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Abstract

We have studied the characteristics of the circular hydraulic jump using liquid helium. Surprisingly, the radius of the jump does not
change at the superfluid transition. We think that the flow is still dissipative below the lambda point because the velocity exceeds the
critical one. The jump radius R; is compared with various models. In our parameter range, we find that the jump can be treated as a
shock, and that capillary effects are important. Below the superfluid transition, we observed a standing capillary wave between the
impact of the jet and the jump. Assuming that the superfluid flow can be described with an effective viscosity, we calculate the wave
vector and thus obtain the value of the liquid thickness, which is in reasonable agreement with predictions. However, the spatial variation
of the wave amplitude depends much more strongly on temperature than we calculate.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

When a jet of liquid hits a flat surface, there may occur a
sharp increase in the depth A of the fluid layer at some
radius R; from the center of the jet, as shown schematically
in Fig. 1. This is called the hydraulic jump. (By continuity,
there is a corresponding decrease in the average fluid
velocity outside the jump.) The hydraulic jump is easily
observed in any sink, and has become a popular under-
graduate experiment [1,2]. Many experiments have been
carried out in the past 50 years (see references in Ref. [3]),
mainly with ordinary fluids like water or ethylene glycol.

The primary interest in using liquid helium to study the
hydraulic jump lies in its remarkable quantum properties at
low temperature. Above the superfluid transition tempera-
ture 7, = 2.17K , helium behaves as an ordinary liquid,
though with a very small kinematic viscosity (v~ 2x
10~¥m?/s), and high Reynolds number (Re~2 x 10%) can
be obtained easily. Below T, the liquid behaves as a
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mixture of a normal fluid and a superfluid component,
which can flow without dissipation; hence there is some
hope that using liquid helium one can observe the
hydraulic jump in an inviscid fluid [4], which should have
quite a different jump radius R;, as originally calculated by
Rayleigh (see Section 3.1 below).

The second important feature of our experiment is its
size: typical values of R; are in the millimeter range, one or
two orders of magnitude smaller than in previous experi-
ments. This should increase the effect of the surface
tension, which is expected to decrease R; [5], as will also
be explained in Section 3.1.

The experimental setup is described in Section 2. In
Section 3.1, we review the theoretical work which has been
done on the jump. In Section 3.2 we present our
measurements of the radius R; as a function of the flow
rate Q and depth d of the normal fluid outside the jump.
We find that the measured values R; lie between the values
predicted with and without the effects of surface tension. A
short preliminary report of these measurements has been
published elsewhere [6]. Then we describe in Section 3.3
what happens at the superfluid transition. Surprisingly, R;
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Fig. 1. Hydraulic jump.

does not change much at the transition temperature; we
show that this is probably due to the fact that the flow is
supercritical. Assuming that the whole fluid behaves as an
ordinary fluid with a viscosity equal to that of the normal
fluid component, we find that the data below the superfluid
transition are consistent with the ones above the transition.
The only specific feature of the low temperature regime is
the appearance of developed capillary waves in the thin
film region. In Section 4, we discuss the dispersion relation
of the ripples, and we use their wave length to estimate the
thickness of the flowing film for comparison with various
models. Finally, we comment on the decay length of the
ripples, which unlike R; does appear to be affected by the
superfluid transition.

2. Experimental setup

The experiments are performed in an optical helium-4
cryostat. The experimental cell is positioned in the vacuum
below the main helium-4 bath; the thermal contact between
the bath and the cell is achieved by a solid copper piece. A
schematic view of the setup is shown in Fig. 2. The liquid
jet hits a horizontal optical mirror positioned at the center
of the experimental cell. Usually, the mirror is illuminated
by diffusive source, and a side view is obtained by means of
a CCD camera equipped with a macro objective. The
observation angle with respect to the horizon is set to
o = 12.5°. An auxiliary mirror, positioned above the main
one, allows observation of the jump from above, at normal
incidence. This is useful for checking that the jump is
circular.

The helium forming the jet is admitted into the cryostat
from a high pressure vessel, and condenses in three
successive heat exchangers in the main helium-4 bath.
The flow rate Q is regulated with an accuracy of 1% by
means of a flowmeter operating at room temperature. The
range of Q is 2-100mm?/s. At lower flow rate, the jet is
unstable and often intermittent, especially below the
superfluid transition; at higher flow rate, thermalization
of the incoming fluid is not sufficient. The temperature of
the cell can be set between 4.2 and 1.5K by pumping the
main He bath (the superfluid transition occurs at 2.17K
under saturated vapor pressure). In this range of flow rate
and temperature, no thermocapillary Marangoni flow is
expected to arise. The values of the parameters of interest
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Fig. 2. Setup.
Table 1
Physical properties of liquid helium (after [7])
T (K) v (1078 m?/s) py (g/em?) y (mN/m) Lc (mm)
4.2 2.59 0.125 8.88 0.266
3 2.52 0.141 21.55 0.394
245 2.14 0.145 26.99 0.437
1.5 0.88° 0.145 33.22 0.480

“Effective viscosity (see text).

at the temperatures where measurements were performed
are summarized in Table 1.

The final part and the outlet of the helium line is made of
a Cu—Ni capillary, whose inner diameter is of the order of
0.2mm. The end of the capillary has been polished, and
looks perfectly circular under a microscope. However, at
high flow rate, the jump is not perfectly circular (deviations
are of the order of 5%); this may be due to small defects
of the tube, or possibly to an incipient instability of the
jump [8]. The height of the end of the tube with respect to
the mirror was varied between 2.5 and 1 mm. This has a
small effect on a (which is always very close to 0.1 mm),
and on R;.

The radius of the impinging jet @ and R; are easily
measured on the images. R; lies in the range 0.4 to 4 mm,
much smaller than the mirror radius (24 mm). In order to
measure d, we have used an original technique. A small
wire is held parallel to the mirror and perpendicular to the
camera axis, at a position such that its image reflected by
the mirror goes through the center of the mirror, as shown
in Fig. 3. When a layer of liquid of thickness d is present on
the mirror, the image becomes double. One of the images
corresponds to rays reflected from the free surface; it is
very faint since the refraction index of the liquid is close
to the one of the vapor (ny —ny ~ 0.028). The second
image corresponds to rays reflected from the mirror; since
these rays are refracted at the free surface, the second
image is shifted upwards by a quantity 6 = d/(2cosu
(1 — tanatanr)), where ny sinr = ny cosa. The ratio J/d
depends on the temperature through the refractive indices.
For o = 12.5°, one finds 6/d = 0.552 and 0.657 at T = 4.2
and 1.5K, respectively. As d is of the order of 100 um, the
shift is of the order of a few pixels. This is small, but sub-
pixel resolution can be easily achieved using standard
image analysis, and the final accuracy of the liquid
thickness is of the order of 10%. The thickness in the fast
flow region can only be measured when the flow is very
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Fig. 3. Measurement of the liquid film thickness. The thickness / is obtained by measuring the shift of the position of the image of a wire in presence of
liquid (image b) with respect to its position when the mirror is dry (image a). The thickness after the jump is here 75 + 5 um. This technique allows the
determination of the whole profile /(r), provided that the slope is small. One finds also that the thickness inside the jump is of the order of 10 um.
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Fig. 4. Left: stationary ripples appear to grow progressively into the region inside the jump for temperatures below 7'; (here 7' = 1.71 K). The vertical bar
at the top center of the image is the filling capillary. Right: the intensity profile along the white line in the image (the origin for x is at the jump).

stable, that is at 4.2 K and medium flow rate. It is of the
order of 10 um.

The experiments are performed in the following way.
First we wait until the temperature of the helium bath
is stabilized, which may require 1h. Then the gas is
admitted in the filling line at a fixed flow rate Q. We
wait until the temperature gradient in the fill line is
stable, and record images of both the jump and the
wire. Then Q is changed (non-monotonically), and we
repeat the measurements. Most of our measurements
have been taken in this stationary configuration, with
the liquid flowing over the edge of the mirror. Once
the dead volume at the bottom of the cell is filled, the
outer level increases linearly with time, and the jump
radius R; starts decreasing until it ultimately collapses.
We have also analyzed some of these sequences, where we
can measure R; as a function of the liquid depth d at
constant flow rate. In this case, the radius is quasi-
stationary: dR;/d¢ is much smaller than the fluid velocity
in the fast flow region, so that one expects that the velocity
field is not much modified. However, this is not the case in

the outer region since the velocity has to vanish at a finite
distance.

At low temperatures, stationary ripples begin to grow
into the region inside the jump, as shown in Fig. 4. The
right side of the Fig. 4 shows the intensity profile along a
cut through the image. The variation of the intensity is not
due to the change of the liquid depth, but is due to the local
slope of the liquid—vapor interface. Indeed, the diffusive
source is seen through a small window (the numerical
aperture is of the order of 0.1) so that the illumination of
the entrance pupil of the lens, and hence the intensity in the
image plane, depends on how much the light reflected
through the film is deflected. As long as the relative
variation in intensity is small, the intensity depends linearly
on the local slope. This allows us to extract the decay
constant from the intensity profile. Moreover, knowing the
numerical aperture for both illumination and imaging,
one can estimate the amplitude of the ripples, which is
found to be at most 1um. The total liquid depth is of
the order of 10um. More details of the analysis will be
given in Section 4.
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3. Radius of the jump
3.1. Models of the jump radius

Several models have been proposed to predict the value
of R; as a function of the following parameters: the
volumetric flow rate Q, the jet radius a, the thickness d of
the fluid outside the jump, and the fluid kinematic viscosity
v. While the hydraulic jump is easy to observe, the theory is
challenging because of the intrinsically two-dimensional
nature of the flow, and the presence of a free boundarys; it
remains a problem of current interest. In the original
treatment by Rayleigh [4] for an inviscid fluid, the jump is
treated as a shock that connects the fast flow in the thin
layer and the slow flow downstream. If the characteristics
of the flows are known, conservation of mass and
momentum flux set the value of R;. Such an approach
leads to the result (quoted in Watson [9]):

Rid*ga® gda* 1 .
0 + 200 1 (1)
Rayleigh’s expression leads to values of R; much larger

than measured experimentally. The scaling of R; with Q

rather supports a model where the viscosity plays an

important role. Watson [9] derived a model in which the
thin flow is divided into two regions. Close to the impact,
the flow is inviscid with a growing boundary layer which
invades the whole flow at r = Ry; for r> Ry the flow is fully
viscous. Watson assumes a self-similar velocity profile for
r> Ry, approximating the radial component of the velocity
by the form u(r,z) = U(r)f(z/h(r)), where h(r) is the depth
of the liquid at a distance r from the origin. The functions

U and f are determined from the equations of motion and

continuity. The conditions of conservation of mass and

momentum conservations at the jump in this model lead
now to

Rid*gd a

3 —1 —1
=0. : 182
o TeRd 0.01676{(R;/a)*Re™" +0.1826} ",

2)

where Re = Q/va is the Reynolds number at the jet.
Experimental data are in reasonable agreement with this
prediction.

Watanabe et al. [3], on the other hand, argue that
treating the jump as a discontinuity involving extra energy
loss is inconsistent with the flow being stationary and
laminar, which is the case at low Re. They constructed a
viscous theory that produces a smooth but kink-like
surface shape. They introduce a new free parameter / in
the velocity profile, which is no longer assumed to be self-
similar. In a shallow water approximation, they obtain two
coupled differential equations for A(r) and the film height
h(r). With two boundary conditions on / before and after
the jump, numerical integration yields /(r) and the velocity
profile, which presents a separation bubble, or eddy,
behind the jump. The jump radius is expected to be of

the order of the characteristic scale r, for the radius:
r. = [(Q/21)°v3g~'1"/%. It was shown that R; indeed scales
roughly like r, [10]. Note that in order to calculate the
jump radius R; with the model developed in Ref. [3], it is
necessary to know the depth of the liquid inside the jump.
A direct measurement is possible only in the normal phase
(see Fig. 3).

Bush and Aristoff [5] recently discussed the effect of
capillary forces due to the curved surface of the jump. Since
the typical values of R; are in the millimeter range, much
smaller than in previous experiments, capillary effects
should be more important in our experiment. Bush and
Aristoff extend Watson model to include capillary forces
acting at the jump. They obtain:

R~d2 2 2 2

e EAW -
0 Bo 22 R;d

= 0.01676{(R;/a)’ Re™" +0.1826} 7", 3)

which is the same as Eq. (2), except for the factor
(1 + 2f/Bo). The number f characterizes the shape of the
jump; it is equal to 1 for a sharp, step-like jump, and tends
to zero for very smooth jump. Setting f =1 thus
correspond to an upper bound for capillary forces and
yields a lower bound for R;. The Bond number Bo appears
as a second parameter in the problem : Bo = dR;/L%,
where Lc is the capillary length (Lc = /y/pg, where 7y is
the surface tension, p the density and g the acceleration of
gravity). As typical values of Bo in our system are much
smaller than in previous experiments, Bush’s approach
should be easily tested in our experiment.

3.2. Measurements of the jump radius in the normal fluid

Experiments were performed at three different tempera-
tures above T'; (4.2, 3, and 2.4K). The surface tension is
the only physical parameter that varies significantly in this
temperature range. In our setup, the control parameter is
the flow rate Q. However, the height d after the jump is not
imposed, and varies as a function of Q. Thus the variation
of the radius as a function of Q alone is not meaningful. In
Fig. 5, R; and d are plotted as a function of the flow rate Q.
For a fixed flow rate, d decreases with T between 4.2 and
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Fig. 5. Characteristics of the jump for normal fluid. Left: radius R; as a
function of the flow rate Q. Right: thickness d as a function of Q. o and e:
42K, x3K; O: 2.4K.
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3K, and does not change between 3 and 2.4 K. Clearly, d
does not depend only on the value of the surface tension.
At 42K, we have also observed that d depends on the
thermalization of the cell with the main bath. Presumably
residual thermal gradients influence the way the liquid falls
over the edge of the mirror.

Since we measure both Q and d, it is possible to compare
the measured value of R; with the prediction by Watson.
Eq. (2) is easily solved numerically. In Fig. 6, we have
plotted the predicted value of R; as a function of the
measured R; in Watson’s model (open symbols). The order
of magnitude is correct, but there is a clear discrepancy; the
predicted value is generally higher than the measured one.
At fixed R;, the lower the temperature, the higher the
prediction. As the surface tension is the only parameter
which varies significantly, capillary effects are the natural
candidate to explain the disagreement. For the smallest
jump in our experiment, we find that Bo is about 0.2, which
means that capillary forces are more than a small
correction! Hence we also plot the solution of Eq. (3) in
the limit of an abrupt jump (f = 1), shown as solid symbols
in Fig. 6. The model of Bush and Aristoff collapses the
data much better than Watson’s; the predicted values in
this model are now systematically smaller than the
measured ones but this is expected since they are computed
in the limit / = 1, which correspond to a lower boundary
for R;. Real jumps, especially at low flow rate (i.e. small
radii) look very smooth. A precise comparison with Bush
and Aristoff predictions requires determining the actual
profile of the jump. Unfortunately, our optical techniques
do not work when the local slope is large, which happens
precisely at the jump.

At this stage, it seems that treating the jump as a
discontinuity provides a good estimate of R;. This is
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Fig. 6. Comparison of the measured jump radius R; with the prediction
without surface tension [9] (open symbols) and with surface tension in the
abrupt-jump limit [5] (closed symbols) Circles: 2.45K; squares: 3.0K;
triangles: 4.25 K. Neglecting the surface tension yields too large a radius,
but in the abrupt-jump limit, capillary forces are overestimated.

slightly surprising in view of the image in Fig. 3, where the
jump is smooth and the flow is quite laminar. Such
situations, which require a very accurate temperature
regulation, are obtained only for 7 =42K and
0<10mm?/s. For these jumps, we have compared
experimental data with the model developed by Bohr and
co-workers [3]. In order to obtain a prediction for R;, one
needs to numerically integrate the coupled equations for
the interface height A(r) and the velocity profile from a
point r; inside the jump to a point far downstream, where
h =d . The thickness A(r;) is about 10 um. Following the
integration method proposed by Watanabe et al.,, we
obtain R; = 0.95r,, with r, = [(Q/21)°v3¢~']"/® (the nu-
merical factor is not very sensitive to the value of A(r))).
This yields values roughly two times larger than the
experimental one. Thus Bohr’s model does not seem to
describe accurately small jumps. One first reason could be
that capillary forces are neglected. According to Watanabe
et al., capillarity is negligible if the Weber number We =
LE/r? is small. For O~10mm?/s, one finds We~0.25 so
that capillarity forces are small but not negligible as in
Bohr’s approach. A second reason could be that R; is not
very large compared to Ry, the point where the velocity
profile changes from a Blasius type to a fully viscous
profile. From Watson [9], one finds that in our experiments
R 22Ry.

3.3. Going through the superfluid transition

In order to study what happens at the superfluid
transition (7, = 2.17K), we have set the flow rate at a
constant value Q = 17mm?*/s and slowly decreased the
temperature through the transition at a rate of 30 mK/min.
Images are shown in Fig. 7. There is little change in the
jump radius on passing through the transition temperature.

Fig. 7. Evolution of the jump as a function of the temperature: R; varies
only slightly at the superfluid transition. Ripples appears progressively
below T,. Q = 17mm?/s and R; >~ 2mm.
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This is quite surprising: from the Eq. (1), which is expected
to be relevant for a non-viscous fluid, one expects the
radius to increase roughly by a factor 10. Other measure-
ments at 1.5 K at various flow rate have confirmed that the
radius is roughly independent of the nature of the fluid.
We propose the following explanation. Below T, the
liquid can be considered as a mixture of a normal and a
superfluid component (a comprehensive description of the
behavior and properties of superfluid helium can be found
in Wilks [11]). In this two-fluid model, only the superfluid
has zero viscosity and zero entropy, while the normal
component carries the entropy and has a finite viscosity 7,
which decreases roughly by a factor 2 when T decreases
from T, down to 1.5K. Depending on the boundary
conditions, the superfluid component may flow indepen-
dently of the normal component, or together with it. Only
in the first case may the flow be truly non-dissipative.
Moreover, it is well known that the flow of the superfluid
component itself can be dissipative if the velocity exceeds a
critical value Uc which depends mainly on the thickness
(or more generally on the transverse dimension) of the flow
(see Ref. [11, pp. 383ff.]). The dissipation mechanism is not
completely understood, but there is a consensus that
quantum vortices are generated if the velocity is larger
than Uc. In our setup, vortices may be generated in the
tube, where Re is of the order of a few thousand (assuming
that the effective kinematic viscosity is of the order of
n,/p), or where the jet impacts the substrate and the
direction of the flow is turned outwards. As seen in Fig. 7,
the presence of ripples inside the jump blurs the image of
the wire and make a direct measurement of the liquid
thickness impossible. However, the thickness is mainly set
by the jet diameter, and it should still be of the order of
10 pm when the liquid is superfluid. For such a thickness,
the critical velocity is of the order of 10cm/s [11]. This is
precisely the order of magnitude of the velocity at the
jump, so that the flow is presumably dissipative inside the
jump, and the generation of vortices may also occur in the
thin film region. For temperatures above 1.5 K, the normal
fraction is larger than 0.1. Because of the mutual friction
between the vortices and the normal component, the two
components “lock” to each other. Then, as a first
approximation, the superfluid behaves as an ordinary fluid
with an effective kinematic ver of the order of #,/p. For
instance, grid turbulence experiments yields vey roughly
twice as large as 17,,/p-at T = 1.5K [12]. The exact value of
veir may depend on Re and on the geometry of the flow. As
the simplest guess, we will suppose in the following that

Vett = 1,/ p-

3.4. Jump radius at 1.5 K

We have performed measurements of both the jump
radius R; and the fluid thickness d for various flow rates at
T = 1.5K. In Fig. 8, we compare the measured value for R;
with the predicted values in Watson’s model and in Bush’s
model. With the hypothesis ver = 1,,/p, one finds that the
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Fig. 8. Comparison of the measured jump radius R; with the prediction
without surface tension [3] (open circles) and with surface tension [5]
(closed circles). The triangles correspond to the data for the normal fluid
(cf Fig. 6).

Fig. 9. Collapse of the jump at 7= 1.5K as the outer level d increases
(Q =26.67mm’/s). Left: d =122um and R; =3.30mm. Right: d =
283 um and R; = 1.83mm.

data in the superfluid regime collapse well with the data in
the normal regime. This supports the idea that the fluid
behaves as if it were a usual viscous fluid, at least for the
jump radius. One should note that the predictions for R; is
not very sensitive to the exact value of vey: an increase of
veff by a factor two leads to a decrease of R; by only 15%.

Data in a wider range of d can be obtained when looking
at the filling of the cell: when the dead volume below the
plate is filled by liquid, the outer level d starts to increase.
This makes the jump radius decrease, as seen in Fig. 9.

As R; decreases slowly (dR;/dt is much smaller than the
fluid velocity inside the jump), one expects than R; can
adjust to slowly varying boundary condition. In this way,
one can measure R; as a function of d, at constant flow rate
Q. Data are shown in Fig. 10, together with the predictions
corresponding to the model by Watson, and with the model
including a correction for the surface tension. Once again,
experimental data fall within the two predictions. Looking
more closely at the data, it is clear that the data are closer
to the prediction which takes into account capillary forces.
This is consistent with the observation that the jump
becomes steeper as R; decreases.
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Fig. 10. Variation of the jump radius R; as a function of the outer fluid
thickness d (Q = 26.67mm’/s, T = 1.5K).

4. Ripples in the fast flow region

Above the superfluid transition, a few ripples are visible
close to the jump. The most striking feature of the flow
below T, is the increasingly large number of ripples that
are visible within the jump, as seen in Fig. 7.

These ripples are stationary, which means that they are
traveling upstream with respect to the flow of the liquid. It
is observed that the phase of the ripples is independent of
the radius of the jump. This suggest a method for
measuring the depth of the liquid inside the jump, when
it is too shallow or too curved to measure by means of the
image of the wire, for the wavelength A should depend on
h(r). We start from the assumption that /(r) varies slowly
enough that it makes sense to speak of the wavelength at a
particular radius r, and that it is given by the distance
between wave crests in the image. We also treat the waves
as plane waves, rather than circular waves: this approx-
imation is justified by the fact that we do not observe any
ripples at radius small compared to 4.

To proceed, from the wavelength, we determine the wave
number k = 27n/A. As a first approximation, we note that
since the waves are stationary in the reference frame of the
laboratory, in the reference frame moving with the average
velocity (U) of the fluid, they are traveling upstream with
an equal and opposite velocity. Thus their phase velocity
vy = w/k is equal to (U) (here w is the frequency of the
waves in the fluid frame of reference). (U) depends on r and
h(r) by the equation of continuity, Q = 2arh(r){U(r)). The
dispersion relation for waves in a shallow liquid is [13, p.
240]:

w* = (gk + 7k* / p) tanh kh. 4)

This set of equations can be solved numerically for the
depth of the liquid, A(r). The result is in reasonable
agreement with the prediction of Watson [9], as shown in
Fig. 11, which lends credence to the procedure. It cannot be
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Fig. 11. This figure shows /(r) according to the Watson model (full line).
The dashed line represents the limit of the boundary layer invading the
liquid from the substrate. The data points are computed from the
measurement of the wavelength of the ripples and the use of either Eq. (4)
(+), or Eq. (5) (o: full calculation, e: boundary layer approximation). The
final uncertainty on /i is of the order of 1.5 um. Here the temperature is
T = 1.5K and the flow rate Q = 15.24mm?/s.

compared with a direct measurement, since the image of
the wire is blurred because of the oscillation of the
interface. However, in our parameter range, the minimum
thickness is only weakly dependent on the viscosity, so that
one expects the value of /1 to be set by the jet radius, and to
be still of the order 10 um. This value is consistent with the
one obtained from the simple analysis of the ripples.
Although we did not observe the growth of the ripples in
the time domain, the dispersion relationship given by Eq.
(4) suggests that the group velocity of the waves, vy =
dw/dk in the fluid frame of reference is greater than the
average fluid velocity (U), so we might expect that the
disturbance represented by the ripples grows upstream (i.c.,
though the crests remain stationary, new crests will form
upstream during the initial growth of the perturbation). It
has been suggested by Volovik [14] that the ripples are
generated by interactions with the substrate, which would
generate stationary waves (the perturbation due to the
surface has w = 0 in the laboratory frame of reference). It
is interesting to note that there is a minimum fluid velocity
below which stationary ripples cannot exist, (Upip,) =
min(w(k)/k) (here w(k) is in the fluid frame of reference).
This same criterion is required for the hydraulic jump to
exist in Rayleigh’s inviscid model, and it is the same as the
Landau criterion for the creation of quantum excitations in
a fluid moving past a wall, as noted by Volovik. In our
experiment, however, because the film is thin compared to
the capillary length, the minimum velocity is zero and
stationary capillary waves may form for any fluid velocity.
To establish the relationship between A and & more
accurately, and to determine the relationship between the
viscosity v of the liquid and the spatial dependence of the
ripple amplitude, we turn to the Navier—Stokes equations
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and look for solutions that correspond to stationary
ripples. We consider the region where the boundary layer
has reached the surface, so that the steady background
velocity of the liquid has a Poiseuille profile:
U(z) = Uy(h — 2)*%. (The direction of the flow is %; the
vertical direction is Z; we still consider plane flows rather
than circular flows; Uy is the velocity at the free surface,
and (U) = %Uo.) We look for small amplitude per-
turbations of this flow, of the form @= U(z)+
u(x,z)x + w(x,z)z, we look for periodic perturbations
proportional to e®*~“) and we linearize in terms of the
small perturbations # and w. Note that k£ may be complex.
If we write k = K + ik, where K is the real part and k the
imaginary part, then K determines the wavelength of the
ripples, and x governs the amplitude variation. Experi-
mentally, k can be determined from the decay of the ripples
with distance from the jump in the intensity profile of the
reflected light in the image (see Fig. 4).

The Navier—Stokes equations reduce, in the approxima-
tion described above, to the famous Orr—Sommerfeld
equation (for a derivation, see Ref. [15, p. 156]), with v =
0 since the ripples are stationary in the lab frame:

1/ L\ *?
e (a2 K) 6=VO (52 -R)o-vias.  ©

Here ¢ is the velocity potential; u(x,z) = ¢'(z)el—D,
w(x, z) = —ik(z)el>¥=n,

The boundary condition at the lower surface is the non-
slip condition, ©(0) = w(0) =0, which means ¢(0) =
¢'(0) =0.

The boundary conditions at the upper surface are
continuity of the normal and tangential stress, which must
include the effects of surface tension. These can be written,
after linearization (see for instance [16—-18]):

4 i 2 47 1 k2 (]’)(h) _
k() + 2GR — ¢ () + k(¢>(h) s B_O) o _
(6)
and
¢"(h) + (K> + 2)p(h) = 0. )

Here, the Bond number is Bo = pgh® /o (not the same as
defined in Section 3.1) and the Froude number is
Fr= U%/hg. This system of equations may be solved
numerically by two methods, shooting, and the boundary
layer approximation. (The Orr—Sommerfeld equation has
also been studied in the context of the hydraulic jump by
Cholemari [8], who use the self-similar velocity profile of
Watson instead of the Poiseuille flow for the unperturbed
flow; in order to study the stability of the jump, they seek
solutions with real £ and complex w.)

In the shooting method, we integrate the Orr—Sommer-
feld equation numerically, either by power series or by
fourth-order Runge—Kutta, with the initial conditions
$(0) = ¢'(0) = ¢"(0) = 0 and ¢"(0) = L, or $(0) = ¢'(0) =
¢"(0)=0 and ¢"(0)=1 (both of which satisfy the

boundary condition at z = 0). If these two solutions are
called ¢, and ¢,, then the general solution is of the form
¢ = Ap, + Bp,. The boundary conditions at the free
surface, Egs. (6) and (7), then reduce to two linear
equations in 4 and B; if 4 and B are not both to be zero,
Eqgs. (6) and (7) must not be linearly independent of each
other. This is true only for particular values of &, yielding k
as a function of /.

In the boundary layer approximation [3], since the
vertical scale of the problem is much smaller than the
horizontal scale, intertial, pressure and viscous terms are all
retained, but terms with derivatives with respect to x are
neglected compared to terms with derivatives with respect
to z. As a result, the pressure can be determined
immediately, and the Orr—Sommerfeld equation is replaced
by a third-order integro-differential equation,

| .
—UOFE+ U = 5K ¢ + ¢ @) ®)

with boundary conditions ¢(0) = ¢'(0) = ¢"(h) = 0. The
Weber number is We = BoFr.

Integrating from z =0 using the first two boundary
conditions leads to the third boundary condition becoming
an implicit equation for k.

The results of the two methods of solution, shooting and
boundary layer, are quite close; and the result for the real
part of k is not very different from the naive model
represented by Eq. (4), shown in Fig. 11 to be in reasonable
agreement with the model of Watson [9]. Since this model
is based on the classical hydrodynamics of a viscous fluid,
this result suggests as far as /(r) goes, the liquid is behaving
like a normal viscous liquid with a viscosity comparable to
the viscosity of the normal component of the fluid.

Fig. 12a shows that « is about 20% below the predicted
value above the lambda temperature. However, the
disagreement becomes much worse below the lambda
transition. In fact, between 1.7 and 2.0K, where the
viscosity of the normal fluid #, changes by 10%, x
decreases by a factor of 2, as shown in Fig. 12b. Therefore,
something else must be changing in this temperature range,
causing the variation in k. One possibility is the normal
fluid fraction py/p. In Fig. 12¢, we show « as a function of
the normal fluid fraction. The data above the lambda
transition collapse to a point (the normal fluid faction is 1,
above T), but below T, it appears that x is approximately
proportional to the normal fluid fraction.

5. Conclusion

In conclusion, then, we find that models of the hydraulic
jump that treat it as a shock do an adequate job of
predicting the radius of the jump, especially when the
effects of the surface tension at the curved surface of the
jump is taken into account. The model of Watanabe et al.
[3] (which does not include surface tension) is less accurate
(as one would expect) for small jump radii.
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Fig. 12. The growth coefficient x plotted as a function of temperature, effective viscosity vegr = 17 /p, and normal fluid fraction (dots: experimental data,
full line: obtained from the resolution of the Orr-Sommerfled equation). Above T'; the calculation of x disagree with experiment by about 20%, but below
T, the discrepancy is great. The variation of k below T, cannot be explained by the variation of the effective viscosity; it appears to be proportional to the

fraction of the normal component p/p.

Below the superfluid transition temperature, the jump
radius and the depth profile 4(r) appear to behave as
though the fluid is normal. This is not entirely surprising, in
view of the fact that the velocity of the fluid in the incoming
jet and inside the jump exceeds the critical velocity for
superfluidity.

The damping of the ripples tells a different story,
however. Above T, the growth of the ripples is within
20% of the prediction of a model of a classical viscous
fluid. However, below T, the damping deviates markedly
from the classical model, but appears to be proportional to
the normal fluid fraction. One might imagine that the
ripples represent an oscillation of the superfluid decoupled
from the normal fluid, such as occurs in the case of
third sound or fourth sound, where the normal com-
ponent is held in place by friction with a substrate
or a narrow pore, respectively [11, p. 421] but the superfluid
is free to oscillate. However, if the fluid is normal, on
account of its being over the critical velocity, then mutual
friction between the vorticity in the normal fluid and the
superfluid components should lock them together, and it
should not be possible for the superfluid to oscillate
independently. (Moreover, as in the case of third and
fourth sound, one might expect the wave velocity to be very
dependent of p, /p, and hence on the temperature. This is
not observed: the wavelength varies very little with the
temperature.)

Another possible explanation for the discrepancy in the
damping of the waves is that in the case of supercritical
velocity, the effective viscosity is not equal to 7n,/p.
Available data at large Re for homogeneous turbulence
leads to ver roughly twice #,/p, which makes the
discrepancy worse [12]. In order to reconcile our experi-
mental data with the flow of an ordinary viscous fluid, one
need the effective viscosity to decrease very strongly when
T decreases, which seems unlikely.

Using data from grid turbulence experiments, one may
try to estimate the amount of vorticity in the film.
Supposing that the decay time is taken to be 1 ms, which
is the order of magnitude of the time for the liquid to fall
from the tube, and extrapolating the data for grid
turbulence at Re = 10* [19], one finds that the vortex line
length L par unit volume is of the order of L~4 x 10" m~2.
This leads to an average distance between vortices of the
order of 5um, which is comparable to the depth of the
liquid. In this case, it may not be valid to treat the fluid as
homogeneous to begin with.

Ultimately, the nature and the origin of the ripples below
T, remains an open and interesting question.
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