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The contact angle of a liquid drop moving on a real solid surface depends on the speed and direction of
motion of the three-phase contact line. Many experiments have demonstrated that pinning on surface
defects, thermal activation and viscous dissipation impact contact line dynamics, but so far, efforts have
failed to disentangle the role of each of these dissipation channels. Here, we propose a unifying multiscale
approach that provides a single quantitative framework. We use this approach to successfully account for
the dynamics measured in a classic dip-coating experiment performed over an unprecedentedly wide range
of velocity. We show that the full contact line dynamics up to the liquid film entrainment threshold can be
parametrized by the size, amplitude and density of nanometer-scale defects. This leads us to reinterpret the
contact angle hysteresis as a dynamical crossover rather than a depinning transition.
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When a liquid drop spreads on a solid surface, shear flow
in the meniscus creates viscous dissipation that causes the
apparent contact angle θM at the macroscopic scale to shift
from its static value θY [1]. Because of the divergence of the
viscous shear stress at the contact line, each decade of
length scale down to the molecular size contributes equally
to this dissipation. This problem has been thoroughly
studied and its understanding has now reached a consensual
agreement [2,3]. Integrating the meniscus profile from the
molecular scale, where the microscopic contact angle θμ is
assumed to be at equilibrium, up to the macroscopic
boundary condition—which can be a reservoir, a drop,
or a channel—provides a relation between θM and the
capillary number Ca≡ ηU=γ, which is the contact line
velocityU normalized by the liquid-vapor surface tension γ
and the liquid viscosity η [4,5]. This purely hydrodynamic
approach fails to account for the logarithmic time relax-
ation of the contact angle frequently observed at low
velocity [6–9]. In a seminal paper by Blake [10], it was
first suggested that even the molecular discreteness of a
solid could generate a rugged energy landscape [11] and
cause the contact line dynamics to be thermally activated.
Kramers theory predicts that thermal activation yields a
relation between the contact line velocity and the micro-
scopic contact angle θμ of the form

jCaj ∝ exp

�
γl2j cos θμ − cos θY j

kBT

�
; ð1Þ

where kB is the Boltzmann constant, T the temperature, and
l a characteristic length of activation [12]. Direct exper-
imental evidence of this temperature-dependent activation
over nanoscale defects present on the solid surface was

obtained by [6]. It has also been proposed that the pinning
and depinning events at work in the activated motion of the
contact line could also be responsible for the contact angle
hysteresis [13–15].
Contact angle dynamics is, thus, a demanding multiscale

problem. Despite several attempts [8,9,16,17], this phe-
nomenon is lacking a unifying picture capable of account-
ing for both viscous dissipation (acting at all scales) and
activated dynamics (acting at the nanometer scale).
Furthermore, thermal activation has neither been rigorously
related to the defects of the solid surface, nor to the wetting
hysteresis.
Here, we propose a unified description that combines a

hydrodynamic description of the liquid flow at large scales
and a Langevin description of the contact line motion at the
nanoscale. We have studied the classic dip-coating geom-
etry both theoretically and experimentally [9,18–23], where
an apparently flat plate is pulled out of or dipped into a
liquid bath at a fixed velocity. As shown by the fit in
Fig. 1(a), our multiscale approach accounts for the entire
range of dynamics. We are able to achieve a quantitative
description over five decades in Ca up to the film entrain-
ment threshold [18,20–24] by adjusting the mean character-
istics of the nanoscale defects (density, amplitude, and
spacing) that are inevitably present on the plate. Finally, we
show that the contact angle hysteresis, which is usually
thought to be related to the critical mechanical force needed
to unpin the contact line from the defects [25], is, instead,
related to a crossover between a low-velocity activated
regime and a high-velocity viscous regime.
Framework.—We consider a plate covered with nano-

scale heterogeneities that is withdrawn vertically and at
constant velocityU from a liquid bath. Because of transient
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pinning on defects, the contact line as well as the entire
liquid-vapor interface are distorted and explore many
disordered configurations when the plate is moved, as
schematized in Fig. 1(b). These configurations are not
directly observable, rather, our aim is to understand how
heterogeneities and thermal noise impact measurable aver-
aged properties of the interface such as the capillary rise Z.
In order to develop a statistical description of the contact

line, we assume that the fluctuations around the average are
small enough to remain in the linear regime and perform a
modal decomposition of the interface shape. First, we
consider the zero mode, which is invariant along the x
direction (transverse to the direction of motion) and average
it over microscopic configurations. This average interface is
controlled by viscous, capillary, and gravitational forces
only. The effect of disorder on the plate is embedded in the
boundary condition at the plate: the microscopic contact
angle θμ. The effect of thermal fluctuations is hidden in the
liquid parameters γ and η. The average shape can be
accurately described using hydrodynamics in the lubrica-
tion approximation extended to large slopes [26]. This
allows one to remove the viscous dissipation associated
with the zero mode from the measured ZðCaÞ and to deduce
the contact angle at the nanoscale, θμðCaÞ. The effect of
defects present on the plate and the viscous dissipation of
higher order modes are embedded in the relation Ca vs θμ.
Next, we consider fluctuations of the interface around

the zero mode as well as variations in time of the mean
contact line position ζðtÞ. We assume that heterogeneities
are able to pin the contact line locally over a length

significantly larger than the atomic size so that the interface
can still be described in the framework of continuum
hydrodynamics. The time scale of the fluctuations of the
instantaneous position of the contact line, written as
ζðtÞ þ ϵðx; tÞ, with hϵi ¼ 0, is much smaller than the
relaxation time of the macroscopic profile which sets the
nanoscale contact angle θμ: the contact line is, thus, driven at
a constant force per unit length γðcos θμ − cos θYÞ. The goal
is, then, to compute the time-averaged drift velocityU ¼ h_ζi
of the mean instantaneous contact line position ζðtÞ when
the line is submitted to a constant force. To account for
thermal noise, we make use of reaction-rate theory.
Following reaction-path theory [27,28], we reduce the full
dynamics of ϵðx; tÞ to the dynamics of the single reaction
coordinate ζ assuming that all other degrees of freedom relax
much faster to the minimal free energy at fixed ζ. This
reaction coordinate, therefore, evolves in an effective
random energy landscape UðζÞ which has multiple valleys
and barriers. By effective,wemean that it originates from the
surface heterogeneities but also accounts for the relaxation
of all other degrees of freedom besides ζ. The dissipation is
the final ingredient needed to write a Langevin equation for
ζ. Viscous dissipation associated with the stationary motion
of the zero mode has already been taken into account, and it
sets the value of the applied force through θμ. However,
fluctuations of the interface are responsible for an extra
dissipation, which leads to a friction force of the form−βη_ζ.
β is a dimensionless function of ζ which can be calculated in
the lubrication approximation [29]. Finally, the Langevin
equation governing the motion of the contact line reads
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FIG. 1. (a) Height Z of the contact line as a function of the capillary number Ca, in the limit _Z → 0 (Z is rescaled by the capillary
length lγ ¼

ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
where ρ is the liquid density and g the acceleration of gravity). Circles: experimental data. Solid line: theory. Inset:

schematic of the dip-coating experiment in the frame of reference of the bath. (b) Schematic of the contact line deformation over defects
in the frame of reference of the plate. (c) Schematized energy landscape along the reaction path. Left: realistic. Right: idealization.
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βη_ζ ¼ γðcos θμ − cos θYÞ −
dU
dζ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βηkBT

λ

r
WðtÞ; ð2Þ

whereWðtÞ is a noise obeying the normalization condition:
hWðtÞWðt0Þi ¼ δðt − t0Þ.
Obtaining θμ from the experiment.—The dip-coating

experiment illustrated in the inset of Fig. 1(a) is performed
in a silicon oil (Rhodorsil V100) composed of chains of
≃150 monomers of length ≃0.3 nm. The molecular size,
given by the Gaussian radius, is equal to lμ ≃ 3.6 nm. The
viscosity and surface tension under experimental condi-
tions are η ¼ 116 mPa · s and γ ¼ 23 mN · m−1. Similar
results have been obtained using V50 (η ¼ 54 mPa · s).
The plate is a piece of silicon wafer coated with a layer of
fluoropolymer FC725 (3M) approximately 0.5 μm thick.
The plate velocityU is controlled by a translation stage and
varied between 1 μm · s−1 and 4 mm · s−1. The dynamics is
obtained by analyzing transients [22], which allows us to
go beyond the entrainment threshold (which occurs here at
Ca ¼ 7.2 × 10−3). The average height Z with respect to the
bath is determined from a front-view image (25 Hz CCD
camera) of the plate, in the limit of vanishing _Z (Fig. 1).
Using a subpixel correlation technique, we achieve a
precision of 1 μm. Variations in the bulk liquid bath level
due to the excluded volume, which results from the finite
thickness of the wafer, are detected using the reflection of a
sharp tip from the surface of the bath. The microscopic
contact angle θμðCaÞ, defined at the scale lμ, is deduced
from the measurements of ZðCaÞ using lubrication equa-
tions extended to arbitrary slopes [26,29].
The resulting curve of cos θμ vs Ca is displayed in Fig. 2.

At first approximation, it shows a nearly logarithmic
dependance of the form given in Eq. (1). This is the
signature of a thermally activated process. The best fit to
Eq. (1) gives a slightly different activation length in the
advancing (l ¼ 7.6 nm) and receding (l ¼ 5.9 nm)
directions.
For a given height of the contact line, the macroscopic

contact angle θM can be properly defined from the capillary
rise using asymptotic matching. Far from the contact line,
the influence of both viscosity and surface heterogeneities
are negligible in front of gravity and capillarity, and
therefore, the shape of the interface becomes asymptoti-
cally that of a static meniscus whose macroscopic contact
angle with the plate is, nonetheless, selected by small-scale
processes. Contact angle dynamics are commonly reported
as cos θM rather than Z. Figure 2 shows the cos θM which
has been obtained from the experimentally measured Z
using the capillary rise. It can be seen that θμ and θM
coincide at small capillary numbers, which implies that the
viscous dissipation of the zero mode is negligible and that
the surface disorder, whose influence is characterized by θμ,
provides the dominant dissipative process in this region of
the dynamics.

Solving the Langevin equation.—Now, we want to use
the Langevin equation to derive the dynamics of the
microscopic contact angle. To this aim, we need to build
the free energy UðζÞ from the defect properties. For
simplicity, we consider a periodic series of defects of wave
number q ¼ 2π=λ along both directions of the surface.
Following Joanny and de Gennes [13], in the limit of small
deformation, we consider that the contact line can be
divided into independent pieces of length λ and evaluate
the effect of a single defect of size d. This can be seen as a
mean-field approximation that models an effective defect
and a typical distance between defects of λ. The total free
energy U per unit length contains two contributions: the
solid surface-tension landscape, assumed to be composed
of Gaussian defects, and the disturbance of the liquid
surface, which results in an elasticlike restoring force. From
the average position ζ of the contact line, the position ψ of
the contact line on the defect, and the dimensionless defect
amplitude h, we write the density of free energy as the sum
of a contribution from the defects

ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp
γhderfðψ=d ffiffiffi

2
p Þ

and of a contribution from the liquid-vapor interface,
written as 1

2
γκqðζ − ψÞ2, where κ ∼ sin2 θY=½2 lnðλ=dÞ� is

a dimensionless spring constant [13]. Following reaction-
rate theory, for a given value of the average contact line
position ζ, the position of the contact line on the defect
ψðζÞ is selected by minimizing this free energy with respect
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FIG. 2. Cosine of the free surface angle as a function of the
capillary number Ca. Circles: experimental macroscopic angle

cos θM ¼ ðZ=lγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 0.25ðZ=lγÞ2

q
. Squares: experimental mi-

croscopic angle cos θμ. Solid lines: theory for the microscopic
angle and for the macroscopic angle. The depinning thresholds at
zero temperature are indicated by arrows. Inset: close-up of the
advancing branch (Ca < 0).
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to ψ [29]. One obtains the energy landscape UðζÞ repre-
sented in Fig. 1(c).
The average drift velocity U ¼ h_ζi is then obtained by

numerical integration of the Langevin equation. The model
has four physically meaningful parameters, θY , h, λ, and d,
which determine the different characteristics of the curve
cos θμ vs Ca (Fig. 2). θY is the contact angle at vanishing
velocity. λ governs the typical slope far below the depin-
ning transition where the dynamics is logarithmic. The
asymmetry between the advancing and receding directions
is controlled by ∼hλ=d. Finally, h

ffiffiffiffiffiffiffiffi
λ=d

p
controls the

location of the depinning point and of the velocity CaT,
below which the system is close enough to thermal
equilibrium to give a linear relation between the force
ðcos θμ − cos θYÞ and the velocity Ca.
Discussion.—The best fit to the data, therefore, provides

a determination of the four parameters. Figure 1(a) shows
that this minimal model fits the entire range of experimental
data over all of the regimes. The wettable defect diameter
d≃ 2.5 nm is significantly smaller than the distance λ≃
18 nm between defects. Under these conditions, the con-
tribution of the contact-line “elasticity” to the energy UðζÞ
is important: the maximum deformation of the contact line
(ζ − ψ ) is relatively large and induces a ratchetlike effect
[29], which explains the asymmetry between the advancing
and receding directions. The amplitude h ¼ 0.14 is low
enough to give a single valued function UðζÞ (Fig. 1) so
that, for a given average position ζ of the contact line, there
is a unique position ψðζÞ on the defect. In this situation,
where the heterogeneities are termed “weak,” advancing
and receding contact lines pass by the same microscopic
configuration at a given location ζ.
The model also predicts the relation between cos θμ

and Ca in the limit of vanishing temperature for the
same four fit parameters. This can be seen from Eq. (2),
where for vanishing temperature (T ¼ 0) the contact line is
at equilibrium (_ζ ¼ 0) as long as the driving force
γðcos θμ − cos θYÞ is within the range of the force
dU=dζ. The depinning angles (Θr ≃ 47.8° and
Θa ≃ 58.4°), indicated by arrows in Fig. 2, have been
determined from the extremal values of dU=dζ [29]. This
range corresponds to a truly static contact angle hysteresis,
which applies only for vanishing temperature. In this case,
between these angles, the contact line is pinned, and
beyond them, the velocity asymptotically increases linearly
with cos θμ. As seen in Fig. 2, the depinning transition (near
Ca ¼ 1) is blurred at finite temperature, but its presence
still has a strong effect on the dynamics of θμ. Here, the
depinning transition within the thermally activated regime
can not be reached experimentally.
The description we propose here accounts for the full

range of contact line dynamics and, therefore, must also
describe the so-called contact angle hysteresis commonly
seen when liquid drops move on real solids. The measured
amplitude of the hysteresis has, so far, been linked to the

location of the depinning transition. However, it is clear
above that, in practice, the depinning transition is not
reached. To explain this, one must realize that a typical
procedure for measuring the hysteresis involves inflating or
deflating a drop and waiting a certain time until the drop
edge is determined to cease moving. This pseudoequili-
brium condition depends on the apparatus resolution and in
practice corresponds to waiting only for the first fast phase
of relaxation. The hysteresis in this case coincides with a
crossover between the high Ca regime where large-scale
viscous dissipation dominates, and a low Ca regime where
dissipation occurs mainly at the defect scale. For practical
purposes, we can define a point of crossover between
regimes as the capillary number Caco for which the
difference between cos θM in the advancing and receding
directions is twice the difference between cos θμ. For this
system, we find Caco ¼ 1.5 × 10−3 and an advancing
contact angle of θrμ ≃ 50.4° for a receding contact angle
of θaμ ≃ 57.3° (Fig. 2). So, ðθaμ − θrμÞ would quantify the
hysteresis measured by standard procedures. Except when
strong macroscopic defects are present on the solid surface,
such a “hysteresis” is not directly connected to the
maximum pinning force of the defects, which is measured
by ðΘa − ΘrÞ.
Finally, we comment on the difference between our

approach and the static picture proposed by Joanny and de
Gennes. In the latter picture, weak defects do not trigger
multistability with respect to ψ , at a constant mean contact
line position ζ: there is no hysteresis for the microscopic
configuration of the contact line when ζ is varied in one
direction or the other [11,13,30]. Here, we use a dynamic
description where the contact line position ζ becomes a
dynamic variable [31,32]. Multiple local minima (and,
therefore, hysteresis) appear when ζ is moved and no
longer imposed. The model we propose here is appropriate
as long as the defects are small enough such that the
deformations of the contact line are smaller than the
capillary length, provided that they remain weak. We
expect strong heterogeneities to lead to a substantially
different behavior. In this case, the depinning transition
may occur before the viscous crossover if the disorder-
induced dissipation becomes larger than the viscous dis-
sipation associated with the overall motion of the contact
line. Future experiments will have to test this scenario, in
particular, using surfaces whose heterogeneities are con-
trolled in order to investigate the transition from weak to
strong heterogeneities.
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