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Non-brownian suspensions present a transition from a newtonian behaviour in the zero-shear limit
to a shear thickening behaviour at large shear rate, none of which is clearly understood so far. Here,
we carry out numerical simulations of such an athermal dense suspension under shear, at imposed
confining pressure. This set-up is conceptually identical to the recent experiments of Boyer and
co-workers [1]. Varying the interstitial fluid viscosities, we recover the Newtonian and Bagnoldian
regims and show that they correspond to a dissipation dominated by viscous and contact forces
respectively. We show that the two rheological regimes can be unified as a function of a single
dimensionless number, by adding the contributions to the dissipation at a given volume fraction.

PACS numbers: 83.80.Hj,47.57.Gc,47.57.Qk,82.70.Kj

The rheology of amorphous materials such as emul-
sions, foams, metallic glasses, suspensions or granular
materials share a similar phenomenology close to the jam-
ming transition at which viscosity diverges [1–4]. How-
ever, none of these systems is yet clearly understood and
the establishment of a unified theory remains a challeng-
ing goal of out of equilibrium statistical physics. Follow-
ing the pioneering work of Einstein [5], the common view
on suspensions of particles in a fluid has long been to
start from the dilute limit and to perform an expansion
in volume fraction φ [6, 7], with a particular emphasis
on the effective interaction between particles mediated
by the fluid. By contrast, recent studies have started
to view the rheology of dense suspensions from the other
limit instead, in the framework of dense granular systems
[1, 8–11]. The rheology of dense suspensions of solid par-
ticles in an iso-dense fluid of viscosity ηf is Newtonian
at small shear rate γ̇ with a viscosity τ/γ̇ diverging as
ηf (φc − φ)−β , as the particle volume fraction goes to its
critical value φc. The measured exponent β ranges be-
tween 2 and 3 [1, 12–14]. Mean field theory assuming
a dissipation dominated by lubrication films separating
particles predicts an exponent β = 1 [8]. By contrast,
numerical simulations assuming that dissipation is due
to the non-affine displacement of particles give the cor-
rect exponent β ' 2.2 [9, 10]. Furthermore, they relate
the zero-shear viscosity, a macroscopic dynamical observ-
able, to a microscopic observable: the variance of the
non-affine velocity/displacement [9]. The latter is itself
related to the geometry of the contact network [10].

While most fluids shear thin, it was first shown by
Bagnold [15] that suspensions exhibit shear thickening
when the volume fraction φ is kept constant: their ap-
parent viscosity increases with the shear rate. However,
the conditions for such a property to emerge still remain
controversial [11]. In particular, as recently emphasized
[1], suspensions exhibit shear thinning when the confining
pressure P p is controlled and kept constant, a property
reminiscent of dry granular materials.

10−1 100 101 102 103 104

I/J

0.0

0.2

0.4

0.6

0.8

1.0

Γ
i/
∑

Γ
i

Γcont

Γdrag

Γlubr

Γfluid

10−1100 101 102 103 104
0.25

0.30

0.35

0.40

0.45

0.50

0.55

µ

FIG. 1: Fraction of the power dissipated by contact forces
(Γcont), viscous drag (Γdrag), lubrication forces (Γlubr) and
fluid viscosity (Γfluid), as a function of the ratio I/J for a
fixed value of the volume fraction (φ ' 0.78). Solid lines
are the best fits to the expression ciJ

J+αI2
, with ci as fitting

parameters, for the three last dissipation components. Inset:
Friction coefficent µ against I/J . Solid curve illustrates the
average µ.

In this letter, we use discrete element simulations of
non-brownian particles interacting with a continuum vis-
cous fluid to show that the rheology of suspensions at fi-
nite shear rate can be unified with the Newtonian quasi-
static limit. More precisely, Boyer et al. [1] have recently
shown that the rheology of a suspension in the zero-shear
limit can be rewritten as a frictional law of the form
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FIG. 2: Friction coefficient of the suspension µ = τ/P p as a
function of the particle volume fraction φ, for different val-
ues of I/J . The solid line is the best fit by Eq. 8. Inset:
numerical set-up and notations.

τ = µJ(J)P p and φ = φJ(J), where J = ηf γ̇/P
p is the

viscous number comparing viscous stresses to the confin-
ing pressure. In the inertial Bagnoldian regime, the flow
is characterized by the inertial number I =

√
ργ̇2d2/P p,

with a subsequent rheology of the form τ = µI(I)P p and
φ = φI(I). We show here that the contributions to the
dissipation can be added at fixed φ, which results into a
unique rheology τ = µ(K) and φ(K) controlled by the di-
mensionless number K = J +αI2, where α is a constant
of order 1 encoding the details of dissipative mechanisms.

Numerical model – We consider a two-dimensional sys-
tem constituted of ' 103 spherical particles of mass mi

and diameter di, with a ±50 % polydispersity. The shear
cell is composed by two rough walls, created by gluing
together two dense layers of grains, with periodic bound-
ary conditions along the direction x parallel to the walls.
The position of the walls is controlled to insure a constant
normal stress P p and a constant mean shear velocity γ̇.
The particle and wall dynamics are integrated using a
Verlet-algorithm. These discrete elements are coupled to
a density matched fluid, described as a slowly varying
continuum phase. In the steady state, the fluid presents
only variations along the transverse axis y. The velocity
uf (y) and the shear stress σf (y) profiles are determined
by averaging the equations governing the motion of the
fluid over x and over time t, as proposed in [16].

The particles are submitted to four types of forces. (i)
Upon contact, they interact with a viscoelastic force and
with a Coulomb friction for relative tangential motion
between particles at contact [17–19]. The model used
for particle-particle interactions is identical to that pro-
posed by Luding [19], with kn = 104 (normal spring con-
stant), kt = 0.5kn (tangential spring constant), βn = 6.70
(normal damping), βt = 4.74 (tangential damping), and
µp = 0.4 (coulomb friction). This corresponds to a resti-
tution coefficient e ' 0.9. (ii) They are submitted to a
viscous drag force given by:

fdrag
i = 3πηfdi(u

f (yi)− upi ) (1)

which involves the non-affine particle velocity compo-
nent, i.e. the fluid velocity uf minus the particle ve-
locity up. This is based on the assumption that the par-

ticle based Reynolds numbers Rep = ρ |up−uf |d
ηf

remains

small. (iii) When the fluid presents a stress gradient,
it exerts a resultant Archimedes force on the particle,
which reads farchi = (πd2i /4)∇ · σf . (iv) Finally, when
particles are separated by a lubrication film, we include
the extra-stress as an interparticle force mediated by the
fluid [21]:

f lubr,n
ij (hij) = −3

4
πηfdij

(upi − u
p
j ) · nij

(hij + δ)
(2)

f lubr,t
ij (hij) = −πηf ln

( dij
2(hij + δ)

)
(upi − u

p
j ) · tij(3)

where hij is the gap between the particles labelled i and

j, dij =
2didj
di+dj

is the effective grain diameter, nij and tij
are the normal and tangential unit vectors between the
grains. δ is a regularisation length, chosen equal to 10%
of particle diameter. In real suspensions, it can be either
related to the slip length, to the grain roughness or to
the scale over which grains are elastically deformed [20].
This lubrication interaction is cut for hij > (di + dj)/4.

As the fluid is described as a continuum phase in a
steady state, inertial effects and non-affine effects are en-
tirely ascribed to the particle phase. This means that the
density ρ only appears in the equation of motion for the
grains and include the added-mass effect.

As obtained for dense granular flows [17], the simu-
lation is insensitive to microscopic parameters provided
that the grains are hard enough. The state of the system
is then characterised by the two dimensionless numbers
I and J . In the following, we will rather use the Stokes
number I2/J = ργ̇d2/ηf and the rescaled confining pres-
sure I/J =

√
ρP pd/ηf .

Transition from viscous to inertial regime – Figure 1
presents simulation results obtained at the same volume
fraction φ ' 0.78 by varying the rescaled confining pres-
sure I/J . It compares the contributions to the dissipated
power of the different forces acting on the bulk of the
suspension. This dissipation is balanced by the energy
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FIG. 3: Simulated data. a): φ as a function of K (inset as a function of J). b): µ as a function of K (inset as a function of
I2). c): fτ as a function of φ (inset shows fp). All three figures are for various I/J with the same color coding as in Figure 2.
Solid lines corresponds to fits accordingly to Eqs. 6,7, fτ = µ/K and fp = 1/K.

bought through the boundary of the element of suspen-
sion considered. While the dissipation due to the drag
force is dominant at small I/J , the dissipation in the
contacts becomes dominant at large I/J and the system
resembles a dry granular flow (within the inclusion of
the added mass effect inside the density ρ). The system
therefore presents a transition from a viscous to an iner-
tial regime, controlled by the rescaled pressure. It can be
seen that the dissipation in the fluid, both in the pores
and in the lubrication films, gives a subdominant con-
tribution and vary like the contribution due to the drag
force. In the following, we will therefore focus on results
obtained without the lubrication forces.

Looking at the inset of Figure 1, one observes that the
friction coefficient µ defined as the ratio of the particle
shear stress τp and confining pressure P p remains con-
stant across the transition. This means that, at fixed φ,
the shear stress is controlled by pressure, with a multi-
plicative factor insensitive to the nature of the dissipation
mechanisms. Figure 2 shows the friction coefficient µ of
the system as a function of the volume fraction φ for dif-
ferent values of the number I/J . A good data collapse is
obtained, when I/J is changed over five decades, showing
that µ is sole function of φ. This suggests the existence of
a hidden universality underlying the transition between
regimes.

A single rheology across the transition – It has been re-
cently argued that trajectories are mostly controlled by
geometric effects close to the jamming point, and do not
depend much on the nature of the mechanisms dissipat-
ing energy [9]. This suggests that grain trajectories do
not vary much across the viscous/turbulent transition.
We therefore hypothesise that, for a given volume frac-
tion φ, the dissipation due to viscous effects and that due
to grain binary interactions can simply be added. Then,

particle shear stress and confining pressure can be writ-
ten as sums of linear (viscous) and quadratic (Bagnold)
terms in γ̇ [1, 8, 22, 23]:

τp = fτ (φ)
(
ηf γ̇ + αρd2γ̇2

)
, (4)

pp = fp(φ)
(
ηf γ̇ + αρd2γ̇2

)
, (5)

Although the parameter α a priori depends on φ, the best
fit of µ and φ, functions of I and J , rather give a constant
value α = 0.458 ± 0.007 (Fig. 3a,b). Indeed, we obtain
a collapse of all data when µ and φ are plotted against
K = J + αI2. Consistently, expressions (4) and (5) give
the two relations: φ = f−1p (1/K) and µ = fτ (φ)/fp(φ).
Following empirical expressions proposed for φ and µ as
functions of I or J in the cases of dry granular flows and
dense suspension respectively [1, 17, 22], we can general-
ize them using the number K as

φ(K) = φc − b
√
K, (6)

µ(K) = µc +
µF − µc

1 +
√
K0/K

. (7)

where φc = 0.8140± 0.0003 is the jamming volume frac-
tion. The constants b, µc, µF , and K0 are specific to the
considered system. Here we find, b = 0.42 ± 0.01, µc =
0.275± 0.001, µF = 0.49± 0.01 and K0 = 0.223± 0.008.
Combining the two constitutive laws we finally get

µ(φ) = µc +
µF − µc

1 +
√
K0b/(φc − φ)

. (8)

This expression is in good agreement with the data dis-
played in figure 2. Furthermore, as fτ = µ/K and
fp = 1/K, these two functions are predicted to diverge
close to the jamming point as (φc−φ)−2, as a consequence
of Eq. 6. This behavior is also very well supported by our
data, as seen in Figure 3c.
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We have run simulations in which lubrication interac-
tions between the grains are taken into account. They
do not affect the qualitative results described above but
slightly change the values of the constants. In particular,
the exponent of the diverging behavior of both functions
fτ and fp is unchanged. This contradicts the claim of [8]
that the divergence would be in (φc − φ)−1 when lubri-
cation forces are present.

Discussion – The above analysis shows a cross-over
from viscous to inertial flow at a Stokes number I2/J =
γ̇d2ρs/ηf ' 1/α. The suspension is therefore found to
shear-thicken when I2/J is comparable to or above this
value. In the experiments of Boyer et al., the maximum
value of the Stokes number can be estimated as 10−3.
This value is far below the inertial regime, and, consis-
tently, all their rheological data collapse when using J as
the single dimensionless parameter [1]. By contrast, Fall
et al. report in their experiments a cross-over between
the two regimes, at a Stokes number of 2 10−3 [11]. This
value is three to four orders of magnitude lower than the
predictions of our simulations. We hypothesise that this
effect may result from non-local effects, as the base flow
is heterogenous. The dominant influence of non-locality
has previously been observed before in other heteroge-
nous flows of dense suspensions [24], emulsions [25], and
granular systems [26–28]. Our set-up is insensitive to
non-local effects as all studied quantities are homoge-
nous over the shear-cell. Nevertheless, many flows are
heterogenous and it would be important to understand
non-locality in order to rationalize even these.

Newtonian fluids exhibit a transition from laminar to
turbulent flow controlled by the Reynolds number based
on the size of the flow and on the suspension viscosity. It
is unlikely that dilute or even moderately concentrated
suspensions would be an exception to this rule. As the
jamming transition is approached (φ→ φc), the suspen-
sion viscosity diverges so that the Reynolds number van-
ishes. The transition from the viscous to the inertial
regime in dense suspension is thereby of a different nature
than the transition from laminar to turbulent flow. In
the former, both the Newtonian and Bagnoldian regimes
are controlled by particle fluctuations with respect to
the affine field. These fluctuations are controlled by the
Stokes number, which is based on the grain diameter and
the fluid viscosity rather than the suspension viscosity.
Further studies are needed to investigate the transition
from the inertial regime to the turbulent regime when
the particle volume fraction is lowered.

In this letter, we have shown that the Newtonian rhe-
ology of suspensions can be unified with the Bagnoldian
shear-thickening regime for vanishing temperature. As
pointed out recently by Ikeda et al. [29], thermal and
athermal suspensions seem physically distinct, making
an unified description of glass and jamming transitions
unlikely. Future studies will have to explain the difference
in nature (if any) between mecanically induced fluctua-

tions (i.e. non-affine motion) at zero temperature and
thermal fluctuations.
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