a discontinuity of strain implies a
discontinuity of stress across the contact line, in the direction
parallel to the solid interface. This means that the contact line
region must exert a tangential force f elt on the bulk elastic
material.43 The magnitude of the tangential force experienced
by the bulk elasticity is proportional to 3+ � 3�, and therefore
reads

f elt ¼ (YSL � YSV) � (gSL � gSV). (22)
This journal is ª The Royal Society of Chemistry 2013
This residual force accounts for all interactions that are
transmitted across the surface layers to the bulk elastic,
including the solid–solid interactions. It is therefore important
to distinguish f elt from ft measured in Fig. 2, while the latter only
included the liquid-on-solid forces, the surface stress captures
the total excess surface force and includes all supercial
interactions.

Fig. 7 shows how the residual force f elt arises due to the
imbalance of surface stresses in the vicinity of the contact line.
When discussing the forces near the contact line, it is absolutely
critical to explicitly specify the material system to which the
forces are applied; a different choice of control volume will lead
to different forces.35,43 Here we consider a macroscopic control
volume that includes the three-phase contact line, as indicated
by the dotted circle. As this includes the three interfaces, one
can directly represent the surface stresses YSV, YSL and Y ¼ g as
indicated by the solid arrows. Interestingly, the equilibrium
contact angle does not involve the surface stresses of the solid,
but rather the surface energies gSL and gSV. This is not incon-
sistent with Fig. 7, because Young's law represents an equilib-
rium (a minimal free energy from the thermodynamic
perspective and a balance of forces from the mechanical point
of view) inside the liquid only, and thus requires a different
control volume that does not include the solid.35 As a conse-
quence, the surface stresses in Fig. 7 do not balance in the
direction parallel to the solid, but yields a nonzero tangential
force f elt ¼ g cos q + YSL � YSV, in agreement with (22). Similarly,
the surface stresses yield a resultant normal force

feln ¼ g sin q. (23)

To restore the mechanical equilibrium inside the control
volume, both f eln and f elt must be balanced by elastic stresses
that are exerted along the grey dashed circular section in Fig. 7.
The tangential component vanishes only when the surface
energies and surface stresses are equal.

A similar observation can be made for very so solids, for
which the solid deforms into a “cusp” shape with a solid angle
Soft Matter, 2013, 9, 8494–8503 | 8501
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Fig. 8 Stresses acting on the circular control volume around the contact line, in
the case of strong solid deformation (g/Ea [ 1). The liquid equilibrates at an
angle qL that is a function of the solid angle qS and the surface energies gSL, gSV.
Since for solids generally YSXs gSX, the liquid equilibration does not coincide with
a balance of the interfacial stresses. This imbalance is counteracted by elastic
stresses in the solid, along the thick gray dashed line.
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qS < p.28,30,37 The cusp develops when g/EdLL [ 1,37 and thus
corresponds to cases of much soer solids than those used in
our molecular dynamics simulations. Fig. 8 shows the surface
stresses near the contact line on such a strongly deformed solid.
For given value of qS, the equilibration of the liquid angle qL

involves only the surface energies gSL, gSV and not the stresses
YSL, YSV. In general, the liquid equilibrium will therefore not
coincide with the balance of surface stresses on the circular
control volume in Fig. 8 (ref. 37); residual elastic stress will arise
whenever surface energies differ from surface stresses.

The key parameter for wetting of so materials is thus the
difference between surface energies and surface stresses, as in
eqn (22). Experimentally, the strain discontinuity across the
contact line for the partially immersed wire gives direct access
to this difference. The recently suggested method to determine
the surface stress from contact angles assumes a perfect
balance of surface stresses,30 and therefore incorrectly assumes
that the elastic stress can be ignored for the balance that
determines the contact angle. This method, therefore, applies
only when there is no difference between surface energies and
stresses. Theoretically, we can now put upper and lower bounds
on the tangential force. Clearly, the simulations in Fig. 1 show
that the tangential force originates from the breaking of le/
right symmetry near the contact line, biased towards the side of
the high-density liquid. The maximum possible residual force
f elt should therefore be the liquid-on-solid force g + gSV � gSL.
This maximum arises whenever the solid–solid interactions in
the surface layer do not counteract this effect and the full
tangential force is transmitted to the bulk substrate. This was
referred to as the “vectorial force transmission model” in
previous work.37 Another extreme limit corresponds to the
“normal force transmissionmodel”, for which the surface layers
completely screen out any tangential stress. This is the case, for
example, when the substrate is another liquid (i.e. an oil drop
oating on liquid). A liquid can of course not sustain any shear,
which means that the symmetry-breaking of interactions is
counteracted by self-interactions inside the liquid substrate.
8502 | Soft Matter, 2013, 9, 8494–8503
This oncemore is in agreement with (22), since for liquid–liquid
interfaces Yij ¼ gij. Hence, we conclude

0 # f elt # g + gSV � gSL, (24)

or equivalently

gSL � gSV # YSL � YSV # g. (25)

Future work should be dedicated to the determination of
how the difference between Y and g exactly depends on the
material dimensionless parameters: the solid Poission's ratio,
the ratio of the elasto-capillary length to the atomic size, and the
ratio of the elasto-capillary length to the thermal length. The
results from our molecular dynamics are very close to the upper
bound; the surface stress difference was found slightly smaller
than the liquid–vapor surface tension g. A similar conclusion
can be drawn from the experimental results reported in ref. 43,
where an elastomeric wire was partially immersed in a liquid.
The symbol G used in this previous work can now be identied
with YSL � YSV, which was found identical to g within the
experimental uncertainty.43 To further explore the difference
between surface energy and surface stress, it would be inter-
esting to directly measure the tangential displacements inside
so substrates, e.g. using confocal microscopy,30 and compare
the deformation below a drop and a bubble.
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