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Thermally activated motion of a contact line
over defects

Hugo Perrin, Romain Lhermerout, Kristina Davitt, Etienne Rolley and
Bruno Andreotti *

At the nanometer scale, the motion of a contact line separating a dry from a wet region is limited by the

presence of surface heterogeneities that pin it. Here we revisit the seminal model proposed by Joanny

and de Gennes to include the influence of thermal noise and viscosity using a Langevin model with two

degrees of freedom: the average position of the contact line and its distortion. We identify the

conditions under which the dynamics in a velocity-driven experiment can in fact be described by a

constant forcing at small scale. We then relate the asymptotic properties of the relation between force

and contact line velocity to the properties of the defects. In particular, we show that Kramers’

approximation misses the strong asymmetry between advancing and receding directions. Finally, we

show how to use the model to fit experimental data and extract the salient features of the surface

energy landscape.

1 Introduction

A liquid drop moving over a solid surface is an everyday
occurrence yet a complete theoretical description of the
observed motion is lacking. We know the basic ingredients
that must go into understanding the dynamics of the three-
phase contact line at the edge of the drop:1–3 there is both
viscous dissipation in the bulk of the liquid meniscus, occur-
ring at all scales between the molecular scale and the capillary
length, and a dissipation that occurs at the nanometer scale, in
the vicinity of the contact line. The former is fully described by
hydrodynamic theory. The latter is due to thermally activated
jumps over molecular-scale discreteness4 or inevitable nano-scale
inhomogeneities that pin the line on the surface,5 processes
that have been studied by various computational methods at
the molecular scale6,7 but which are most often reduced to an
Arrhenius-type expression.4,8,9 In addition, depending on the
specific nature of the liquid and solid combination, there may
be other effects to consider, such as reactive wetting10,11 or
visco-elastic dissipation,12 each of which has been studied
independently. Wetting experiments that measure the variation
of a contact angle y with the velocity U of the contact line, such
as shown in Fig. 1, can therefore contain a rich phenomenology. In
practice, however, even the simplest case of a liquid moving over
an apparently homogeneous solid surface – where one expects
only hydrodynamics and thermal-activation – interpreting the

full experimentally-observed dynamics remains challenging.
For example, contact angle hysteresis is usually thought to be
related to the critical mechanical force needed to unpin the

Fig. 1 (a) Schematic of a dip-coating experiment. By convention, the
velocity U is positive when the solid plate is plunged into the bath and
the contact line is advancing. Z is the mean altitude of the contact line
above the bath. z is the mean position of the contact line with respect to
the plate, whose frame of reference has an origin centered on a defect.
(b) Typical experimental relation (markers) between the microscopic
contact angle ym and the capillary number, taken from ref. 15. The solid
line represents the best fit to the full four-parameter model that we
develop in this article. The dashed line corresponds to the asymptotic
regime at low temperature for the same physical parameters.
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Diderot, Sorbonne Université, 24 rue Lhomond, 75005, Paris, France.

E-mail: andreotti@lps.ens.fr

Received 9th November 2017,
Accepted 24th January 2018

DOI: 10.1039/c7sm02211e

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 2
6 

Ja
nu

ar
y 

20
18

. D
ow

nl
oa

de
d 

by
 S

C
D

 U
ni

ve
rs

ité
 P

ar
is

 7
 o

n 
07

/0
2/

20
18

 1
4:

43
:1

0.
 

View Article Online
View Journal

http://orcid.org/0000-0001-8328-6232
http://crossmark.crossref.org/dialog/?doi=10.1039/c7sm02211e&domain=pdf&date_stamp=2018-02-06
http://rsc.li/soft-matter-journal
http://dx.doi.org/10.1039/c7sm02211e
http://pubs.rsc.org/en/journals/journal/SM


Soft Matter This journal is©The Royal Society of Chemistry 2018

contact line from defects. However, it is not clear how to locate
the critical or depinning point – which plays a central role in
theories based on the depinning of an elastic line on a frozen
stochastic landscape13,14 – in a measured dynamics curve.
This arises from the disconnect between the theoretical con-
cept of depinning in the quasi-static, athermal limit, and the
method most commonly used in practice to measure the
difference between advancing and receding angles at a low,
but arbitrarily chosen, velocity and at room temperature. To
resolve such issues, a complete description of thermally
activated processes beyond the limits of the Arrhenius expres-
sion is needed.

Previously, we reported a framework to unify hydrodynamics
and thermal activation.15 In this picture, the boundary condi-
tion at the solid surface, which is required by hydrodynamics,
is provided by a microscopic contact angle ym (defined at
molecular scales) that takes into account the average effect of
thermal activation over defects on the solid. The selection of
ym is modeled separately using a Langevin equation on the
contact line position. The vocation of the present article is to
explicitly develop and study this stochastic equation. In so
doing, we will show how the model answers some unresolved
experimental questions.

Contact line dynamics can be measured by a variety of
methods in a variety of geometries, from looking at the relaxa-
tion of a drop in profile as it impinges on a solid surface16,17 to
the pulling of a solid fiber18,19 or plate8,20 into or out of a liquid
bath. In all cases, the aim is to determine the relationship
between the contact line velocity U – or the capillary number
Ca = ZU/g – and the dynamic contact angle, or more generally,
the unbalanced Young force. Models on a single defect have
predicted a dynamics that depends on whether the velocity of
the contact line or the force exerted upon it are imposed.21 For
any given experimental realization, one can ask what is the
control parameter. The answer to this simple question is in fact
not so straightforward. As an example, we examine the classic
dip-coating setup where the speed at which the solid plate is
plunged into or pulled out of the bath is controlled by a
motorized stage. In this case, the stage determines the time-
averaged contact line velocity U but not necessarily either its
instantaneous velocity or even its instantaneous spatial aver-
age. Indeed, such experiments yield dynamics that are well
fitted by a Langevin model under constant force. Here we will
show that the dynamics for constant-velocity driving in fact
reduce to constant-force when the stiffness of the meniscus22 is
small, which is the case for dip-coating a plate. This explains
the observation of a logarithmic activation law relating the
driving force to the capillary number (Fig. 1) even though one is
not expected for constant-velocity driving. We perform a para-
metric study of this case to find the dependence of the slopes in
the logarithmic regime, and of the asymmetry between the
advancing and receding branches, on the defect width and
amplitude and on the thermal noise.

The development of this model traces its origin to the desire
to extend the model of Joanny and de Gennes23 for contact
angle hysteresis in order to take account of thermal activation.8

They considered the balance between the pinning force of the
defect and the elastic restoring force of a distorted contact line.
Considering an individual defect, they classified it as either
weak or strong depending on the multistability of the force
balance, or in other words, whether the deformation of the
contact line was reversible or not when advancing versus
receding. Multistability can also occur due to collective effects,
even for defects that would individually be considered as weak,
due to the interaction between defects mediated by the contact
line.24 This multistability in the detailed shape of the contact
line (its deformation) results in a different contact angle, or
force, depending on whether the contact line is advancing or
receding when it is at the same average location; this is a true
hysteresis of the deformation of the contact line. For mono-
stable weak defects there is no such hysteresis in the deforma-
tion. However, we will show that one still obtains a separation
between the two branches of the dynamics such as that shown
in Fig. 1. This arises from the energy landscape along the
reaction coordinate, which is monovalued but still not flat.
It explains the existence of a minimum force required to depin
the contact line from the defect (at zero temperature), which, in
addition, can be modified by thermally activated processes.

We begin by writing a coupled set of Langevin equations for
the average position and the deformation of the contact line.
Later, we show that for weak defects it can be reduced to a
single variable. Alone, the extension of the model to two
variables is an important step on the way to developing a
complete model to handle strong defects, which present addi-
tional computational difficulties due to their multistability.

2 Development of the Langevin model
2.1 Introduction to the Langevin model

Our goal is to develop a simple model of thermally activated
motion of a contact line over defects. We consider a liquid
moving over a flat solid surface covered with chemical hetero-
geneities. We model an actual disordered substrate using a
minimalist energy landscape of Gaussian defects of size d that
are periodically spaced by a distance l (Fig. 2). The intention is

Fig. 2 Illustration of a contact line that is deformed as it passes over a
periodic array of chemical defects of dimension d and separated by a
wavelength l. The defects are more wettable than the background: C 4 0
in the notation defined by eqn (16).
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to find a simple way to model the energy landscape resulting
from the dynamics over random energy landscapes. The
periodic, Gaussian parameters correspond to an effective or
mean-field defect rather than the real physical features on a
surface. Using the reaction path approach, we project the multi-
dimensional problem onto a low dimensionality problem. All
but two degrees of freedom are assumed to relax quickly to
equilibrium leaving only the average absolute position of the
contact line z and the amplitude of the deformation of
the contact line c. In this first section, we will show that the
resulting system of Langevin equations can be written in
the form:

dcZ _c ¼ � 1

l
@U

@c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dcZkBT

l

r
WcðtÞ

dzZ _z ¼ gF � 1

l
@U

@z
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dzZkBT

l

r
WzðtÞ;

(1)

where Z is the viscosity, g the surface tension, _z denotes the

contact line velocity and _c the time derivative of the distur-
bance amplitude. The last term in each equation corresponds
to the thermal fluctuations, which are approximated by a
Gaussian noise delta-correlated in time: hWc(t)Wc(t0)i =
d(t � t0) and hWz(t)Wz(t0)i = d(t � t0). The multiplicative factors
in front of the noise result from the fluctuation–dissipation
theorem, using the equipartition of energy in the homogeneous
sitution. kB is the Boltzmann constant and T is the temperature.
The two noise terms are assumed to be independent, such that
hWc(t)Wc(t0)i = 0. gF is the driving force per unit length,
exerted by the outer part of the liquid. Its precise nature will
be discussed in the next section. U is the reduced free energy
associated with the two degrees of freedom c and z:

Uðc; zÞ ¼ g Cld

ffiffiffi
p
2

r
erf

zþ c

d
ffiffiffi
2
p

� �
þ pkc2

� �
: (2)

The error function term arises from the Gaussian distribution
of solid surface tension used to describe chemical defects.
The dimensionless number C characterizes the defect strength.
The effective quadratic energy pkc2 is associated with a linear
restoring force that resists distortions of the contact line and
originates from the surface energy of the liquid–vapor interface.
The dimensionless constant k is the spring constant of the
deformation. The dimensionless damping factors dc and dz

reflect the dissipation associated with the two types of contact
line motion: the deformation and the global motion.

In this section we explicitly develop these equations, empha-
sizing physical arguments and simplifying assumptions made
where needed in order to make the problem tractable. First we
consider the free energy in order to express the conservative forces,
then we discuss how to express the force of the outer meniscus –
which is the driving term – then finally we address how to
appropriately express the dissipative constants. The remainder of
the article investigates the dynamics described by eqn (1). First, in
Section 3 we show that the description can be reduced to a
single degree of freedom and how to determine whether a given
experimental realization is force-driven or velocity-driven.

Then, Section 4 is dedicated to a parametric study of the
force-driven, single reaction-coordinate equation where the
goal is to develop an expression for the purely logarithmic
regime of the dynamics at asymptotically low temperature.
Finally, Section 5 addresses how to appropriately find the
relevant fit parameters from experimental data.

2.2 Free energy functional

Here we consider how to express the free energy associated with
substrate heterogeneities. Later this will allow us to develop
expressions for the conservative forces that appear in eqn (1).
As shown in Fig. 2, we decompose the profile of the contact
line position into z + ce(x), where e(x) is a dimensionless, zero-
average function that we call the rescaled shape. The deforma-
tion c is measured by averaging the contact line deformation
over a scale d. For this purpose, we introduce a weight
function w(x) normalized to 1 and that satisfies the conditionÐþ1
�1dxwðxÞeðxÞ ¼ 1. It will be later shown that this weight

function reflects the spatial distribution of the dissipative
forces and for Gaussian defects it takes the form:

wðxÞ ¼
exp � x2

2d2

� �
d
ffiffiffiffiffiffi
2p
p : (3)

We then write the total free energy of the system, which
results from the free energy of the three interfaces. We intro-
duce the free energy US associated with the solid–vapor and
solid–liquid interfaces. Taking the solid–vapor interface as the
reference state for the solid, the free energy US appears to be
the excess free energy associated with the presence of liquid
in the region y o z + ce(x). Introducing the surface tensions
gSV and gSL of the solid–vapor and solid–liquid interfaces, we
obtain:

US ¼
ðþ1
�1

dx

ðzþceðxÞ
�1

dy gSLðx; yÞ � gSVðx; yÞð Þ (4)

¼ �
ðþ1
�1

dx

ðzþceðxÞ
�1

dyg cos yYðx; yÞ (5)

where yY(x,y) is the Young-angle landscape, defined locally by
g cos yY = gSV � gSL. In the following, we retain the angle
notation rather than using the solid surface tensions.

We decompose the liquid–vapor energy into a contribution
due to the large-scale shape of the interface and an excess Um

due to the small-scale fluctuations of the contact line. The
macroscopic contribution to the energy does not depend on the
disturbance amplitude c but only on the average position z of
the contact line. If the large-scale shape of the liquid interface
is simply flat, forming a liquid wedge of angle ym, then it would
take the form glz cos ym, leading to a dimensionless driving
force per unit length:

F = �cos ym. (6)

Here we denote the angle as ym since we are interested in the
effective contact angle that the liquid makes with the solid
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measured at the microscopic scale, due to the average effect of
thermally activated processes across heterogeneities. This is in
contrast with experiment, where one has access to an angle that
is defined at macroscopic scales and which therefore poten-
tially contains dynamics associated with viscous dissipation in
the bulk meniscus. We have previously shown how ym can be
deduced from experimental measurements.15 Although the
large-scale shape of the liquid interface is in fact not flat, we
will see in the next section that even in a velocity-driven
experiment such as a dip coating experiment, one can use the
constant-force model described by eqn (6).

To compute the small-scale deformation of the contact line,
we consider that the degrees of freedom associated with this
shape relax to equilibrium over timescales that are small
compared to the activation time. We focus on a single defect
and introduce Fourier transforms along x, the direction transverse
to global motion of the contact line:

êðqÞ ¼
ðþ1
�1

dxe�iqxeðxÞ; eðxÞ ¼
ðþ1
�1

dq

2p
eiqxêðqÞ: (7)

We keep in mind that the case of periodic defects corresponds
to discrete wave vectors q = 2pp/l parametrized by the integer p.
We solve the Laplace equation for the interface under small
distortions of the contact line,23 but for arbitrary large slopes.
For a given mode q, the interface elevation profile takes the
form: �tan ymcê(q)e�|q|y/cos ym, where ym is the angle of the
liquid–vapor interface averaged over the spatial fluctuations.
The energy cost associated with the deformation of the liquid
interface therefore reads:

Um ¼
gc2 sin2 ym

2

ðþ1
�1

dq

2p
qj j êðqÞj j2: (8)

Finally, we introduce two Lagrange multipliers ( f and g) to
achieve the decomposition of the contact line shape into the
sum of z and of ce(x). The free energy function associated with
the susbtrate heterogeneities reads:

U ¼ US þUm þ f gc
ðþ1
�1

eðxÞdx

þ ggc
ðþ1
�1

wðxÞeðxÞdx� 1

� �
:

(9)

2.3 Rescaled contact line profile

Now we seek to determine the rescaled profile of the contact
line, e(x), considering that it relaxes faster than z and c. We
therefore compute the variation of free energy with respect to
e(x), which can be simply interpreted as a force balance.

dU
deðxÞ ¼

dUS

deðxÞ þ
dUm

deðxÞ þ f gcþ ggcwðxÞ ¼ 0; (10)

with

dUS

deðxÞ ¼ �gc cos yYðx;ceðxÞ þ zÞ: (11)

Following Joanny and de Gennes,23 we argue that since the
pinning force is highly localized on the defect, the variation of

yY is dominated by what happens at the defect and the detailed
variation due to the shape of the contact line around it can be
neglected. In other words, the variation in yY essentially takes
place along x and we take the amplitude of the deformation to
be the maximum c at all x:

cos yY(x,ce(x) + z) C cos yY(x,c + z). (12)

The second functional derivative in eqn (10) is determined in
Fourier space:

dUm

dêðqÞ ¼
gc2 sin2 ymjqĵeð�qÞ

2p
; (13)

where we have used the fact that e(x) is real. The equations then
reduce to the force balance:

f þ gwðxÞ ¼ cos yYðx;cþ zÞ

� c sin2 ym

ðþ1
�1

dq

2p
êðqÞ qj jeiqx; (14)

where for internal consistencyðþ1
�1

dx0
eðx0Þ
ðx� x0Þ2 / cos yYðx;cþ zÞ � cos yYðx;cþ zÞh i (15)

with h�i signifying an average over x

2.4 Gaussian defects

To progress further, one must specify the surface energy land-
scape explicitly. Here we consider Gaussian defects defined by:

cos yYðx; yÞ ¼ cos yS þ C
l

d
ffiffiffiffiffiffi
2p
p exp �x

2 þ y2

2d2

� �
; (16)

where cos yS is a reference value corresponding to the Young
angle that would be reached on the background surface far
from a defect and C is the scale-free magnitude of the defects.
In what follows, we assume C4 0, that is, defects that are more
wettable than the background. Since we model effective defects,
this is not a limiting assumption. What is a defect and what is
the background is a matter of perspective: a less wettable defect
can also be regarded as the background state, in which case
the background becomes a more wettable defect. Then, w(x)
follows as:

wðxÞ ¼
exp � x2

2d2

� �
d
ffiffiffiffiffiffi
2p
p : (17)

For the 0 mode, the equilibrium condition eqn (14) thus gives

f þ g

l
¼ cos yS þ C exp �ðcþ zÞ2

2d2

� �
; (18)

where we have used l as the large-scale cut-off ensuring finite
integrals, within the approximation of small defects d { l. For
the other Fourier modes, one obtains:

êðqÞ ¼ A
exp �ðqdÞ2=2
� �

qj j ; (19)

where A is a normalization constant that is a function of l/d.

From the constraint
Ðþ1
�1dxwðxÞeðxÞ ¼ 1, and again assuming
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that d { l, we find:

A ¼
ðþ1
�1

dq

2p
exp �ðqdÞ2
� �
qj j

� ��1
’ p

lnðl=2pdÞ: (20)

Finally, the shape of the contact line pinned on a localized
defect depends logarithmically on space, according to:

eðxÞ �
ln

l
2p d þ xj jð Þ

� �

ln
l

2pd

� � : (21)

2.5 Conservative forces

Derivatives of the free energy with respect to z and c provide the
conservative force terms that will appear in the dynamic
equations governing each of these two degrees of freedom.
Starting with z, we find:

@U

@z

				
c
¼ �gl cos yYh i; (22)

which is the force due to the large-scale liquid–vapor interface.
For the Gaussian defects used here, we can further write the
spatial average

cos yYh i ¼ cos yS þ C exp �ðzþ cÞ2
2d2

� �
: (23)

For c:

@U

@c

				
z
¼ �gl e cos yYh i þ gc sin2 ym

ðþ1
�1

dq

2p
qj j êðqÞj j2: (24)

Introducing the effective spring constant of the distortions
of the contact line k, given by

k � sin2 ym
2p

ðþ1
�1

dq

2p
qj j êðqÞj j2

¼ sin2 ym
2p

A � sin2 ym
2 lnðl=2pdÞ:

(25)

We rewrite the derivative of the free energy U with respect to
c as:

@U

@c

				
z
¼ �glC exp �ðcþ zÞ2

2d2

� �
þ g2pkc: (26)

2.6 The driving term

In the free energy associated with substrate heterogeneities, Um

accounted for the liquid–vapor interface energy contribution
coming from small scale fluctuations of the contact line. The
goal of this section is to develop an expression for the force
exerted by the rest of the outer liquid meniscus, which is the
driving term.

First we linearize the elastic restoring force F = �cos y
around the time-averaged position of the contact line with
respect to the bath %Z. In a typical dip-coating experiment, a
solid plate is plunged in the liquid bath at a constant imposed
velocity U. Up to a constant, equivalent to the choice of

definition for t = 0, the altitude of the meniscus above the bath
Z is related to the contact line position z (whose frame of
reference is that of the plate) by the equation: Z = �Ut + z. The
instantaneous force of the meniscus interface then takes
the form

F = �cos ym + kz( %Z � Z) = �cos ym + kz( %Z + Ut � z), (27)

and an appropriate expression for the spring constant of the
elastic restoring force kz must be found.

In the case of a contact line moving quasi-statically, the
effective spring constant of the meniscus around equilibrium is
found from eqn (6) and the contact line altitude above the bath

Z ¼ ‘g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� sin ym

 �q

. One obtains

kz ¼
@F

@Z
¼

tan ym
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� sin ym

 �q
‘g

; (28)

where the capillary length is

‘g ¼
ffiffiffiffiffiffi
g
rg

r
: (29)

In this quasi-static case the fluctuations of the contact line
deform the meniscus over its full extent (proportional to cg).
At higher frequencies, however, the disturbance induced by
the intermittent motion is limited and far from the contact line
the liquid–vapor interface may appear undisturbed. The char-
acteristic penetration length cU depends on the mean angular
frequency o at which the contact line oscillates.25 Using a
geometrical reasoning from Fig. 3, one can show that the spring
constant kz is inversely proportional to the length cU:

kz �
@y
@Z
� 3

‘U tan ym
; (30)

where the complete derivation detailed in reference25 gives the
dependence of kz on ym. In order to find a scaling law for the
penetration length, we dimensionally balance the viscous stress
tB Zo(Z� %Z)/cU and the Laplace pressure P B g(cosy� cosym)/cU.
Again using the geometry in Fig. 3, the latter is seen to scale as

Fig. 3 Illustration of the meniscus in the frame of reference of the bath
and viewed at a scale smaller than the capillary length. The dashed line is
the time-averaged meniscus. The fluctuations of the contact line position
Z around its time average %Z only disturb the meniscus over a penetration
length BcU. The instantaneous force F = �cos y can be linearized around
%Z to give eqn (27).
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P B g( %Z � Z)/cU
2, and thus we find

‘U �
g
Zo
: (31)

In principle, oscillations of the contact line occur over a
spectrum of frequencies. To render the problem tractable, we
assume a single dominant frequency. Here we are concerned
with the restoring force on the global motion and therefore we
take a frequency that corresponds to the rate at which the
contact line moving at a mean velocity U crosses energy
barriers: o B 2pU/l. This and eqn (31) into eqn (30) give

kz �
6pZ Uj j
gl tan ym

: (32)

At higher velocity, the dynamically fluctuating meniscus is
stiffer than the static one described by eqn (28) and therefore
dominates the force. The cross-over between a dynamic and a
static regime is obtained by equating the two expressions:

Caco �
tan2 ym

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� sin ym

 �q
6p

l
‘g
: (33)

In the case of the experiment associated with the data shown in
Fig. 1 we find B10�7, which is below the range of accessible
capillary numbers. Provided the contact angle is not too close to
901, it is typically of this order for any dip-coating experiment
since l B 10–20 nm and cg B 1–2 mm. Therefore, dip-coating
experiments run in the dynamic regime where kz given by
eqn (32) is appropriate. However, if instead of a plate we
consider a thin fiber of radius R { cg dipping into the bath,
then the meniscus spring constant in the quasi-static limit is
approximated by

kz �
1

R ln 4‘g=R

 �: (34)

In the case of a meniscus around a nano-fiber,22 this is about
four orders of magnitude higher than would be on a plate, i.e.
eqn (28). The estimation for the dynamic spring constant in
eqn (32) is independent of the external profile of the meniscus
and we can find a cross-over capillary number for the fiber case
as above:

Caco �
tan ym

6p ln 4‘g=R

 � l

R
: (35)

It is typically B10�2 and therefore in the upper-range of
accessible capillary numbers. Thus, for such fiber experiments
the static expression for the meniscus spring constant is
appropriate.

2.7 Dissipative forces

Here we seek to physically motivate approximate expressions
for the two dimensionless dissipative constants dz and dc. We
refer the reader to ref. 25 for full derivations. Here the dis-
sipative forces per unit length associated with a displacement x
take the form �Zdx

:
x. In general, they can be computed in the

lubrication approximation by integrating the viscous stress over

the disturbed interface. We expect that the dissipative constant
then takes the form:

d � 3 lnL
tan ym

; (36)

where L is the ratio of the outer and inner scales over which
the dissipation acts. The latter is generally expressed by a slip
length cs.

First we consider the motion of the contact line when it is
trapped in the potential well and attempting to hop the barrier
via thermal fluctuations. The timescale associated with this
fluctuating motion is given by the diffusion time over the
spacing l and leads to a much larger characteristic frequency
o B 2kBTq3/Z than previously used for the average global
motion in Section 2.6. Taking this as the dominant frequency
for the dissipation process, the outer scale, as determined by
the perturbation length, is therefore cU B g/Zo B g/2kBTq3 and
we take dz given by:

dz � 3

ln 1þ gl3 tan y0 sin
3 ym

6kBTð2pÞ3‘s exp 4gEuler � 1=2ð Þ

� �
tan ym

; (37)

where gEuler C 0.577 is the Euler constant. One recognizes the
form of eqn (36), with the logarithmic factor L involves an outer
length proportional to gl3/kBT and an inner length set by the
slip length cs.

Next we consider the deformation of the liquid–vapor inter-
face to evaluate the dissipative constant associated with c. The
dimensionless parameter dc giving the viscous force applied to
the free-surface distortion reads:

dc �
3

tan ym

ln 1þ l cos ym tan y0
6p‘s

� �
4 ln 2ðl=2pdÞ : (38)

The logarithmic factor in the numerator corresponds to L of
eqn (36). Here it involves the wavelength l as the outer length
and cs as the inner length. The logarithmic term in the
denominator results from the shape of the contact line and
originates from the same term in the spring constant k of
eqn (25). Again, the additional dependencies can be obtained
with a full derivation.25

2.8 Dimensionless equations

In the previous sections we developed a two-dimensional model
of thermally activated motion according to reaction path
theory. We provided approximate expressions for the
coefficients controlling the restoring force in the case
of an energy landscape reduced to periodic, Gaussian defects
and showed that the Langevin equations take the generic
form (1).

In anticipation of a parametric study, we make the Langevin
eqn (1) dimensionless. We use dzZ, kBT and l as units and
render the equations dimensionless using l/2p = q�1 as a unit
length, pdzZ/(kBTq3) as a unit time and therefore kBTq2/(pdzZ) as
a unit velocity. In order to avoid introducing new notations, we
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keep z and c for the rescaled quantities (z - z/q, c - c/q,
U - UpdzZ/(kBTq2)) and t - tpdzZ/(kBTq3):

D _c ¼ 1

T
C exp �ðzþ cÞ2

2ðqdÞ2

� �
� kc

� �
þ

ffiffiffiffi
D
p

Wc (39)

_z ¼ F þ cos yS
T

þ C

T
exp

�ðzþ cÞ2
2ðqdÞ2

� �
þWz; (40)

where D = dc/dz the ratio of the two dissipative constants and
where the rescaled thermal energy T reads:

T ¼ kBTq
2

pg
: (41)

For the experiment shown in Fig. 1 it is T C 6.8 � 10�3, which
is small compared to C C 0.1 and therefore validates the
thermal activation hypothesis, where the contact line gets
trapped in the well before jumping the barriers.

Fig. 4 shows an example time sequence of the dynamics of
both z and c obtained numerically. For the chosen parameters,
the contact-line dynamics are in the thermally activated regime,
which can be recognized from the jumps and wait times seen in
z(t). In fact, the contact line spends the majority of time stuck
in a potential well, around a local equilibrium. The time-

averaged drift velocity _z nevertheless corresponds to the
imposed constant velocity of the plate U.

3 Reduction to a single degree of
freedom
3.1 Langevin equation for a single degree of freedom

In the previous section, we have justified the form chosen for
the Langevin eqn (1) with two degrees of freedom. We now
proceed with a further reduction of the parameter space, from
two to only one degree of freedom, and then test the degree of
validity of this reduction. The average position of the contact
line z is the natural choice of reaction coordinate. To proceed,
we assume that the distortions of the contact line are at
equilibrium and therefore obtain the equations:

0 ¼ C exp �ðzþ cÞ2
2ðqdÞ2

� �
� kc (42)

_z ¼ F þ cos yS
T

þ C

T
exp �ðzþ cÞ2

2ðqdÞ2

� �
þWz (43)

Eqn (42), which was first introduced in the pioneering paper of
Joanny and de Gennes,23 is an implicit equation relating the
amplitude of the deformation c to the position z of the contact
line. The solution to this equilibrium equation is represented
graphically in Fig. 5a. The dashed line corresponds to the
elastic restoring force kc associated with the deformation of
the liquid interface, which must match the force resulting from
the presence of the solid, which here has been chosen to be
Gaussian.

Defects are said to be strong if for at least one z, the equation
admits several solutions c. Strong defects induce a multistable
energy landscape while weak defects lead to a monostable
energy landscape. Multistability occurs when the maximum
slope of the Gaussian is larger than k. The maximum slopes
are located at c = �z + qd and c = �z � qd and their absolute

value is
C

qd
ffiffiffi
e
p . The condition for defects to be weak is therefore

Co qdk
ffiffiffi
e
p
: (44)

The defect in the figure is weak since for any z there is a
unique solution c(z), shown in Fig. 5b. The resulting potential
is shown in Fig. 5c.

Fig. 4 Example time sequence for the two degress of freedom z and c.
Here the potential is taken as qd = 0.7 and C = 0.3, with the dynamic
parameters T = 2 � 10�2, D = 1 and F = �5. The dotted line indicates the
time-averaged drift velocity.

Fig. 5 (a) Graphical solution of the force balance eqn (42) between the
distortion of the contact line and the defect strength for a defect char-
acterized by qd = 0.7 and C = 0.3 and for z = �0.34. The solution c(z) =
0.75 is the intersection point between the Gaussian and the line. (b) Here
the defect is weak and for each position of the contact line there is a
unique solution for the amplitude of the deformation. (c) The resulting
potential. (d) In the calculation, the potential is then periodized such that
the external work is due to the external force DF. D ~U is defined as the
height of the energy barrier and Dz the distance from the bottom of the
well to the top of the barrier.
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In the case of a strong defect, even in the absence of thermal
activation, it is clear that the sequence of configurations taken
by the contact line as it advances over a defect is not the same
as when it recedes over that same defect. In other words, there
is a hysteresis in the detailed position of the line since the
deformation c at a given z depends on whether the contact line
was moving in one direction or the other. The hysteresis in
position is reflected in a difference in contact angle between
advancing and receding directions. However, this separation
between the two branches of the dynamics is not unique to
strong defects. Here we restrict ourselves to the case of a weak
defect where there is no such hysteresis in position, the
deformation is properly defined for each mean position of
the contact line (c(z) is monovalued) and the reduced potential
is U(z) = U(z,c(z)). However, the defects still present energy
barriers to motion and a minimum force (the zero-temperature
depinning point) is necessary for the contact line to move in
either direction. In addition, thermal-activation processes allow
the line to overcome the defect before reaching the depinning
point. As we shall see, this results in a separation between
advancing and receding branches of the dynamics – such as
shown at lower speeds for the weak defects in Fig. 1 – which is
commonly referred to as contact angle hysteresis, but is in fact
of different origin.

3.2 Mean-field force

In this section we seek to redefine the force by removing the
mean-field contribution:

DF = F + cos y0, (45)

where y0 is the equilibrium angle, or what would be measured
if the contact line were moving quasi-statically over the surface
at constant instantaneous velocity (_z ¼ U). In this case, all
of the contact line positions z are equally probable and the
mean-field force can therefore be calculated by averaging
eqn (23) over z:

cos y0 � cos yS þ
ðp
�p
C exp �ðzþ cðzÞÞ2

2ðqdÞ2

� �
dz
2p

¼ cos yS þ
Cqdffiffiffiffiffiffi
2p
p erf

pffiffiffi
2
p

qd

� �
:

(46)

This redefinition has the advantage that DF then corre-
sponds to the usual, experimental definition of the (dimension-
less) unbalanced Young force: the difference in cosinus of angle
between the equilibrium angle and the dynamic angle y of the
contact line. In practice, the positions z are not equally dis-
tributed as the contact line spends more time near the potential
minimum. Following this redefinition, the potential must be
modified so as to remove the contribution coming from the
solid surface tensions that has been included in the new
force variable. What remains is due to the force of the defect
and the elastic restoring force, and it is therefore natural that it
be periodic for our periodic effective landscape. The new

potential is

~UðzÞ ¼ 1

2
kcðzÞ2 þ Cqd

ffiffiffi
p
2

r
erf �zþ cðzÞffiffiffi

2
p

qd

� �

þ z
Cqdffiffiffiffiffiffi
2p
p erf

pffiffiffi
2
p

qd

� � (47)

and is illustrated in Fig. 5d. It is indeed periodic: the force due
to defects does vanishing work when the contact line moves
from one row of defects to another. The external work is only
due to the external force DF. The Langevin equation then reads

_z ¼ DF
T
�U0ðzÞ

T
þWz: (48)

3.3 Constant force regime

For simplicity, we first examine the case of constant F, a choice
that turns out to be the typical case in experiments for reasons
that will be justified in the next section. In this case, the elastic
restoring force of the large-scale meniscus is that of a wedge of
angle ym, given by eqn (6): F = �cos ym and the Langevin eqn (48)
and has an exact solution26 giving the average drift velocity as a
function of the external force DF:

_z ¼
p 1� e�4pDF=T

 �

IVI�V � 1� e�4pDF=Tð Þ
Ð p
�pe

�2VðzÞIV ðzÞdz
; (49)

where � stands for the time average and

IVðzÞ �
ðz
�p
e2Vðz

0Þdz0; IV � IVðpÞ (50)

The biased potential V, defined with z over the interval
[�p, p], is

VðzÞ ¼ �DFzþ
~UðzÞ

T
: (51)

3.4 Comparison of the dynamics with one and two degrees of
freedom

So far, the reaction path approach is an uncontrolled approxi-
mation for the dynamic contact line problem: are we really
allowed to consider that most degrees of freedom relax faster
than z? We have the opportunity to investigate the quality of
this approximation by comparing the results obtained while
keeping the description based on two degrees of freedom
(z and c) to those obtained with only a single one (z). We limit
ourselves to weak defects associated with a monostable energy
landscape when reduced to one degree of freedom. Fig. 6
compares the relation between force and velocity obtained from
(i) the numerical integration of the Langevin equation with two
degrees of freedom and from (ii) the exact analytical formula of
eqn (49) when the description is reduced to one degree of
freedom. The timescale associated with the relaxation of the
deformation c is controlled by the dimensionless number D.
At vanishing D, one obtains perfect agreement between the two
descriptions, as expected. Surprisingly, the agreement is still
very good when c is the slowest variable, for D 4 1. We have
systematically tested the reduction as a function of C and qd in
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the weak defect regime and conclude that the dynamics
reduced to a single degree of freedom is an excellent approxi-
mation of the two-variable model. In the rest of the paper, we
therefore restrain the discussion to the Langevin equation
reduced to the reaction coordinate z.

3.5 Constant force versus constant velocity

We now investigate the difference between the equations solved
at constant force F, given by eqn (6), and those at constant
velocity U, where the force is given by eqn (27). Fig. 7 shows the
relation between the force and the average drift velocity
obtained for constant force and for constant velocity with
different values of the spring constant kz. In the limit where
the effective spring is soft (kz/qT { 1), to reach the time-
averaged velocity U and to overcome the force of the defects, the
length of the effective spring, ( %Z + Ut � z), must be large. As a
consequence, its relative variations during the dynamics are
small and the spring is essentially at constant elongation.
Looking back at eqn (27) and Fig. 7, one observes that constant
force and constant velocity are indeed equivalent in this limit.
By contrast, in the limit where the spring is rigid (kz/qT c 1),
by imposing the average velocity to be U, one also imposes the

instantaneous velocity _z ’ U (the length of the spring is small
with large relative variations during the dynamics). The dis-
tribution of positions is homogeneous and the time averages
during the dynamics becomes simple integrals over the period.
The time average of eqn (43) gives:

_z ’ DF
T
; (52)

which is exactly the behavior observed for the purple dotted line
(kz/qT = 148) in Fig. 7: the dynamics doesn’t exhibit a
logarithmic-like behaviour but instead tends to a linear relation

between the force and the velocity. In this case, thermal
fluctuations have a negligible effect.

We now return to a typical experimental situation in
order to determine if the criterion for a force-driven regime
is easily realized. The dimensionless parameter that indicates
the stiffness of the meniscus spring in a dip-coating
experiment is

kz

qT
� 3Zl2U

4p tan ymkBT
¼ 3gl2

4p tan ymkBT
Ca: (53)

In the velocity-driven experiment shown in Fig. 1, the factor
3gl2

4p tan ymkBT
’ 3� 102. The ratio kz/qT consequently ranges

from 3 � 10�5 to 3 in the experiment shown in Fig. 2. In other
words, the crossover from a force-driven regime at small Ca to
a velocity-driven regime at large Ca is around Ca C 10�3.
This means that the majority of the experiment corresponds to
a force-driven regime, with only the upper decade in Ca
starting to feel the effect of a finite spring constant. In this
case, even if the potential contains wells and barriers, the
contact line can overcome these barriers via the meniscus
spring that drives the contact line velocities, and not only by
thermal activation.

The determination of whether an experiment is force or
velocity driven also depends on the geometry of the system. In
the case of a thin fiber, as discussed in Section 2.6, it is more
appropriate to use the static kz and one consequently finds
kz/qT C 1, i.e. in the rigid limit. It is therefore likely that
dip-coating experiments on nano-fibers22,27 are driven in posi-
tion and not in force.

Fig. 6 Numerical solution of the Langevin equation with two degrees of
freedom, for a fixed potential (qd = 0.7, C = 0.2) and T = 2 � 10�2 and for
different values of the ratio D of dissipative constants: 10�3 to 103 from red
to purple. The solid line is the exact solution of the Langevin equation
reduced to a single reaction coordinate z given by eqn (49).

Fig. 7 Solutions the Langevin eqn (43) for a fixed potential (qd = 0.9,
C = 0.15) and fixed temperature (T = 7.5 � 10�3). The solid red line is the
exact solution to the force driven Langevin equation given by eqn (49). The
dotted and dashed lines are the solutions of the Langevin equation driven
in velocity for different values of the spring constant. From the stiff spring
to the soft spring; dotted purple line: kz/qT = 148, dot-dashed blue line
kz/qT = 2.7, dashed green line kz/qT = 0.13. For lower values of the spring
constant, the force and velocity driven Langevin equations are equivalent.
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4 Parametric study

We have shown that for weak defects, the thermally activated
dynamics is well represented by a single reaction coordinate
and by a dynamics at constant driving force. We now investi-
gate the influence of the three independent parameters of
the problem: the defect strength C, its size compared to the
distance between defects qd and the ratio T comparing
thermal effect to capillary effects.

4.1 Properties of the potential

The impact of the defect properties (C and qd) on the dynamics,
is produced through their effect on the shape of the potential.
In anticipation of a parametric study, we reduce the description

of the potential to the height of the barriers D ~U and a distance
between the top of the barrier and the bottom of the well Dz
(see Fig. 5d). In this section we develop estimations of these two
quantities as a function of the defect properties. We will need
the slope and curvature of the periodized potential:

~U0ðzÞ ¼ �kcðzÞ þ Cqdffiffiffiffiffiffi
2p
p erf

pffiffiffi
2
p

qd

� �
; (54)

~U00ðzÞ ¼ kcðzÞðzþ cðzÞÞ
ðqdÞ2 þ cðzÞðzþ cðzÞÞ; (55)

where c(z) is obtained from eqn (42). The static equilibrium

condition at zero temperature, ~U0ðzÞ ¼ DF , admits solutions if
the force is inside the range of the pinning forces:

C
qdffiffiffiffiffiffi
2p
p erf

pffiffiffi
2
p

qd

� �
� 1

� �
oDF o

Cqdffiffiffiffiffiffi
2p
p erf

pffiffiffi
2
p

qd

� �
: (56)

This can be rewritten to explicitly introduce the depinning
angles:

�cosYa + cos y0 o DF o �cosYr + cos y0. (57)

In this case, the total external potential contains minima (�)
and maxima (+) whose locations are:

z� ¼ �c z�ð Þ �
ffiffiffi
2
p

qd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

C

kc z�ð Þ

� �s
(58)

with

c zþð Þ ¼ c z�ð Þ ¼ �
DF
k
þ Cqd

k
ffiffiffiffiffiffi
2p
p erf

pffiffiffi
2
p

qd

� �
: (59)

For low forces, the distance Dz depends only on the rescaled
defect size:

Dz ¼ z� � zþ � 2
ffiffiffi
2
p

qd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffi
2p
p

qderf
pffiffiffi
2
p

qd

� �
2
6664

3
7775

vuuuuuut : (60)

From the locations of the extrema, one can easily find the
barrier height. For low forces, we find that it is proportional to
the defect amplitude C and depends on qd through an

increasing function that we denote a:

D ~U � CaðqdÞ
2

; (61)

which can be shown to be

aðqdÞ �2
ffiffiffiffiffiffi
2p
p

qderf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffi
2p
p

qderf
pffiffiffi
2
p

qd

� �
0
BBB@

1
CCCA

vuuuuuut

0
BBBB@

1
CCCCA

� 4ðqdÞ2ffiffiffi
p
p erf

pffiffiffi
2
p

qd

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffi
2p
p

qderf
pffiffiffi
2
p

qd

� �
0
BBB@

1
CCCA

vuuuuuut :

(62)

We will also need the product of curvatures at the extrema.
For low forces, one can show that

~U00 zþð Þ ~U00 z�ð Þ
		 		 � C2

p
erf

pffiffiffi
2
p

qd

� �2
ln

ffiffiffiffiffiffi
2p
p

qderf
pffiffiffi
2
p

qd

� �
2
6664

3
7775: (63)

4.2 Force–velocity curve parametrization

Fig. 8 shows a typical solution to the Langevin model found
using the exact expression (49). It exhibits a regime with a
logarithmic relation between force and velocity that is charac-
teristic of a thermally activated process. Looking closely, one
can see that the advancing and receding directions are asym-
metric. For this reason, we choose to parametrize the advancing
(+) and receding (�) log branches by

_z ¼ �VT exp pð1� dÞ DFj j
T

� �
; (64)

in which three quantities are singled out: the mean slope of
both branches p, the asymmetry of the slopes d and the
transition velocity where the two branches join VT. Below VT

the system is close enough to thermal equilibrium for a linear
response theory to be applicable. At higher driving force, the
exact solution eqn (49) tends to a linear regime, where the
potential and thermal noise are negligible. This high force
regime is not described by the parametric log branches. We
also note that it is unrelated to the onset of a regime dominated
by hydrodynamic dissipation in the bulk meniscus15 since here
we consider ym and not the macroscopic angle directly mea-
sured in experiment.

4.3 Kramers’ approximation for the transition velocity

In this section, we perform a numerical study of the thermal
transition speed VT in order to determine its dependance on qd,
C and T. The results are compared to the Kramers’ rate theory,
which gives the transition rate between wells of an arbitrary
potential. Kramers’ rate is based on an approximate description
of the energy barriers using only the curvatures of the potential
at the bottom of the well and at the top of the barrier, the height
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of the barrier D ~U and the length Dz. It assumes that the
activated motion from one potential well to the other is a rare
event i.e. that the thermal energy is small compared to the
energy barrier. The advancing (+) and receding (�) dynamics
are expressed as28,29

_z � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~U00 zþð Þ ~U00 z�ð Þ
		 		q

T
exp

�2D ~U

T

" #
exp 2Dz

DFj j
T

� �
: (65)

The curvatures of the extrema determine the frequency at
which the contact line tries to overcome the barrier while the
height determines the probability of overcoming it. The length
Dz controls the external work of the force DF when the contact
line makes an elementary jump and therefore the bias induced
in the potential by the external force. We first investigate the
effect of the rescaled temperature T, which impacts the
dynamics by affecting the ratio between the amplitude of
the potential and the thermal noise. Kramers’ approximation of
eqn (65) is an asymptotic solution valid at vanishing temperature
and in which the number of decades where the dynamics exhibits
a logarithmic behavior diverges. We compare this to the exact
solution given by eqn (49) at different temperatures and for a fixed
potential, i.e. given values of qd and C. Fig. 9 shows that the
number of decades where the dynamics exhibits a logarithmic
behavior increases when the temperature decreases. Kramers’
prediction for the transition speed reads:

lnVT � �
2D ~U

T
: (66)

In Fig. 9 – which is at fixed D ~U – all of the curves obtained at low
temperatures collapse at the transition when the velocity is

rescaled by this. For higher temperatures, Kramers’ approxi-
mation is not valid and the exact relation between force and
velocity deviates from the asymptotic expression.

We now investigate the effect of the defect properties in the
limit of vanishing temperature, where an asymptotic logarith-
mic behavior emerges. According to eqn (61), Kramers’ approxi-
mation predicts that ln VT depends linearly on the defect
amplitude C. Fig. 10 shows that the numerical results confirm
this. The dependence of the slope and the value at origin can be
studied as a function of the second parameter, qd. Formally
we write

lnVT ’ �aðqdÞ
C

T
þ bðqdÞ: (67)

Fig. 11a shows that the function a(qd) is perfectly predicted by
Kramers’ approximation. Subdominant dependencies are
embedded in the constant b, which principally depends
on qd.

4.4 Logarithmic slopes of the force–velocity relation

The slopes of the logarithmic branches introduced in eqn (64)
are well defined in the limit of vanishing temperature. For low
enough temperatures, Fig. 9 shows that the slopes are invariant
with the temperature. We investigate the dependence of these
logarithmic slopes on the defect properties in the asymptotic
limit of vanishing temperature – in practice, figures are plotted
for T = 10�4. First we compare to Kramers’ prediction, then we
show that a better model is the exact formula on a ratchet
potential.

Fig. 12 shows that the average slope p depends only weakly
on qd and C: over the full possible scale of these parameters,

Fig. 8 Advancing (solid line) and receding (dotted line) dynamics accord-
ing to the exact solution in eqn (49). The logarithmic portion of the
branches, parametrised by eqn (64), are shown as dashed lines. p is defined
as the mean slope of the log branches and d their relative asymmetry. VT is
the thermal speed marking the transition between a linear response and
the log regime. At higher driving force, the exact solution tends to a linear
regime, where the potential and noise are negligible.

Fig. 9 Numerical exact solutions eqn (49) of the dynamics for a fixed
potential (qd = 0.7, C = 0.3) for different values of T from low temperature
(purple curve: T = 6 � 10�3) to moderate temperatures (red: T =
4 � 10�2). As the temperature decreases, the dynamics tend to Kramers’
expression and the number of decades in the log regime diverges. For this
potential, the speed has been rescaled according to ln VT C�0.55/T + 3.5
in order to collapse the curves.
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the variation is at most 3% from p C 2p. It does not behave
according to Kramers, which predicts

p ¼ 2Dz � 4
ffiffiffi
2
p

qd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

ffiffiffiffiffiffi
2p
p

qderf
pffiffiffi
2
p

qd

� �
2
6664

3
7775

vuuuuuut ; (68)

giving a mean slope nearly proportional to qd. The orders of
magnitude are inconsistent as well as one can see in the insert
of Fig. 12b, where the dotted-dashed line represents the
Kramers’ prediction.

Fig. 13 shows that the asymmetry between advancing and
receding directions results only from the rescaled defect size qd
and does not depend on the scale-free amplitude of the defect
C. Again, this is not consistent with Kramers’ approximation
which, being based on a Taylor expansion of the potential to
quadratic order, predicts perfectly symmetric curves in the
advancing and receding directions. Examining the invariances

and symmetries of the exact solution given by eqn (49), one can
see that the advancing and receding dynamics are asymmetric if
the potential does not contain an axis of vertical symmetry, i.e., if
the shapes of the maxima and minima contains odd terms in
their development. To improve the modeling, we have therefore
studied the force–velocity relation for the simplest potential that
contains such an asymmetry: the ratchet or saw-tooth potential.
Just like the Kramers potential, it can be described by an

amplitude D ~U and a distance between the well and barrier Dz
and one can analytically determine the force–velocity relationship
in eqn (49). In the limit of vanishing temperature one obtains

_z � �D
~U2

pT2
exp

�2D ~U

T

" #
exp ð2p� ð2p� 2DzÞÞ DFj j

T

� �
: (69)

The height D ~U still controls the probability of overcoming the
energy barrier, and therefore the prediction for the transition
velocity VT in eqn (66) is unchanged. However, in this case,
the log branches have a constant mean slope, independent of the
barrier height and length:

p = 2p, (70)

Fig. 10 Thermal transition speed ln VT as a function of the defect strength
C at vanishing temperature (T = 10�4) for different values of the defect
size qd (from purple to orange: qd = 0.9, 0.7, 0.5, 0.3). The curves are
limited to the weak defect regime, the boundary of which is given by the
dotted line.

Fig. 11 Coefficients a and b defined in eqn (67). The dashed line is
Kramers’ prediction and the solid lines are obtained from (a) the slope
and (b) the origin of curves such as those shown in Fig. 10.

Fig. 12 Mean slopes of the logarithmic regimes of the dynamics in the
low-temperature limit (here T = 10�4). (a) As a function of the defect
amplitude C for a series of defect sizes qd (from purple to red: qd = 0.9,
0.7, 0.5, 0.3). (b) As a function of qd for a series of C (from purple to red:
C = 0.01, 0.1, 0.2, 0.4). The dotted lines delimit the boundary between
weak and strong defects. The dashed horizontal lines are the exact results
for a ratchet potential using eqn (49). The dashed-dotted line in the inset
shows Kramers’ prediction of eqn (68).

Fig. 13 Asymmetry of the slopes d between the advancing and receding
branches in the log regime in the low-temperature limit (here T = 10�4).
(a) As a function of the defect height C for a series of defect sizes qd (from
purple to red: qd = 0.9, 0.7, 0.5, 0.3). The dotted line delimits the boundary
between weak and strong defects. (b) As a function of qd. The dashed line
is the exact prediction of eqn (49) for a ratchet potential.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
6 

Ja
nu

ar
y 

20
18

. D
ow

nl
oa

de
d 

by
 S

C
D

 U
ni

ve
rs

ité
 P

ar
is

 7
 o

n 
07

/0
2/

20
18

 1
4:

43
:1

0.
 

View Article Online

http://dx.doi.org/10.1039/c7sm02211e


This journal is©The Royal Society of Chemistry 2018 Soft Matter

and an asymmetry that depends only on the distance between
the barrier and well:

d ¼ 1� Dz
p
; (71)

where Dz is still given by eqn (60). Fig. 13 shows that this
constitutes an excellent approximation of the curves obtained
with the actual potential, although the actual potential only
looks like a ratchet for small values of qd.

5 Returning to experiments
5.1 Scaling relations in the thermal asymptotic regime

After having worked with rescaled quantities above, in this
section we provide the expression for the logarithmic regime
using the original input parameters. Experiments measuring
contact line dynamics can be reported in terms of the contact
angle cos ym as a function of the capillary number Ca. In the
asymptotic limit of thermal activation (i.e. at vanishing
temperature), we have shown that the relation takes the form

Ca ¼ �CaT exp ð1� dÞ
gl2 cos y0 � cos ym
		 		

2kBT

� �
: (72)

One recognizes the general Arrhenius form that has been
frequently used to fit experimental data. The significant
advancement here is that we have rationalized the full expres-
sion and we give explicit expressions for the transition CaT and
for the asymmetry d between the advancing and receding
branches, which is not ad hoc but appears as a natural con-
sequence of the model. One can also recognize that the
distance between defects l controls the mean slope of both
branches taken together.

Specifically, we have shown that the asymmetry is controlled
by the size of the defect d relative to l:

d ’ 1� 4
d

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

l

d
ffiffiffiffiffiffi
2p
p

erf
l

d2
ffiffiffi
2
p

� �
2
664

3
775

vuuuuut : (73)

It is notably insensitive to the scale-free strength of the defects
and in particular to whether they are very weak or near the limit
of being strong. The larger d/l the more symmetrical the two
branches are.

The prefactor in eqn (72) is a transition capillary number
corresponding to the point where the two branches join. It
scales as

CaT ¼
4p
dz

kBT

gl2
exp �aC

2p
gl2

2kBT
þ b

� �
; (74)

where the coefficient a depends on the rescaled size of the
defect qd = 2pd/l according to eqn (62) and b varies only weakly
with qd.

The scale-free defect strength C linearly controls the inter-
section point of the advancing and receding branches in ln CaT,
or equivalently the separation (i.e. difference in force cos ym)

between the branches at the same speed. From eqn (56) we see
that C also controls the depinning angles:

cosYa � cosYr = C. (75)

Finally, it selects the capillary number Ca B C/dz at which the
cross-over from the activated regime to the high velocity linear
regime takes place.

The friction coefficient dz appearing in CaT is given by
eqn (37) and is smaller than unity (dz C 0.7) for the data shown
in Fig. 1. Physically, it corresponds to the viscous friction
associated with the global motion (z) of the contact line. We
note that this is an evolution with respect to our previous,
preliminary report of this model15 in which we proposed a
Langevin description based upon a single variable (z) but
erroneously attributed the extra viscous dissipation as arising
from the fluctuations of the interface (c). The four fit para-
meters (cos y0, l, d, CaT) appearing in eqn (72) can therefore be
used to uniquely determine the four physical parameters of the
model (cos y0, l, d, C) given dz, a and b.

5.2 Adjusting experimental data

Once an experiment has been performed and the dynamics
plotted, one can ask what dynamical regimes were accessed,
and in particular, over what range of Ca can the asymptotic
expression of eqn (72) be used to fit the data. Most often,
experiments are reported in terms of the macroscopic angle
and show what looks like two regimes with a crossover
(a batwing). However, it is not immediately clear if this is
indeed a crossover between a thermally activated regime and
a hydrodynamic one, or if the experiment explores the
thermally activated regime beyond the depinning threshold.
Without any knowledge a priori of l, d, C and cos y0, one must
fit to find out. First one must deduce ym by subtracting the
viscous force resulting from all scales between the molecular
scale and the capillary length, a procedure that has been
outline elsewhere.15 For sufficiently low Ca we note that the
macroscopic and effective microscopic angles are confounded.
If the batwing remains in the dynamics of ym, then the experi-
ment approaches the depinning threshold. If not, care must
still be taken to first check that the range of Ca is low enough
that a purely logarithmic regime applies before using eqn (72).

The solid lines in Fig. 1 correspond to a numerically
calculated fit of both branches to the full model represented
by eqn (49). The dashed lines in the same figure correspond to
the asymptotic limit of thermal activation for the same fit
parameters. From the non-overlap of the solid and dashed
lines, one can see that the experimental data – the receding
branch in particular – lie outside of the purely exponential
limit. If we were to have fit to the asymptotic form of eqn (72),
the fit parameters would not correspond to the real physical
parameters. Since the disparity between the full solution and
the asymptotic form over the range of experimental Ca is
relatively small it is possible to make use of the asymptotic
form developed here to properly extract the real parameters of
the energy landscape and avoid the necessity of implementing a
numerical fitting procedure to eqn (49). To do so, one can use
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an iterative procedure to find how each parameter of the full
model maps to the fit parameters when the full model is fit to
the form eqn (72) over the experimental range of Ca.† The
uncertainties in the model parameters can be evaluated either
directly from the statistical errors in the fit to eqn (72) (l, cos y0)
or from their propagation through eqn (73) and (74) (d and C).
Considering only the statistical errors and using this method to
propagate them, the best fit parameters to the data in Fig. 1 are
l = 18 � 0.5 nm, cos y0 = 0.569 � 0.002, d = 2.0 � 0.3 nm and
C = 0.122 � 0.002. These parameters observe the condition in
eqn (44) so the defects are indeed weak.

6 Conclusion

Beginning from a two-variable Langevin description of the
dynamic contact line problem, we have developed a working
model to fit thermally activated motion in the purely logarithmic
regime and beyond. We have worked with weak defects, for
which we have shown that a one-variable description is an
excellent approximation, and we have clarified the distinct
concepts of hysteresis (which is not present for weak defects)
and the experimental observation of the separation between the
advancing and receding branches of the dynamics (which is).

In developing the model, we left open the possibility to
either force or velocity driving. By examining the meniscus
stiffness, we later showed that dip-coating experiments in the
plate geometry are in fact driven in force. For the case of weak
defects in force driving, an exact solution to the model exists.
We performed a parametric study of the asymptotic limit of this
solution corresponding to vanishing temperature. We find a
purely logarithmic regime that ressembles the Arrhenius-type
models commonly used in the field. The added value here is
that we provide rationalized expressions for the prefactor, and
for the asymmetry between advancing and receding branches
that is so frequently observed in experiment. We also show that
the depinning angles are determined by the scale-free strength
of the defect. Important practical lessons that come from
studying the model in this limit are that (1) one needs both
the advancing and receding branches in order to determine l
since it is related to the mean slope and (2) for each experi-
ment, one must verify that the conditions indeed correspond to
the asymptotic regime. Using the exact solution to fit to our
experimental data reaching as low as Ca C 10�7, we find that
the purely logarithmic regime is at still lower Ca, and thus
suspect this to be the case in many experiments. We propose a

procedure to use a fit to the simpler asymptotic form even
outside of its region of validity which, when used in combi-
nation with the exact solution, can correctly extract the physical
parameters of the model.

The problem of a moving contact line is both multi-scaled
and multi-frequency. For example, the dimensionless friction
coefficient dz depends on the frequency of oscillation of the
contact line. In this article, when necessary, we have used
physical arguments to justify the choice of a single length or
frequency scale in order to render the problem tractable and
obtain practical, working expressions that can be used to
analyse experimental data. In the case of dz, we argued that
the contact line spends the majority of the time stuck in a
potential well and therefore the thermal attempt frequency is
dominant over, say, the success rate for overcoming the
barrier. This is appropriate in the logarithmic limit that we
focus on here, but clearly would not be appropriate in
the high-force regime, beyond depinning. In this sense, we
recognise that the full problem is in fact richer and more
complicated than presented here. Another method used here
to simplify the problem is the mapping of a real, random,
multi-scale energy landscape to an effective landscape with
periodic, Gaussian defects. It remains an outstanding ques-
tion how to link the model fit parameters to measurable
properties of the physical or chemical defects on a real solid
surface.
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