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We have studied melting-freezing waves propagating at low temperature 
(40 < T< 500 mK) on vicinal surfaces of  hcp helium 4 crystals, which are 
tilted by a small angle qb with respect to c facets. We have first obtained the 
experimental evidence of  a crossover angle ~c~2.5 ~ where the surface 
properties change from stepped and anisotropie to rough and isotropic. This 
result confirms our previous prediction i that such a crossover should occur at 
the small angle where the large step width is comparable to the average dis- 
tance between steps. It also confirms the hypothesis that crystal surfaces are 
weakly coupled to the lattice in helium. In the r ~ 0 limit, we observed a 
clear stepped behaviour: the longitudinal component of the surface stiffness 
vanishes while the transverse component diverges. A quantitative analysis of  
these two components allowed us to measure the step energy and the inter- 
actions between steps. Good agreement is found with the prediction that step 
interactions result from the combination of  elastic and entropic effeets. We 
also found evidence that helium 3 impurities adsorb on the liquid-solid 
interface and lower the step energy when ordinary helium 4 (130 ppb of  3He) 
is used instead of an ultrapure sample (0.4ppb). Furthermore, from the 
damping of the waves, we could study the dynamics of vicinal surfaces, i.e. 
their mobility as a function of  temperature, angle and frequency. Here too, 
a crossover is observed from stepped to rough behavior. The dynamics is sen- 
sitive to the existence of steps up to higher angles than the stiffness. We show 
that a true stepped behavior is observed only if two conditions are fulfilled: 
the distance between steps must be much larger than the step width, and also 
larger than the mean wavelength of thermal phonons. By changing the fre- 
quency, we could finally confirm that the surface mobility increases when the 
phonon mean free path becomes smaller than the wavelength of  the melting- 
freezing waves. We conclude with some suggestions for further theoretical 
and experimental studies. 
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1. INTRODUCTION 

A crystal surface is called "vicinal" if it is slightly tilted with respect to 
a smooth dense face, in other words if its normal 17 makes a small angle ~b 
with some high symmetry direction t70. Such a surface is expected to be 
very anisotropic if it can be considered as a kind of atomic staircase, i.e., 
a set of terraces separated by steps. Its surface properties are very different 
in the maximum slope direction and in that perpendicular to it. For a wide 
variety of applications, it can be interesting to take advantage of this 
anisotropy: one can try to make various kinds of one or two-dimensional 
objects or to orient domains of adsorbed layers. It is thus important to 
understand the properties of vicinal crystal surfaces. 

However, as we shall see, the above qualitative description is valid 
only if the tilt angle ~b is small enough. 1 In such a case, the surface is called 
a "stepped" surface because its properties are governed by those of steps: 
their energy, their width, their density and their interactions. Let us call a 
the step height (a = 2.99 ,~) and d the average width of terraces, i.e., the 
average distance between steps. If the tilt angle ~ is too large, the distance 
d =  a/tan ~b is too small for these terraces to be well defined, the staircase 
disappears and the surface is nearly isotropic. Stepped surfaces are thus 
expected to exist only in a limited angular domain I which depends on the 
correlation length ~ of terraces, a quantity which can be related to the step 
width w. 1-5 In this article, we first show that a crossover from anisotropic 
stepped behavior to isotropic rough behavior 6 can indeed be observed, and 
that it occurs at an angle which can be estimated according to the above 
physical argument. 

During the last decade, the measurement of the interaction between 
steps progressively appeared as a real challenge. Indeed these interactions 
determine not only the equilibrium shape of crystals near facet edges 8 but 
also the magnitude of step fluctuations, the distribution of terrace widths 
on vicinal surfaces, 9 and eventually the roughening transition of these 
vic ina l  surfaces. 7 Most existing theories predict that neighboring steps 
should repel each other with a positive interaction energy proportional to 
1/d 2. The physical origin for such a 1/d 2 repulsion can be elastic t the over- 
lap of strain fields around neighboring steps), entropic l steps do not cross 
each other since overhangs are unlikely), or dipolar ton metallic surfaces I. 
However, disorder could change this law 1~ to l~d and other possible 
mechanisms have also been proposed.tl'12 

Moreover various types of experiments led to contradictory results. 
Some authors studied the equilibrium shape of Pb,13 in~4 or He crystals, t5 
A 1/d 2 repulsion implies that, near the facet edge, the profile equation is 
z ~ x 3/2, while a l i d  repulsion leads to z ~ x 2. However, the exact location 
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of the facet edge is very difficult, and it is hard to distinguish between the 
two possible shapes whose observations were both reported.~3-15 Another 
method was used by Wang et al.a6 and Alfonso et aL, 17 who measured the 
width o of the distribution of terrace sizes on Si surfaces; unfortunately, o- 
depends only weakly 9 on the nature of interactions (o -~d  for 1/d 2 and 
a ~ d  3/4 for l i d  interactions) so that a definite conclusion was hard to 
draw. 18 Finally, the case of Cu (1 ln) surfaces also seems unclear, since the 
study of roughening transitions was consistent with a l i d  2 repulsion, 7 but 
attractive interactions were found from STM studies. ~9 

It therefore appeared interesting to clarify the problem of step-step 
interactions by studying helium 4 crystals with more accuracy. Indeed, on 
helium 4 crystals, step energies and step interactions can be measured from 
a rather different type of experiment. At low enough temperature, these 
crystals are able to grow or melt so easily, i.e. with such a small dissipation, 
that it is possible to propagate melting-freezing waves 2~ on their surface. 
Sometimes also called "crystallization waves", they result from the alter- 
native growth and melting of the crystals. These waves are very similar to 
ordinary waves at the free surface of a liquid. Indeed, the restoring forces 
to a flat horizontal surface are the same (gravity and surface tension) and 
the inertia is similar (growth and melting imply a flow of mass in the liquid 
since the two densities Pc and Pr  are different). As for ordinary capillary 
waves, an accurate measurement of the surface tension can thus be made 
from the study of the dispersion relation. However, the anisotropy of 
stepped surfaces leads to a large anisotropy of melting-freezing waves, 
a major difference with liquid surfaces. As a consequence, in the case of 
melting-freezing waves, the relevant quantity for capillary effects is no 
longer the surface tension o~ but the surface stiffness y, more precisely the 
stiffness tensor 

c32c~ 

~ = ~ + &b i O~bs (1) 

where ~bi, j are angles in some reference frame. 
Consider for instance a vicinal surface with a small tilt angle ~b with 

respect to a e facet: the surface displays well separated steps. If the wave 
vector q lies perpendicular to the steps, the steps remain straight and the 
wave induces a local modulation of the step density. The surface stiffness 
depends on the compressibility of the step system, 4 and its relevant compo- 
nent is 

82~ 6d 
711 = oc q ~3~b 2 ~-5 ~b (2) 
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In Nozi~res' notation, 711 refers to the projection of the c axis being 
parallel to the wave vector q, and Eq. 2 supposes that the interaction per 
unit length is 6/d  2. From Eq. 2 one finds that the stiffness ?tl vanishes as 
the tilt angle ~b goes to zero. It has the following physical meaning: as the 
distance d increases, the step interactions vanish and very little energy is 
spent on bending the surface by moving the steps with respect to one 
another. 

In contrast, if 4 is perpendicular to the projection of the c axis, the 
wave bends the steps without changing their mutual distance and the 
restoring force for such a transverse wave is the line tension, i.e., the step 
free energy ft. Assuming cylindrical symmetry around the c axis, the corre- 
sponding surface stiffness is now: 4 

7• =~-~ (3) 
tan r 0~b a~ 

In order to obtain a given interface curvature, more and more bending 
of steps is needed as ~ tends to zero, because the step density also vanishes. 
Step energies and step interactions can thus be measured by studying the 
propagation of melting-freezing waves. As ~b tends to zero, Eqs. 2 and 3 
predict that 71I vanishes while 7_L diverges, so that the wave velocity should 
be very different along or across steps. 

Andreeva et al. 21 first tried to check Eq. 2. However, their results 
triggered further controversies. Indeed, instead of observing a linear 
vanishing of Ytl, they observed a slight increase, and Andreev concluded 
that facets do not really exist on helium crystals. = At that time. we replied 1 
that Andreeva's experiment should be extended to lower temperature and 
smaller tilt angle where clear evidence of stepped behavior and a reliable 
measurement of step interactions should be obtained. We predicted that the 
stepped behavior would appear below the small angle 2.5 ~ only, a conse- 
quence of the "weak coupling" which makes the step width rather large on 
helium crystal surfaces. 

We here present a full description of our experiment which is similar 
to the one by Andreeva et aL 21 It was performed at smaller tilt angles and 
much lower temperature and we found very good agreement with Eqs. 2 
and 3. Some of our preliminary results have already been published: 23 they 
concerned static properties, more precisely the effect on the surface stiffness 
of the crossover from stepped to rough behavior. Since then, we improved 
the stability of our crystals and made more precise measurements with 
an ultrapure helium 4 sample. This allows us to present here a complete 
description of these surfaces, i.e., not only their static properties but also 
their dynamic properties. 
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In Sec. 2, we describe our experimental set up and methods. Sec- 
tion 3 is a full analysis of our stiffness measurements. We first describe 
the observed crossover from stepped to rough. We then present our 
measurements of the step energy and explain why they are again consistent 
with our predictions 1 based on Nozi~res' hypothesis of a weak coupling of 
the surface to the crystal lattice. From our measurements of the step inter- 
actions as a function of temperature, we then obtain the first experimental 
evidence for a combination of elastic and entropic repulsion between steps, 
whose amplitude is found consistent with predictions. 4'9'24'25'26 We also 
consider the effect of impurities but only briefly, since a longer analysis is 
published elsewhere. 27 

In Sec. 4, we first present our measurements of the dynamics of 
vicinal surfaces as a function of temperature and orientation. Andreeva's 
results 21 already showed that the crossover from rough to stepped behavior 
happens at a much larger angle for the surface mobility than for the static 
properties (the surface stiffness). Being more complete, our data allow us to 
present a full interpretation of this effect. Besides the step width w and the 
distance d between steps, a third length scale plays a role in the interface 
dynamics: the mean wavelength 2pl a of thermal phonons whose scattering 
at the interface is responsible for the dissipation. Following Nozi6res 
and Uwaha, 28 we show that our results can be understood with the two 
following arguments: 

- -  the phonon scattering changes from coherent when d is smaller 
than 2ph to incoherent when d is larger than 2ph. 

- -  a true stepped behavior exists only if d is much larger than ~ph and 
larger than the step width w. 

We conclude with a summary of this work and some suggestions for 
future experiments. Of particular interest would be a measurement of the 
density and energy of kinks on the steps of helium crystals. 

2. E X P E R I M E N T A L  SET U P  A N D  M E T H O D S  

2.1. Cryogenics 

4He crystals are studied in the temperature range 40-500 mK in an 
optical dilution cryostat. The dilution unit was purchased from the 
company Leitec in Leiden (The Netherlands). Thanks to a roots pump 
(Edwards EH1200), a 800/~mole/s circulation rate can be achieved, which 
provides a cooling power of 70/~W at 30 mK, at the mixing chamber. 
Crystals are observed through five windows separated by vacuum and 
indium sealed on the 300 K, 77 K, 4 K, 0,7 K shields and on the pressure cell 
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fi lters 

Fig. 1. Schematic cross section of the bottom part of the cryostat, showing the four sets of 
windows. On the shields at 77 K, 4 K and 0.7 K the windows are coated IR filters: 

(Fig. 1). For better mechanical strength and thermal conductivity, the cell 
windows are made out of sapphire. The other windows are made of coated 
Pyrex glass so that the transmission coefficient for infrared radiation is less 
than 1% for wavelengths larger than 0.8/~m. 29 The smallest window has a 
diameter of 30 mm, so that the observation field is quite large. The cryostat 
is provided with four series of such windows, allowing direct observation in 
two perpendicular directions. The total heat losses due to infrared radiation 
are of the order of 10/~W. The Kapitza resistance between the cell and the 
mixing chamber being ~2000 K/W at 100 mK, our lowest temperature is 
20 inK. The volume of the cell is about 300 cm 3, much larger than the 
crystal size ( ~  10 cm3). The temperature is measured thanks to several 
Speer carbon resistors in the cell. They had been previously calibrated 
against the 3He melting curve. The final accuracy of the temperature 

measurement is 1%. 
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Special attention has been paid to vibration insulation. The cryostat is 
fixed on a 2 tons optical bench lying on four active isolators (Melles-Griot 
07 OTI 016). The horizontality of the bench is controlled to better than 
10 .5 rad. The pumping line for the mixture involves several bellows and an 
intermediate section of the line is embedded in the wall of the experimental 
room. 

2.2. Crystal Growth 

The first step in the experiment is to grow a high quality single crystal. 
It is grown at constant pressure by adding ultrapure 4He3~ through the 
filling capillary. In order to study solid-liquid interfaces with a crystalline 
orientation close to the c axis, we need first to nucleate a crystal with the 
c axis nearly vertical. This is done by using a technique first developed in 
Moscow. 2~ A strong electric field is produced by applying 1000V to a 
double winding of thin insulated copper wire (0.05 mm diameter), which is 
located in the upper part of the cell. Due to the difference in permittivity 
between the solid and the liquid phase, the crystal first nucleates on the 
wires. Below 1 K, the seed grows like a flat hexagonal prism; when it 
reaches 3 or 4 mm in size, it falls down to the bottom of the cell, often with 
the hexagonal facet roughly horizontal. We then partially melt the crystal 
until its size is of the order of 1 mm 3, and we grow it again very slowly 
thanks to a regulated flowmeter. At this stage, the speed of the interface is 
of the order of 0.1 r m/s, and the temperature is lower than 0.1 K. 

At such a temperature, the interface is partially faceted and some 
facets usually touch the walls of the small box where the crystal is grown. 
These walls are polished in order to avoid the anchoring of facets on 
irregularities. Indeed, if such an anchoring occurs, the overpressure builds 
up at the interface until the facet jumps quickly to another position. Such 
jumps create defects, probably stacking faults. Thanks to the polishing, we 
could maintain a regular growth with a very small velocity till the crystal 
reaches its final size ( ~  10 cm3). 

The growth of facets occurs through the motion of steps, which are 
presumably supplied by a small number of screw dislocations. 31 The typical 
difference in chemical potential A~t s across the facets can be estimated from 
the radius of curvature R of the rounded parts in between the facets. As 
these parts are rough, they are close to equilibrium so that the capillary 
overpressure y/R compensates the change in pressure ~PL with respect 
to the equilibrium pressure for a planar interface. This yields: ApF-- 
~PL(Pc--PL)/PcP~ = ~//Rp~ where PL and Pc are the respective densities of 
the liquid and the solid phases. Here we have assumed thermal equilibrium 
and neglected the capillary term involving the facet size 4 since this size is 
much larger during growth than at equilibrium. With ~ ~ 0.2 erg/cm 2 and 
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R ~ I  ram, we find pc A / ~ 2 x  10-3mbar.  This is the same order of 
magnitude as the threshold for spiral growth of "a" facets, which was 
measured by Wolf et al. 31 From this measurement, they estimated the mean 
distance between dislocations to be of order 100/zm. Thus this value can 
be taken as a lower bound for the crystals grown in our experiment: 

When the crystal has reached a size of 10 cm 3, we let it melt slightly 
and the interface relaxes under the influence of gravity. As the box size 
(24 x 38 mm) is much larger than the capillary length ( ,.~ 1 mm), the inter- 
face is horizontal at equilibrium. We then check the quality of the crystal 
by scanning the surface with a laser beam. If some defects intersect the free 
surface, they usually create cusps or grooves: the surface of a bad quality 
crystal looks much like an orange skin. If the scattering of the beam shows 
the existence of a defect, the crystal is melted to a very small size and 
grown again. We also check that the interface is flat (within 10 -5 rad) on 
a large scale by verifying that the displacement of the reflected spot is 
precisely the same as that of the incident beam. 

2.3. Orientation of  the Crystal 

The next important step in the experiment is to orient the crystal. The 
box which contains the crystal can be rotated around two perpendicular 
axes Ox and Oy using two dc micromotors inside the cell. 32 The small fric- 
tion in the transmission allows operation m a pulsed mode and the box can 
be rotated with pulses of order 0.1 mJ. With a repetition rate of ~0.5 Hz, 
the dissipation is small enough to operate the motors at low temperature 
without rewinding them with superconducting wire. The orientation of 
the box is monitored by two auxiliary laser beams which are reflected on 
two small mirrors glued on the box. The respective positions of the two 
auxiliary spots are located with two-elements photodiodes; the resulting 
accuracy in the angular measurement is 10 -s rad. We added a magnetic 
damping of vibrations by placing four little SmCo magnets close m a 
copper piece which is attached to the lower part of the rotating box. 

At the beginning, the c axis is aligned vertically within 10-4 rad in the 
following way. The main laser beam is totally reflected at grazing incidence 
(4 ~ from below) at the center of the interface. The "c" axis being off the 
vertical, the interface is rough and the gravity imposes a horizontal orienta- 
tion. The position of the reflected spot is located with a four-elements 
photodiode and used as a reference for further alignments. Next, the box 
is rotated until the c axis of the crystal approaches the vertical: a large facet 
forms and at some point the beam hits the facet. In this situation, the posi, 
tion of the reflected spot depends on the orientation of the facet, and it is 
easy to run the motors until the spot reaches the reference position, so 
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that the facet is now horizontal. The corresponding position of the two 
auxiliary spots provides the required reference for further orientation. As 
the amplitude of the rotation is a few degrees only, it is not necessary to 
take into account the very small change in the interface height as the box 
is rotated. When the reference is determined, either one or the other motor 
allow to tilt the interface, and to create steps either along Ox or along Oy. 
The accessible angular range is _+ 6 ~ in both directions. 

Finally, when the proper orientation is reached, the cell is closed with 
a hydraulic valve lying in the 4 K bath. This prevents any variation of the 
crystal size due to evaporation in the 4 K Helium bath, so that the solid- 
liquid interface is kept at a constant height. Our valve design is similar to 
the one published by Roach eta[. 33 It is leak tight to superfluid helium at 
high pressure thanks to a KelF tip which is pushed by bellows against a 
polished stainless steel seat. 

2.4. Excitation and Detection of Melting-Freezing Waves 

Plane waves are excited with the ac electric field of an inter-digital 
capacitor evaporated on a borosilicate glass plate (periodicity 80/lm), as 

capacitor 

X 

/ main laser beam 

Fig. 2. Crystals are grown in a rectangular box whose width is 24 m m  and whose length is 
38 mm. On  the tilted glass plate, an evaporated interdigital capacitor is used to generate waves 
travelling in the Oy direction. The incident laser beam is in the xOz plane, and is deflected 
in the Oy direction due to the wave. The tilt angle of the capacitor is about  25 ~ The box can 
rotate around Ox and Oy, so as to orient the lattice with respect to the free crystal surface 
which is forced by gravity to remain horizontal. 
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Fig. 3. A typical recording of a melting-freezing wave (here, a compression wave with 
~b = 1.2 ~ T = 0.179 K, f = 1119 Hz) a) The circles are the recording of the wave profile, b)The 
circles are the cosine of the phase cos(q R y -  00). The solid line is a best fit with a cosine func- 
tion, yielding a wavelength 2 = 480/~m in the present case. c) 'The circles are the amplitude 
of the wave, fitted with a decreasing exponential. The corresponding peak-peak height 
amplitude varies from 400 ~ to 4 ~. 
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Fig. 3. (Continued) 

done previously by Wang and Agnolet. 34 The dissipation in the capacitor 
is of the order of 30 #W for a typical ac voltage (1 KHz, 100 Vpeak-peak). 
Together with the 300 K radiation, this prevents us from observing waves 
below 40 mK. As the contact angle of the solid-liquid interface with the 
walls is about 135 o, a meniscus forms near the plate. In order to obtain a 
flat surface with a well defined orientation, a continuous voltage ( ~ 150 V) 
is also applied. 

The plate is parallel to Ox and the wave vector ~ is along Oy (Fig. 2). 
The profile of the wave is recorded by scanning the surface along Oy with 
the main laser beam. The angle of incidence is 4 ~ and the beam is totally 
reflected. The reflection direction is modulated by the wave, and measured 
with a position detector. This is a two-elements photodiode connected to 
a lock-in amplifier. Our method is very sensitive to the modulation of the 
surface orientation. We used a maximum amplitude of about 2 x 10-4 tad 
or l0 2 degree, i.e., much smaller than the tilt angle. This corresponds to 
a maximum height modulation of order 200 ~. Our limiting sensitivity is of 
order 10-6 radians or 1 ~ in height. The double phase lock-in amplifier 
provides both the cosine of the phase O(y) and the amplitude A(y) of the 
wave (Fig. 3). We can thus fit independently cos 0 with a cosine function 
cos(qRy+Oo) and A with a decreasing exponential Aoexp(-q~y). We 
finally obtain both the real part qR and the imaginary part q/ of the 
wavevector q. 
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The complete dispersion relation for melting-freezing wave is: 35 

c02 PL [ .Pc ] 
(Pc - -PL)  2 ~ )~q3 4- (Pc--  PC) gq -- Z--ff o)qj (4) 

where 7 is the surface stiffness, g the gravity. As previously, ~ we use the 
symbol k for the isothermal mobility. It  is defined as the ratio of the dif- 
ference in chemical potential (per unit mass) across the interface to the 
growth velocity if there is no temperature difference (k = v /A# if A T =  0). 
The same notation has been used by Nozi~res, 4 while the heavier notation 
(Km) was used by various authors. 21'34'45 

In the limit of small wavelength and small damping, one recovers the 
usual dispersion relation for capillary waves: o) is proportional to q3/2. In 
the same limit the mobility is given by: 

1 p~p~/3 (.O1/3 

k -- 3 (Pc -- PL) 2/3 ~2/3q, (5) 

The mobility can thus be obtained from the damping, provided that 
one checks that qz varies like co v3. Such power law dependencies have been 
measured previously for rough surfaces by Keshishev et at. 2~ In order to 

"7 

100  

10 
1 0 3 

~ , r ~ L ~ ~ 1  , ~ ~ . . . . _ ~  a , I 

1 04 1 05 

O) ( S  -1 ) 

Fig. 4. Dispersion relation ~o(qR) for melting-freezing waves at fixed ten~tperature (0.!5 K) and 
orientation (1 ~ The circles are experimental data and the solid line corresponds to a q3/Z 
dependence, which is expected for a capillary wave. This shows that the gravitational term in 
the dispersion relation is very small. 
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check our method, we made systematic measurements of qR and q~ at fixed 
tilt angle (1 ~ and temperature (150mK), for frequencies ranging from 
0.4 to 9 KHz. As shown on Figs. 4 and 5, we find a good agreement with 
the expected theoretical dependencies qR(o) and q~(co). 

In order to analyze our measurements, we kept the full expression for 
the dispersion relation (Eq. 4). Nevertheless, in order to increase the 
accuracy, the frequency was chosen in most further experiments such that 
the gravitational term in Eq. 4 is a small correction, and such that the 
damping is weak (qR < q~). 

As we shall see in Sec. 4, the damping strongly increases as a function 
of temperature. At high temperature where k is less than 1 s/cm, it is not 
possible to propagate waves, nor consequently to measure 7 or k by our 
method. At low temperature, the damping is weak and the measurement of 
7 is easier, although the amplitude of parasitic vibrations is larger. If 
the damping is very low, the wave is reflected at the wall opposite to the 
capacitor, and we obtain oscillations of the amplitude which show the 
existence of standing waves (Fig. 6). If the attenuation length is not too 
large compared to the size of the crystal, k can still be obtained by fitting 
the signal with the sum of two weakly damped waves propagating in 

4 , J i i , i ' I , 4 

3 

2 

1 I I I I I I f I I I r I 

1 0 3 1 0 4 

o ( s  -1 ) 
Fig. 5. The imaginary part qz of the wave vector as a function of co, for melting-freezing waves 
at fLxed temperature (0.15 K) and orientation (i ~ The circles are experimental data and the 
solid line corresponds to the theoretical dependence co 1/3. 
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Fig. 6. The circles are the recording of the amplitude of a melting-freezing wave, for a low 
damping (rough orientation, T =  0.28 K, f =  908.3 Hz). The oscillations of the amplitude show 
the existence of a standing wave. The solid line is a best fit with a function f(y) which is the 
resulting amplitude for two weakly damped waves travelling in opposite directions, 

opposite directions (Fig. 6). If the mobility k is larger than 100 s/cm, there 
is too much interference with reflected waves and the method is not accurate. 
As a result, k can only be measured in the range 1-100 s/cm. For a tilt angle 
(b = 8 ~ this corresponds to a temperature range 0.2-0.5 K. Moreover, the 
mobility is also strongly orientation dependent, so that the accessible tem- 
perature range for small tilt angle (e.g., ~--0.5 ~ is rather 0.1-0.2 K. 

3. THE STIFFNESS OF VICINAL SURFACES 

3.1. The Crossover from Stepped to Rough  Behavior 

We have recorded the propagation of several hundred waves on the sur- 
face of many crystals for various temperatures, orientations and frequencies. 
Some of our results are presented on Fig. 7 which shows that the surface 
properties drastically change as a function of angle. Indeed, above 4 ~ the 
surface is nearly isotropic (Yu ~ ? •  ~0 .2e rg .cm-2) .  In contrast, below 
about 1 ~ the anisotropy is very large: the transverse stiffness Y_L diverges 
while Y ll vanishes. We have already published a preliminary report on this 
effect 23 which is observed for the first time. The crossover from anisotropic 
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to isotropic takes place at ~bc~2.5 ~ in very good agreement with our 
prediction.1 We thus interpret our results as experimental evidence for a 
crossover from stepped to rough behavior, which occurs where the step 
width w is comparable to the mean distance d = a/tan ~b between steps. 

In Ref. 1 as in earlier publications, 31'36 we used the continuous sine- 
Gordon theory 4'5 with the explicit hypothesis that, in the case of helium, 
the coupling of the surface to the lattice is weak. Physically this means that 
the anchoring potential acts weakly on the surface. At a step, the interface 
height changes smoothly from 0 to a over a distance which is much larger 
than the lattice spacing a. The height can thus be described with a con- 
tinuous variable z(x), and the energy associated with a step is small (more 
specifically, fl ~ 0~a). Most solid-liquid interfaces are expected to be weakly 
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aL31'36: a crossover from stepped to rough  behaviour  has occurred. 
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coupled. Furthermore, numerical simulations 37 show that, in helium, the 
liquid-solid interface is much larger than the atomic spacing so that the 
width of a step cannot be small. Simulations also allow to understand 
the exact role of the large zero point motion of helium atoms in this weak 
coupling. The opposite situation would be a metal to vacuum interface 
which is expected to be strongly coupled with high energy sharp steps 

(fl ~ 0~a). 
The weak coupling hypothesis allowed Nozi+res 4"5 to describe the step 

profile by the simple analytic formula 

z ( x )  =--2atan-l[exp(~)lz~ (6) 

where s is the correlation length on c surfaces. Furthermore, we explained 
in Ref. 1 that, if w is defined as the distance on which the surface height 
goes from 0.1a to 0.9a, w is about 4s and terraces are not well defined if 
their size d is less than about 3w. Although Nozi6res' theory is strictly valid 
close to the roughening temperature T R = 1.30 K only, an extrapolation 
was used in Ref. 1 so as to predict the low temperature value wo of the 
step width and the crossover angle ~bco~a~3wo . We had found ~o~2a,  
Wo ~ 8a = 24 A and a crossover around 2.5 ~ This is precisely what we also 
found experimentally. We believe that such a crossover from stepped to 
rough is a very general phenomenon which should be observable on any 
weakly coupled crystal surfaces, in particular on most liquid-solid interfaces. 
The only unpredicted result is the large width of the crossover: it extends 
from 1 to 4 ~ and is thus wider than in Ref. 1 where it was arbitrarily drawn 
sharp. We shall consider this crossover width at the end of Sec. 3. 

The next question is the temperature dependence of this crossover. 
In Ref. 1 we had predicted that as T increases, the crossover angle ~b~(T) 
should decrease to zero at T R where the step width is infinite. The initial 
slope of Yll should also increase since it is proportional to the step inter- 
action (see 3.2). We have observed such a general trend (Fig. 8). How- 
ever, as explained in Sec. 2, we could not study the crystallization waves 
both at low angle and high temperature. The full temperature evolution 
between 0.4 and 1.3 K thus remains to be observed. When the damping of 
crystallization waves is too high, one should probably look again at 
equilibrium crystal shapes, a difficult experiment which is presently tried by 
A. V. Babkin 15 in Helsinki. 

Let us now describe the theory in some more details, in order to 
understand what is the meaning of the good agreement between experimen- 
tal results and theoretical prediction. In the sine-Gordon model, the lattice 
potential is renormalized from its microscopic value at the starting length 
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scale A o l ~  2.540 to its macroscopic value at large length scale. If T is 
smaller than the roughening temperature TR, this macroscopic value 
diverges so that the lattice potential locks the interface on the lattice. 
However, at a scale smaller than A o 1, there is no renormalization at all, and 
consequently no difference between a facet and a rough interface. This is 
precisely what happens if the tilt angle is larger than a critical value ~bc0: 
whatever the temperature, the terraces are too small for any renormalization 
to start, i.e., any influence of the neighboring facets to show up in the proper- 
ties of the vicinal surfaces. We indeed found that above about 4 ~ the present 
experimental results agree with those by Wolf, Gallet e t a / .  31'36 and by 
Andreeva et al. 21 despite the fact that the temperature ranges were different 
in all these experiments. At large angle, the variation of 7 was found to be 
0.245 (1 - 12q~ 2) by Wolf, Gallet et al. 31'36 and it is now well established as 
non-singular, i.e., independent of the existence or evolution of facets in the 
c direction. The critical variation of y shows up only for tilt angle smaller 
than ~cO. In this domain, we showed in Ref. 1 that our model is consistent 
with the old measurements performed close to TR by Babkin et aL 38 

Now, at T = 0  there are no thermal fluctuations, consequently no 
renormalization either. In Ref. 1, we thus identified the unrenormalized 
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surface with the T = 0 surface. That  is the way we obtained Wo = 8a, by using 
the value of  4o fitted on measurements close to T r .  As a consequence, the 
crossover from stepped to rough behavior  at low temperature was predicted 
to occur at the same angle ~bco as the beginning of  the critical angular 
domain for the surface stiffness close to the roughening temperature 
TR = 1.3 K (see Figs. 5 in Ref. t). This is precisely what  is now verified 
experimentally. We have thus shown that  the unrenormalized surface is 
indeed similar to the surface at zero temperature. This in turn suggests that  
the s ine-Gordon theory is valid at any scale, as expected if the coupling is 
small enough, even at a microscopic scale. 

3.2. The Step Free Energy p and the Adsorption of  3He Impurities 

Having unders tood the existence of  a crossover from stepped to rough, 
we have tried to check Eqs. 2 and 3, that  is to measure the step energy and 
the step interactions. Let us start with the step energy. Fig. 9 shows a plot 
of  the inverse stiffness l /y•  as a function of  tilt angle. There are two sets 
of data, one corresponding to ultrapure helium 4 with a concentrat ion in 
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at small tilt angle (~b < 1~ as expected theoretically. From the slope at the origin, we infer the 
value of the step free energy p (see text). 
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helium 3 impurities of 4 x 10-10 only, and the other one with normal purity 
( [ 3 H e ] = l . 3 x 1 0 - 7 ) .  In both cases, the temperature range of the 
experiment was typically 50-250mK for small tilt angle (~b<l ~ and 
200-400 mK for large tilt angle (~b > 2~ 

As can be seen on this figure, we have found that, below about 1 ~ 
l/y• is linear as a function of ~b, as predicted by Eq. 3. We conclude that 
the step free energy is 

fl/a = (14 __ 0.5) x 10 -3 erg. cm -2 (7) 

This value corresponds to the ultrapure sample and it decreases by 
20% when 0.13 ppm impurities are present. 

Let us first discuss the ultrapure case. In the temperature range from 
40 to 250 mK, the step energy was found constant within the error bar of 
the measurements. Eq. 7 thus gives the low temperature value of the step 
energy. The agreement with our predictions 1 is surprisingly good. Indeed, 
fl/a = 0.0570~ is not only very small compared to 0c, it is very close to the 
prediction fl/a = 17 x 10 3 erg. cm 2 which was obtained in Ref. 1. We had 
there extrapolated the theory very far from its domain of validity, i.e., very 
far from the region near T R where Gallet et al. measured step energies of 
order 10 4 e r g - c m - 2  only. We here obtain a quantitative proof that 
Nozi6res' theory is not only valid close to the roughening transition but 
also away from it, because the weak coupling hypothesis is correct at all 
scales and all temperatures. 

Let us now come to the influence of impurities. As explained in more 
detail in Ref. 27, we believe that some adsorption of helium 3 atoms 
takes place at the liquid-solid interface, and preferentially on the steps. As 
can be seen on Fig. 9, we also observed a change in the surface stiffness 
at large angle. At such large angles the stiffness is nearly isotropic and can 
be identified with the surface tension 0~. We found that the change A~ = 
0~(0.4 ppb) - 0c(130 ppb) decreases from about 15 x 10-3 erg- cm-2  around 
0.2 K to zero above 0.4 K. We understand the low temperature change A~ 
as due to the adsorption of helium 3 atoms, an effect which had been 
predicted by J. Treiner. 39 The fact that impurities desorb around 0.4 K is 
easily interpreted by adjusting the binding energy. We find it to be 4.3 K, 
a slightly larger value than predicted by Treiner. 39 We also found that the 
20% change in step energy Aft is constant in the temperature interval 
0.1-0.2 K. Quantitative agreement was found if the adsorption saturates 
below 0.2 K when a maximum surface density of 0.4 monolayer is reached. 
Our observation of a constant step energy also means that steps do not 
create new surface states, they only increase the local binding energy by 
a small amount, about 10inK. Although this whole picture looks in 
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reasonable agreement with Treiner's calculations, a much more systematic 
study is needed for a more precise understanding of helium 3 adsorption. 
Among hypotheses which we could not check is o n e  stating the existence 
of a large number of vortices in the pores of our sintered silver heat 
exchangers. We assumed that these vortices trap most of the helium 3 
impurities below 0.3 K, as observed by Varoquaux et al. in a different 
context. 4~ We finally concluded that our ultrapure sample is pure enough 
for the crystal surface to be totally free of impurity adsorption. 

3.3. The  Interaction Between  Steps  

Let us now consider the limiting behavior of ~/ll at small tilt angle. 
As shown on Fig. 10, Yli reaches very small values as ~b tends to zero. 
Unfortunately, our measurements are restricted to ~b > 0.7 ~ This prevents 
us from demonstrating directly the linear dependence of 7H(~b) which is 
expected for 1/d 2 interactions. We still think that our results provide a 
good evidence for the existence of mixed elastic and entropic interactions. 
Indeed, we have calculated these interactions and found very good agree- 
ment with our measurements, especially at the smallest angle we have 
reached (r = 0.7 ~ in the whole temperature range 0.05 to 0.15 K. 
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tilt angle, our measurements are consistent with the linear variation (solid line) which can be 
calculated from the magnitude of step interactions. 
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We wish first to explain why our measurements could not be performed 
at lower angle. Of course, not all recordings were as clean and regular as 
shown on Fig. 3. We only kept for analysis those recordings where no 
significant drift in the base line was observed and where the wavelength 
was constant over several periods. It appeared that the latter criterion was 
met more easily in the transverse geometry than in the longitudinal one. 
We think that this is a consequence of the residual vibrations. Indeed, if the 
steps are oriented strictly perpendicular to the wave vector 4, we exactly 
measure 7ij. Similarly, yx is measured if the steps are strictly parallel to ~. 
In the general case where the steps are tilted by an angle 0 with respect to 
~, we measure a stiffness 

y(0) = ~:ll sin2 0 + 9~• cos 2 0 (8) 

In the transverse geometry, a small misorientation has no drastic 
consequence because 0 is close to 0 and ~• >> Ytl" On the contrary, in the 
longitudinal geometry, mechanical vibrations are enough to introduce an 
important correction in the measurement of 711 as soon as the anisotropy 
is large, i.e., at small ~b. We observed variations of the period along the scan 
because the vibration level is not homogeneous on the whole surface of the 
cell (there are nodes according to the shape of resonant modes). After 
optimizing the mechanical stability of our experiment (bellows on pumping 
lines, air springs, magnetic friction on the rotating box), we could measure 
?rt down to 0.7 ~ where it is less than 1% of y• but not lower in angle. 

Let us now come to the interactions and first rule out the possible 
existence of l id interactions. Suppose that the interaction amplitude is e/d. 
Instead of vanishing linearly as predicted by Eq. 2, the surface stiffness Ylt 
would tend to the constant 2e/a2. a'18 Close to the facet edge, the equi- 
librium crystal shape would then have a constant radius of curvature R 
instead of a vanishing one (R is proportional to 7). When looking at such 
equilibrium shapes with ordinary optical methods it is indeed hard to dis- 
tinguish between these two possible shapes. Our experiment shows for the 
first time that the surface stiffness ?It vanishes at small angle, so that if l id 
interactions exist, they are very small: we have measured values of VII as low 
as 2 x 10-3 erg. cm -2 so that an upper limit for e/a 2 is 10 - 3  erg. cm 2 
4 x 10 -3 ~. On the contrary, our results are consistent with l id 2 interac- 
tions with a reasonable amplitude. 

Indeed there are two possible origins for such interactions. 1"4 The 
first one is elastic and results from the overlap of strain fields around 
neighboring steps. Between two steps a distance d apart, the interaction 
energy per unit length was calculated by Marchenko and Parshin 24 and 
reformulated by Nozi+res 4 as 
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6~el 2 ( 1 - ~ 2 ) ( f l . L )  
d 2 - 7 c  E d  2 

(9) 

In this formula, f l = ( f ~ , f z l )  and f 2 = ( f ~ , f ~ )  are the two force 
doublets which create each strain field around each step. 4 The z component 
is perpendicular to the terraces and equal to the surface stress 7r s. The x com- 
ponent is parallel to the terrace and difficult to calculate but it should have 
a similar amplitude. The surface stress is a difficult quantity to measure. 
A reasonable order of magnitude is the surface tension 0~ = 0.245 erg. c m - 2  
although Edwards et  al. 41 obtained the indirect estimate rcs ~ 0.6 erg. cm-2. 
We thus estimate the product f l  "f2 to be 20~a 2. From the value of Young's 
modulus 42 E =  3.05 x 10 s erg/cm 3 and that of Poisson's ratio a e  = 1/3, we 
estimate the elastic interaction between two steps to be 

6el = 2.0 X 10 --25 erg-cm (10) 

In the case of a stepped surface, one has to integrate over the infinite 
number of steps and one finds a total elastic interaction (7~2/6) •el between 
each step and all its neighbours. 

Now, the crossing of steps is forbidden because it would create 
overhangs. 1'4 As a consequence, the step fluctuations are limited by the 
presence of other steps. This is the physical origin of the other interaction, 
often called "entropic" or "statistic ". Its exact amplitude is now known to 
be 

C$ s ~2 (kBT)2 1 
d 2 6 13 d 2 (11) 

Equation 11 is taken from the work of Akutsu et al.. 26 where we 
replaced the step stiffness by the step free energy /~ because, as justified 
below, we assume that the kink density is high so that the stiffness and the 
free energy are the same isotropic quantity. Equation 11 could also be 
derived from the work of Bartelt, Williams et al. 9 provided that an unfor- 
tunate numerical error is corrected. Indeed Bartelt et aL used the previous 
work by Jayaprakash et a I Y  where the hopping matrix element should be 
doubled. 26 We assume that the kink density is high because we estimate the 
kink energy ek as a few mK only. Indeed, as explained above, the weak 
coupling leads to a step energy which is small compared to the surface 
energy ( f l ~ a ) .  For the same reason, the kink energy should be small 
compared to the step energy (e~ ~ fla 4~ 0~a2"}. Indeed the meaning of weak 
coupling is that the lattice potential is small: little energy is required for the 
surface to lie in between its periodic positions of minimum potential 
energy. This is why steps minimize their energy by relaxing their width to 
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a large value: it costs a small potential energy and it gains a lot of surface 
area. Similarly, we expect kinks to be wide defects with an energy smaller 
than the step energy. Considering that f la = 0.057 0~a 2= 91 mK, we thus 
estimate the kink energy to be ek ~ 0.057 f la = 5.2 mK. Since the minimum 
temperature is 40 mK in this experiment, we can consider steps as con- 
tinuous isotropic defects with a high density of kinks. 

This assumption being justified, we can calculate the entropic inter- 
action since we have measured the step energy ft. We find 

c~s = 7.47 x 10 --23 T 2 erg. cm (12) 

Furthermore, we find ~ = (~2/6)~el at T =  66 mK. As a consequence, 
we are in an intermediate regime where the two interactions have com- 
parable amplitudes and we need an interpolation formula since they do 
not add linearly. Following Jayaprakash et  al., 25 Bartelt, Williams et  al. 9 
proposed the following formula for the total interaction: 

+ 2re ~el 1 c~s[ 1 + / 1  2 2 
(13) 

In our preliminary report, 23 we had tried to fit the observed tem- 
perature variation of the longitudinal stiffness 71i with Eq. 13 and with two 
adjustable parameters: the forces f i  and the numerical coefficient in front of 
the entropic interaction. We had found agreement with Eqs. 9, 11 and 13. 
However, in view of the large error bars found at the end of such a fit, we 
here prefer to show that our results are well described by the above 
numerical estimates for ~el and c~ s together with Eq. 13. 

As shown on Fig. 10, we observed the initial slope of 7tt to increase 
with temperature. The straight lines are drawn according to Eqs. 2, 10, 
12 and 13 and agree with the experimental results. Fig. 11 shows better 
evidence that our description of the interactions is correct, especially its 
temperature dependence. From this figure, it is also clear that our smallest 
angle is not yet small enough: at 0.7 ~ the asymptotic linear regime for )~11 
versus ~b is only marginally reached. If experiments could be performed at 
0.5 ~ or below, the value of yli/q} would be independent of ~, all plots would 
superimpose on each other whatever the angle, and an even better agree- 
ment would probably be found. The lack of such very small angle data is 
an additional reason why here we prefer to show that our results are very 
close to a reasonable estimate of mixed elastic and entropic interactions, 
than to try again to extract an exact value for these interactions from our data. 

One could argue that the above analysis neglects other possible 
sources of interactions. The main one is the hydrodynamic interaction 
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which was predicted by M. Uwaha. 11 Physically, it originates in the overlap 
between the flow fields associated with the fluctuations of each step, more 
precisely the cross term in the kinetic energy associated with these fields. 
Uwaha calculated this hydrodynamic interaction in the quantum limit of 
zero point fluctuations and in the classical limit of thermally excited 
fluctuations. He predicted that this new interaction is repulsive again, and 
intermediate between lid and 1/d 2. We estimated it numerically and found 
that it should contribute by 5 % only to our smallest experimental value of 
7tl. This is why we neglected it. 

Let us finally comment on the width of the crossover. At the time of 
Ref. 1 we had no idea of what it could be. Since then, Nozi~res calculated 
the shape of this crossover for a tilted sine-Gordon mode1 at T =  0 with no 
elastic interactions. He indeed found that the crossover width is large. 43 But 
of course, it would be very useful for us to have a full theory at finite T and 
variable angle including elastic interactions. We could then deduce precise 
values of both interactions from a fit of our data, even though they do not 
extend to very low angle. The underlying physics is interesting. For  
instance, the description of entropic interactions by Eq. I 1 is valid when 
the step width is small compared to the mutual distance between steps. 
A simple way to describe the interaction for steps with a fmite width w 
could be to assume that the step fluctuation amplitude is limited to ( d -  w) 



The Static and Dynamic Properties of Vicinal Surfaces 875 

instead of d, consequently to replace d 2 by ( d - w )  2 in Eq. 11. This would 
lead to a quadratic correction to the linear variation described by Eq. 2. 
However, such a simple treatment would neglect possible deformations of 
the step profile when it approaches a neighbour. A correct treatment needs 
a much more elaborate theory and we hope that our experiments trigger 
further efforts along such lines. 

4. MOBILITY 

We now turn to the results which concern the mobility k of the solid- 
liquid interface. Since our temperature is low, we neglect the possible effect 
of heat currents and we identify the mobility with the isothermal growth 
coefficient k =  v/Alt,  where v is the interface velocity and A# = (r is 
the difference in chemical potential per unit mass across the interface. We 
first discuss the case of completely rough surfaces at large tilt angle, which 
we used as a test for our experimental technique. We then present our 
results for vicinal surfaces. We show that they can be interpreted in the 
framework of a theory developed by Nozi&es and Uwaha, 28 which is based 
on the scattering of thermal phonons by the steps. 

4.1. The Mobility of  Rough Interfaces 

The mobility of a rough interface has been extensively studied, both 
experimentally and theoretically. Experiments 2~ have shown that the 
temperature dependence of the inverse mobility or growth resistance k -~ 
can be described as follows: 

k -  ~ = A + B T  4 + C exp( - A / T )  (14) 

The second and the third terms respectively account for phonons and 
rotons (A is the roton gap). As our experiments are performed below 0.5 K, 
we are mainly interested in the phonon contribution. Experimental 
values 2~ of B range from 2.7 to 3.5 cm s -1 K -4, in good agreement with 
theoretical calculations by Bowley and Edwards (3.06 to 3.32 cm s -  1 K-4).45 
The origin of the first term in (14) is not well understood. As this excess 
growth resistance changes from one crystal to another, also from one run 
to another with the same crystal, Keshishev et al. 2~ suggested that it is due 
to defects within the crystal. 

Since the mobility of rough surfaces is reasonably well understood, we 
first measured k for a crystal with a large tilt angle (r = 15~ and we 
checked that our experimental set-up provides us with accurate and reliable 
data. The experimental measurements are shown on Fig. 12, where the 
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growth resistance is plotted as a function of T 4. In order to emphasize the 
phonon contribution, the small roton contribution C e x p ( -  A / T )  has been 
subtracted (C has been taken equal to the value given by Wang and 
Agnolet). 34 In the whole temperature range of Fig, 12, the roton contribu- 
tion is at most 5 %. 

At high frequency ( f >  2kHz), the temperature dependence of k -~ is 
clearly like T 4, with no constant term (we find A < i0 .3 cm s-~). The 
coefficient B is found to be equal to 2.27 cm s -~ K 4, i.e., a little smaller 
than some other measurements. 2~ Since Andreeva et al. 21 showed that B 
depends on orientation, even for rough surfaces, we believe that the agree- 
ment with previous experiments is quite satisfactory. 

More interesting is the frequency dependence of the dissipation. Fig. 12 
shows that above 0.3 K, the growth resistance decreases when f decreases. 
We think that the explanation is the following: 45 at high frequency, the 
wavelength 2c of the capillary wave is smaller than the mean free path ]mfp 

of thermal phonons in the crystal (afortiori in the tiquid)i All phonons are 
thus ballistic, and contribute to the dissipation. When f decreases, 2c 
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increases, so that more and more crystal phonons are at rest in the frame 
of the interface. These hydrodynamic phonons no longer contribute to the 
growth resistance k -  1. If all phonons are hydrodynamic, and if the dissipa- 
tion is due to the viscosity ~/ of the phonon gas, the imaginary part qz of 
the wave vector is qz= (4t//3~)co. 45 So qi varies like co instead of col/3 in the 
ballistic case. At T-- 0.41 K and for frequencies in the range 200-1000 Hz, 
we find that the crystal phonons contribution to qz varies roughly like o9 ~ 
This is consistent with a situation where some crystal phonons are ballistic 
and some hydrodynamic. 

From our data, it is also possible to estimate lmfp(T). Consider the 
curves k-1(T)  at a fixed frequency, i.e., at fixed wavelength 2 c. At low 
enough temperature, phonons are ballistic and k - I =  B T  4. The change in 
the curve k -  I(T) occurs at a temperature Thy d where some phonons become 
hydrodynamic. Thus it seems reasonable to suppose that/mfp(Thya) = 2c. In 
order to estimate Thyd, we suppose that, in the high temperature range 
0.3-0.45 K, k - l ( T )  varies linearly with T 4 with a different slope. This is 
somewhat arbitary, but simple and good enough for our purpose, rhy d is 
then taken from the intercept of these two linear regimes. We thus obtain: 
/mfp(0.2 K) ~ 2.4 mm and lmfp(0.3 K) ~ 0.9 mm. These values agree with pre- 
vious estimates. 46 

It should also be noted that such a change in the temperature varia- 
tion of the growth resistance has been observed at a lower frequency by 
Wang and Agnolet. 34 Our data strongly support their interpretation that a 
crossover occurs from ballistic to hydrodynamic phonons as a function of 
temperature. It is now clear that this crossover is also frequency dependent, 
as predicted by Bowley and Edwards. 45 

4.2. Mobil i ty  of  a Vicinal Interface 

For a facet, growth can only occur through nonlinear mechanisms 
such as spiral growth or 2D nucleation of terraces. If the orientation 
approaches the c axis, the mobility is expected to become very small and 
to vanish at ~b = 0. When ~b is very small, one expects the growth to occur 
layer by layer, and the mobility to be proportional to the density of steps 
n ,,~ ~/a. k can thus be expressed as: 

k = n a k s  (15) 

where ks is now the mobility of a single step. In Eq. 15, the lattice 
spacing a is introduced to make ks homogeneous to k, so that the velocity 
of a step vs is equal to k s A#. Of course, such a description should be valid 
only if steps do not overlap (n < 1/3w). As stressed by Nozi6res and 
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U w a h a  28 (NU) ,  this condit ion is necessary but  not  sufficient. The steps 
respond independently to the applied force if they scatter the thermal  
phonons  independently.  These phonons  behave as wave packets  with a size 
of  order  q~l =hc/(2.7 k~T), where c is the sound velocity and h = 1 0  - 3 4  

(SI) is Planck 's  constant,  qph is the mean  wavevector  of  thermal  phonons.  
So Eq. 15 is valid if the condi t ion n < qph is also fulfilled. Equivalently,  a 
depar ture  f rom a rough behavior  is expected when: 

o r  

(i) n < 1/3w ,,~ 0.04/a 

(ii) n < qph ~ O.09T/a (assuming c = 400 m/s).  

The first condit ion is the same as for the crossover  of  the surface 
stiffness, and we have seen that  this crossover  angle decreases slightly as a 
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Fig. 13. The growth resistance as a function of temperature, for various values of  the orienta- 
tion. The temperature dependence goes from T 4 at large angle to about T 6 at intermediate 
angles (2 ~ < ~ < 8 ~ and back to T 35 at the smallest angle 0.3 ~ This is shown consistent With 
a change from coherent to incoherent scattering of phonons  (see text). 
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function of T (see Fig. 8). In contrast, the new condition (ii) implies a 
crossover angle which increases linearly with T. Conditions (i) and (ii) lead 
to similar crossover angles, and experimental data are needed to find the 
relevant one. 

Let us thus consider our results for orientations close to the c axis 
(0.3 < ~b < 15~ Most of our experimental data are displayed on Fig. 13. 
The data on this figure correspond to both the longitudinal and the 
transverse geometry. We have checked that the same results are obtained 
in both cases. There are two important features to remark on Fig. 13: 

(a) The existence of c facets has a strong influence on the growth 
resistance up to large tilt angles. Indeed, even for ~b = 8 ~ the growth 
resistance k-1  is substantially larger than for a rough orientation. We thus 
find a crossover angle for the mobility which is much larger than for the 
surface stiffness. 

(b) For intermediate orientations (2 < ~b < 8~ the temperature 
dependence is steeper than for a rough surface. In order to be more precise, 
one can fit k - l ( T )  with a power law T v in the small temperature range 
available for each orientation. One then finds that v has a maximum value 
close to 6 for tilt angles in the range 2-8 ~ At small angle, v is smaller 
(v ~ 3.5 for ~b = 0.3~ 

A preliminary observation of similar effects was reported by Andreeva 
et aL 2~ We wish here to present a full interpretation of the T and ~b 
dependences of the mobility. 

In order to understand the mechanism which controls the dissipation, 
it is easier to use mobility values which are normalized with respect to the 
mobility of a rough interface kroug  h . Fig. 14 shows the variation of 
k n = k/kroug h as a function of the step density for various temperatures. The 
crossover is clearly temperature dependent, and the value of the step den- 
sity nc at the crossover increases roughly linearly with T. In the frame of 
the above arguments, the interpretation is clear: in the temperature range 
of our experiment, the crossover nc is mainly fixed by the phonon 
wavelength and not by the step width. This is confirmed by Fig. 15, where 
k,  is plotted as a function of the normalized step density n/qph: all nor- 
malized data now fall on a single curve. 

In other words, at low step density, the mobility is reduced because 
the phonons are scattered independently by the steps. The momentum 
parallel to the interface is no longer conserved, so that the scattering is 
incoherent and the dissipation is increased. This is in contrast with the 
case of a rough interface, which has translational invariance, so that only 
coherent scattering occurs (i.e., specular reflection). 
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It is possible to go a little further in the interpretation. N U  28 have 
derived a semi-empirical relation which describes the variation of the 
mobility for vicinal surfaces. They propose to write k as follows: 

qph]  xL ~h J 

The first bracket is the mobility of a stepped interface, the second one 
is the inverse of the form factor describing the scattering of phonons 
(incoherent and coherent parts are written separately). The third bracket 
accounts for multiple scattering. 

The main difficulty in using this expression is due to Sin~ for which no 
expression has been derived. As Sine arises from step fluctuations, a calcula- 
tion at finite step density should take into account the interactions between 
steps. Besides the computational difficulty, one lacks a complete theory for 
step interactions in the crossover. Thus we only know that Si.o is equal to 
one at small n and vanishes at large n. Moreover, the expression for the 
third bracket has not been rigorously derived. Eventually, Eq. 16 is only 
valid for a single value of qvh, so that an average on the thermal distribu- 
tion of phonons is needed. 

A precise test of Eq. 16 thus seems difficult. However, we can make a 
few simple assumptions to check that it describes our observations and that 
the underlying physics is correct. First we set qph equal to the mean 
wavevector of thermal phonons: qph = 2.7kB T/hc, with c = 400 m/s, a value 
intermediate between the velocities of transverse and longitudinal sound in 
the solid. Secondly, the simplest expression which matches the asymptotic 
values of Si,o is a lorentzian function. We thus assume: 

1 
Sin~ l +b(T)  n 2 (17) 

We are thus left with only one adjustable parameter b(T) for each 
curve kn(n). We can identify kro~gh with the limit at large n of k which is 
ks/(agqph). We finally obtain: 

k,~ l i m n ~  (k)=[mra2qph] X ~- x 
qph J k qph J 

As can be seen on Fig. 14, the crossover is very well described by 
Eq. 18. This is a strong argument in favor of the physical mechanism 
proposed by NU: the decrease of the mobility at small angle is due to 
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the enhancement of incoherent scattering and the reduction in multiple 
scattering. We find that the parameter b is a decreasing function of T, so 
that Sin~ is an increasing function of T at fixed n. This is consistent with the 
fact that Sine arises from step fluctuations. 

By using the above procedure, we have focused our attention on inter- 
mediate and large values of the tilt angle or equivalently of the step density. 
A different analysis is needed in the small angle limit. Let us thus consider 
the results obtained at small tilt angle. For a true stepped interface, one is 
left with the first bracket in Eq. 16: one expects a linear dependence of the 
mobility as a function of the step density. Moreover, NU have shown that 
the mobility should vary like T -3. Experimental data are displayed on 
Fig. 16, for tilt angles ranging from 0.3 to 1 ~ It can be seen that k reaches 
its linear asymptotic behavior only at the smallest angle r = 0.3 ~ This is 
confirmed by the temperature variation which we found slightly faster than 
T -3. An estimate of k~=k/na=k/O can still be obtained by drawing a 
straight line through the origin and the last two points at 0.3 and 0.5 ~ . At 
T =  0.18 K, we find ks~  110 s/cm. This value is quite satisfactory for two 
reasons. First, NU predicted 

pcca 3 

where OD=26K is the Debye temperature in the solid. 47 At T---0.18 K, 
Eq. 19 predicts ks=  160 s/cm, close to our experimental value. Secondly, 
the extrapolation down to 0.18 K of the mobility of a rough interface yields 
about 400 s/cm, which is again of the same order of magnitude as k,. It is 
a further evidence that one can consider a step as a continuous rough strip 
which does not feel the lattice potential along the terraces, i.e., a free line 
with a high density of kinks. 

Let us finally come back to the temperature dependence of the growth 
resistance for intermediate values of the orientation (2-8~ In this case, our 
temperature range was restricted to 0.2 0.4 K, where a power law close to 
T 6 was observed. Andreeva et aI. 21 made similar observations and it was 
very puzzling because one expected an exponent between 4 and 3, the 
values for a rough and for a stepped interface. We now understand these 
results as follows. Consider an interface with a fixed orientation, At low 
enough temperature, the wavelength of phonons is very large, so that 
they do not see the structure of the interface. The interface thus looks 
homogeneous, yielding coherent scattering--i.e., specular retlection--of the 
phonons. The dissipation is only due to the exchange of momentum per- 
pendicular to the surface. This case is identical to the one of a rough inter- 
face, and the dissipation varies like T 4. When the temperature is increased, 
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Fig. 16. The mobility as a function of the step density, for small step density (the corre- 
sponding angular range is 0.3-1~ The asymptotic behaviour seems linear, as expected for 
independent steps. 

the wavelength of phonons "~ph becomes of the order of the distance d 
between steps. As phonons see the steps, they can exchange momentum 
parallel to the interface: incoherent scattering starts. This creates an addi- 
tional channel for dissipation, yielding a temperature dependence steeper 
t h an  T 4. If the temperature is further increased, )~ph becomes smaller 
than d. Some of the incident phonons are reflected on the terraces between 
the steps; these phonons do not contribute to dissipation since terraces are 
at rest. The dissipation should then vary rather like T 3, but the precise 
behavior of k-1 in this temperature range also depends on the ratio w/d. 

The resulting behavior of k -1 is sketched on Fig. 17. For orientations 
between 2 and 8 ~ our experimental data lie in the intermediate temperature 
range, yielding an apparent T 6 variation of k 1. For smaller angles, our 
results are closer to the asymptotic T 3 behavior. 

The variation of k as a function of orientation and temperature can 
thus be quantitatively understood by carefully considering the scattering of 
phonons by steps. 
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5. CONCLUSION 

We hope that this work solves a few controversies and clarifies some 
of the fundamental properties of vicinal crystal surfaces. We also hope that 
it triggers new theoretical and experimental efforts. Of particular interest to 
us would be a calculation of the interaction between steps in a weak coup- 
ling situation and when the distance between steps is comparable with their 
width. One would need to solve a sine-Gordon model for a tilted surface 
at finite T and with elastic interactions. As for experiments, the most inter- 
esting seems to measure the kink energy. One would need to work in the 
milliKelvin region and the simplest idea seems to measure the shape of c 
facets. Except if there is a large density of quantum kinks at T- -0 ,  the 
shape of c facets should change from round to hexagonal as T decreases. 
The kink energy could be extracted from the temperature variation of the 
facet edge curvature. We also expect helium 3 impurities to adsorb on 
kinks and change their energy. 
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