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Physique et Mécanique des Milieux Hétérogènes,
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Sediment transport is studied as a function of the grain to fluid density ratio using two phase
numerical simulations based on a discrete element method (DEM) for particles coupled to a con-
tinuum Reynolds averaged description of hydrodynamics. At density ratio close to unity (typically
under water), vertical velocities are small so that sediment transport occurs in a thin layer at the
surface of the static bed, and is called bed load. Steady, or ‘saturated’ transport is reached when the
fluid borne shear stress at the interface between the mobile grains and the static grains is reduced
to its threshold value. The number of grains transported per unit surface is therefore limited by the
flux of horizontal momentum towards the surface. However, the fluid velocity in the transport layer
remains almost undisturbed so that the mean grain velocity scales with the shear velocity u∗. At
large density ratio (typically in air), the vertical velocities are large enough to make the transport
layer wide and dilute. Sediment transport is then called saltation. In this case, particles are able
to eject others when they collide with the granular bed, a process called splash. The number of
grains transported per unit surface is selected by the balance between erosion and deposition and
saturation is reached when one grain is statistically replaced by exactly one grain after a collision,
which has the consequence that the mean grain velocity remains independent of u∗. The influence
of the density ratio is systematically studied to reveal the transition between these two transport
regimes. Based on the mechanisms identified in the steady case, we discuss the transient of satura-
tion of sediment transport and in particular the saturation time and length. Finally, we investigate
the exchange of particles between the mobile and static phases and we determine the exchange time
of particles.

I. INTRODUCTION

After the pioneering works of Richardson [1], Rouse
[2] and Vanoni [3], transport and dispersion of impurities
suspended in turbulent flows, such as sand grains, dust,
bubbles or droplets, have received a renewed interest in
the last decade, both from the fundamental point of view
[4–6] and for its applications to planetology [7], cloud
physics[8] or geomorphology. In the later case, sediment
may be entrained, transported and deposited by water
flow or by wind. Then, gravity cannot be neglected as
transport generically takes place in a turbulent boundary
layer bounded by an erodible granular bed. Moreover,
transported particles are not passively advected by the
flow: they induce a negative feedback, which eventually
limits the erosion of the granular bed, leading to a steady
state in which erosion and deposition balance each other.

In such a homogeneous and steady situation, the fluid
flow can be characterised by a unique quantity: the shear
velocity u∗. The flux of sediments transported by the
flow, called the saturated flux and noted qsat, is an in-
creasing function of u∗ whatever the nature of the fluid.
For aeolian transport, there has been a great effort to
obtain the relation qsat(u∗) experimentally[9–19] using
both wind tunnels and atmospheric flows in the field,
numerically[20–22] and theoretically [10, 23–29]. Simi-
larly, quite a number of expressions for subaqueous bed-
load have been proposed, e.g. [30–37]. Most models are
based on the same dynamical mechanisms and differ only
by the approximation used to compute the particle tra-
jectories [38–42]. For this reason, experiments have been

performed to determine the saltating motion of individ-
ual particles under water [43–47] and in air [48–51].

Despite this wide literature, some fundamental aspects
of sediment transport are still partly understood. For
instance, the dynamical mechanisms limiting sediment
transport, and in particular the role of the bed disor-
der [52] and of turbulent fluctuations [53–60], remain a
matter of discussion. Also, derivations of transport laws
have a strong empirical or semi-empirical basis, thus lack-
ing more physics related inputs. Here we investigate the
properties of sediment transport using a novel numerical
description of particle-laden flows. In particular, we ex-
amine the transition from bed-load to saltation by study-
ing the influence of the grain to fluid density ratio.

The outline of the paper is the following. In section
II, we introduce the equations of motion for the grains
as well as the equations of hydrodynamics, emphasising
the coupling between the two. Then, in section III, we
detail the characteristics of saturated transport in the
two limiting cases: bed load (water) and saltation (air).
In section IV, we propose an interpretation of the simu-
lations based on simple transport models. We then use
these transport descriptions to derive and discuss out-
of-equilibrium transport and in particlar the the satura-
tion length and time (section V). We contrast this time
with the ‘exchange time’, which characterises the diffu-
sion of particles through the static/mobile interface. Fi-
nally, conclusions are outlined in the last section.
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II. TRANSPORT MODEL

A. Key ideas

We wish to model the transport of non-cohesive grains
by a flow, under gravity. Although a continuum two
phase (grains and fluid) modelling [61] is very appealing,
it is problematic by several aspects. (i) It postulates that
particles constitute an Eulerian phase, which means that
the particles crossing an arbitrary control volume have
almost the same velocity. In a homogeneous steady flow,
an Eulerian approach immediately predicts that particles
are transported along the direction parallel to the bed
and to the flow – vertical velocities are ignored. How-
ever, at least for saltation, they are essential. (ii) Such a
continuum approach ignores the discrete and disordered
nature of the granular phase. However, these proper-
ties are essential close to the transport threshold, below
which no grain can be entrained. For instance, such mod-
els incorrectly predict the threshold shear velocity and in
particular its strong decrease with the grain Reynolds
number. To avoid these issues, we use here a discrete
element method for the particles [20, 21, 62–64].

Solving hydrodynamics around grains is technically
feasible only if the size of the domain (the number of
grains) and the time over which the simulation is run are
very small. The idea introduced here is thus to use a con-
tinuum description of hydrodynamics, averaged at a scale
larger than the grain size. This means that the feedback
of the particles on the flow is treated in the mean field
manner.

This method allows one to perform very long numeri-
cal simulations (typically 1000

√
d/g, using large spatial

domains (typically 1000 x 15 grains), while keeping the
complexity of the granular phase. We will now detail the
different ingredients of the model. To avoid the formation
of ordered structures in the grain packing, we have used a
slightly polydisperse sample (20%). For the sake of sim-
plicity, we only give here the equations for the strictly
monodisperse case (grains of diameter d).

B. Forces on particles

1. Equations of motion

The grains have a spherical shape and are described
by their dimensionless position vector ~r, velocity ~v and
angular velocity ~ω (see table I for units). A given grain
labelled p inside a fluid obeys the dimensionless equations
of motion,

m
d~up

dt
= −m

(
1− ρf

ρp

)
g~ez +

∑

q

~fp,q + s−1 ~fpdrag

Imd2∂t~ω
p =

1

2

∑

q

~np,q × ~fp,q (1)

where ~ez is the vertical unit vector, I = 1/10 is the nor-
malized moment of inertia of a sphere, fp,q is the contact
force with grain q, ~np,q = (~rq−~rp)/|~rq−~rp| is the contact

direction and ~fpdrag is the drag force.

2. Contact forces

Following a standard approach for the modeling of
contact forces in MD codes, see [65–68] and references
therein, we consider the case where grains in contact are
subject to (i) normal repulsion, (ii) tangential friction
and (iii) energy dissipation. For simplicity, the normal
repulsion is given by a spring-like elastic force, which is a
good approximation for very small contact deformations.
The tangential friction is modeled by a tangential elastic
force proportional to the relative tangential displacement
between the grains. The moment of this force can in-
duce particle rotation. Whenever the tangential exceeds
a given fraction of the normal force, defined by a micro-
scopic friction coefficient, the contact ‘slides’ (Coulomb
friction law). Finally, energy dissipation at the contact is
ensured by adding a damping term to the force, propor-
tional to the relative contact velocity. This term accounts
for the restitution coefficient e, i.e. the ratio between
grain velocities after and before a collision.

3. Drag force

We hypothesise here that the drag force exerted by
the fluid on a moving grain depends only on the differ-
ence between the grain velocity ~up and the fluid velocity
~u around it. This assumption is valid if the turbulent
fluctuations of the flow itself can be neglected in front
of those induced by the grain. Introducing the particle
Reynolds number Ru based on this fluid-particle velocity
difference Ru = |~u−~up|d/ν, the drag force can be written
under the form

~fpdrag =
π

8
ρfd

2Cd(Ru)|~u− ~up|(~u− ~up) (2)

where Cd(Ru) is the drag coefficient. We use the follow-
ing convenient phenomenological approximation[? ]:

Cd(Ru) =
(√

C∞d +
√
Rcu/Ru

)2
(3)

where C∞d ' 0.5, is the drag coefficient of the grain in
the turbulent limit (Ru →∞), and Rcu ' 24 is the tran-
sitional particle Reynolds number above which the drag
coefficient becomes almost constant. The lift force and
the corrections to the drag force (Basset, added-mass,
etc) are neglected.
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C. Hydrodynamics

Hydrodynamics is described by the Reynolds averaged
Navier-Stokes equations:

ρf (∂tui + uj∂jui) = −∂ip+ ρfgi + ∂jτ
f
ij − Fi. (4)

In this expression, τfij is the total stress tensor resulting

both from viscous diffusion of momentum (viscous stress)
and transport of momentum by turbulent fluctuations
(Reynolds stress). Fi is the body force exerted by the
grains on the fluid. It reflects the turbulent fluctuations
induced by a moving grain, which can be non-local. As
we focus in this paper on steady homogeneous sediment
transport, we hypothesise that the influence of a given
grain remains localised in a thin horizontal region and
that the typical horizontal distance over which the flow is
disturbed is comparable to the distance between moving
grains. Fx(z) can then be obtained by averaging the
horizontal component of the drag fpdrag x acting on all the
grains moving around altitude z, in a horizontal layer of
area A and of thickness dz:

Fx(z) =
1

Adz

〈 ∑

p∈{z;z+dz}
fpdrag x(z)

〉
. (5)

The 〈.〉 denote here the ensemble averaging. In order to
gain statistics, we make use of the steady character of
the studied situation, and also use time averaging. For
simplicity, we write τf = τfxz the fluid shear stress. The
horizontal component of the Reynolds equation reduces
to ∂zτ

f = Fx, which can be integrated in

τf (z) = ρfu
2
∗ − τp(z) (6)

where we have introduced the shear velocity u∗ and the
grain borne shear stress τp thus defined by

τp(z) ≡
∫ ∞

z

dz′Fx(z′) =
1

A

〈 ∑

p∈{z′>z}
fpdrag x(z′)

〉
. (7)

In order to relate the fluid borne shear stress to the
average velocity field, we adopt Prandtl’s turbulent clo-
sure [69]. Introducing the turbulent mixing length `, we
write

τf = (ν + `2|∂zux|)∂zux (8)

We know that ` should vanish below some critical
Reynolds number Rc and should be proportional to the
distance to the ground z, far above the transport layer.
We have used a phenomenological differential equation
to formulate the mixing length

d`

dz
= κ

[
1− exp

(
−
√

1

Rc

(
u`

ν

))]
(9)

where κ ' 0.4 is von Karman’s constant. Here Rc is fixed
to 17. The ratio u`/ν is the Reynolds number based on

TABLE I: Units used in the model, expressed in terms of the
grain density (ρp), fluid density (ρf ), gravity (g) and mean
grain diameter (d)

General

length l d

acceleration g

time t
√
d/g

velocity v
√
gd

Particles

angular velocity ω
√
g/d

mass m π
6
ρpd

3

moment of inertia I md2

force f mg

contact stiffness k mg/d

damping constant γ m
√
g/d

Fluid

shear stress τ (ρp − ρf )gd

the mixing length. Note that any other function than
the exponential can be used, provided it has the same
behaviour in 0 and −∞ (see appendix for more details).
This formulation allows us to define ` both inside and
above the static granular bed. Interestingly, there is no
need to define explicitly an interface between static and
mobile zones.

D. Dimensionless numbers

As must be the case in any numerical simulation, the
equations are made dimensionless. Gravity gives the rel-
evant scale for forces. More precisely, it only appears
in the grain equation of motion under the form of a

buoyancy-free gravity
(

1− ρf
ρp

)
g. The choice of the typ-

ical length scale is less obvious. On the one hand, the
contact forces and the trapping of particles at the sur-
face of the bed do not depend on the fluid properties:
the grain diameter d is thus the relevant length scale
for the static grains. On the other hand, one can build
a drag length from hydrodynamic, which is the length
needed to accelerate a grain to the fluid velocity. This
inertial length scales as

ρp
ρf
d and is the relevant length

scale for the mobile grains. This means that the density
ratio ρp/ρf cannot be eliminated and is a true dimen-
sionless parameter of the problem. We shall see below
that this density ratio is the parameter controlling the
transition from bed load to saltation. We have chosen d
as a reference length scale, and Table I summarises all
the parameters used to make the problem dimensionless
in our code. The second control parameter is the shear
velocity u∗ imposed far from the bed, or equivalently the
shear stress ρfu

2
∗. Its dimensionless counterpart is the
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Shields number [70], defined by

Θ =
ρfu

2
∗

(ρp − ρf )gd
, (10)

which encodes the strength of the flow. Making
the viscosity non-dimensional, we obtain a grain-based
Reynolds number

Re =
d

ν

√(
ρp
ρf
− 1

)
gd (11)

Physically, it determines the hydrodynamic regime at the
scale of the grain. The figures presented in this paper are
obtained for the same particle Reynolds number Re = 10.
This value is sufficiently large to ensure that the grain
diameter is much larger than the viscous sub-layer size.
As a consequence, the flow is fully turbulent at all the
scales of the problem. It becomes viscous below the first
layer of static grains.

Dynamics at the scale of the contact between grains is
controlled by different dimensionless numbers: the resti-
tution coefficient e, the friction coefficient µ and the con-

tact duration tc = π
√

g
(2k−γ2)d . We have checked that

the values given to these parameters do not change qual-
itatively the results.

III. SATURATED TRANSPORT

A. Qualitative results

Transport equations are integrated until a statistically
steady homogeneous state is reached. Since we are pri-
marily interested in the transition from bed load to salta-
tion, we have varied the Shields number within the range
Θ = 0.003–0.7 (a range which contains the threshold
Θd, see below) and the density ratio within the range
ρp/ρf = 2–2000.

Once transport has reached its saturated state, the
general picture is as follows: at small density ratios
ρp/ρf ' 2, which is the typical value underwater, the
transport is confined at the surface, within a couple grain
diameters. The dense and thin transport layer is charac-
teristic of the bed load regime. On the contrary, at a large
density ratio ρp/ρf ' 2000, which is typical of aeolian
situation, the transport layer becomes wide and dilute,
extending over several tens of grain diameters (Fig. 1).
This is typical of the saltation regime. Within the very
same numerical model, we are thus able to reproduce the
basic characteristics of transport in both limits.

B. Saturated flux

Steady and homogeneous sediment transport is basi-
cally quantified by the volumetric saturated flux qsat, i.e.

-3

-2

-1

0

1

2

3

4

5

6

10−3 10−2 10−1

z
/
d

ϑ(z)/
√
gd
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FIG. 1: Transport profiles: volume flux density ϑ(z) (solid
lines) and volume fraction φ(z) (dashed lines) for water (red)
and air (green).

the volume of the particles (at the bed density) crossing
a vertical surface of unit transverse size per unit time.
It has the dimension of m2/s. In the simulations, we
compute it as

qsat =
1

Aφb

π

6
d3
∑

p

up, (12)

where φb is the volume fraction of the static bed. A key
issue is the dependence of qsat on the shear velocity or,
equivalently, on the Shields number Θ. In order to high-
light this dependence, figure 2 shows the saturated flux
rescaled by u2∗ in both cases (water and air). In agree-
ment with experimental observations [19, 30–34, 37, 71–
74], we find that qsat scales asymptotically as Θ (or u2∗)
for saltation, while qsat scales as Θ3/2 (or u3∗) underwater
(Fig. 2). Importantly, most models of aeolian transport
miss the influence of the negative feedback of transport
on the flow. Therefore, they do not give the correct scal-
ing, predicting qsat ∝ u3∗. We unravel below, in the same
numerical model, a fundamental difference between the
two transport regimes, which correspond to different un-
derlying dynamical mechanisms.

Figure 2 reveals the existence of a threshold shear ve-
locity below which the flux vanishes. More precisely, we
define the dynamical threshold Shield number Θd from
the extrapolation of the saturated flux curve to 0, which
gives in our case Θd ' 0.12 for water (ρp/ρf = 2) and
Θd ' 0.004 for air (ρp/ρf = 2000), respectively. These
values are consistent with experimental ones within a
factor of 2. A refined tuning of these values could be
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FIG. 2: Rescaled saturated flux qsatρp
√
g/d/ρfu

2
∗ versus the

rescaled shear velocity
√

Θ for water (a) and air (b). For air
the saturated flux scales asymptotically as Θ while for water
it follows Θ3/2. Full lines are the predictions of the simplified
models for bed load (Eq. 24) and saltation (Eq. 30), given in
the text.

achieved by adjusting the value of Rc and by perform-
ing 3D simulations. Figure 3 shows the dependence of
Θd with the density ratio ρp/ρf . It is usually assumed
that the Shields number compares directly the horizontal
force exerted on a surface grain to its weight, in which
case the threshold Shields number could be interpreted as
an effective friction coefficient, within a numerical factor.
If this was true, Θd would be a constant, independent of
ρp/ρf . However, one observes that Θd decreases rapidly
with the density ratio.

0.001

0.01

0.1

1 10 100 1000 10000

Θ
d

ρp/ρf

FIG. 3: Dynamical threshold Shield number Θd as a function
of the density ratio ρp/ρf .

C. Transport layer

Figure 4 presents the vertical profiles of the flux den-
sity, i.e. the flux per unit height ϑ(z) (such that qsat ≡∫
ϑ(z)dz) for different shear velocities. It shows that bed

load and saltation mainly differ by the vertical charac-
teristics of the transport layer. At small density ratios
the motion of grains is confined within a thin layer of few
grain diameters (Fig. 4 a). Most of the bed load occurs at
about one grain diameter above the static bed and the
flux density profile decays symmetrically on both sides
of this maximum. By contrast, for large density ratios,
grains experience much higher trajectories and the trans-
port layer is much wider. Figure 4b shows that the flux
density still presents a maximum close to the static bed
but decreases exponentially with height.

These qualitative observations can be formalized by
defining a characteristic transport layer thickness λ from
the flux density profile ϑ(z) as:

λ =

(∫∞
0

(z − z̄)2 ϑ(z)dz

qsat

)1/2

(13)

where z̄ = 1
qsat

∫∞
0
z ϑ(z)dz gives the altitude of the trans-

port layer centre. If the flux profile decreases exponen-
tially, λ is the characteristic distance over which this de-
crease takes place. The variations of λ with the shear
velocity are presented in the insets of figure 4. For un-
derwater bed load, the size of the transport layer is about
one grain diameter, gently increases with the shear ve-
locity from λ ' d/2 to λ ' d. For aeolian saltation the
transport layer is indeed wider, with a characteristic size
λ ' 50d roughly independent of the shear velocity.
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FIG. 4: Vertical profiles of the sediment flux density ϑ(z) for

different values of the shear velocity ratio
√

Θ/Θd, in water
(a) and air (b). The reference height z = 0 denotes the posi-
tion of the bed surface. Insets: characteristic transport layer
thickness λ as function of the shear velocity.

Figure 5 shows the dependence of the transport layer
thickness λ with the density ratio. At large density ratio,
λ is observed to scale with the drag length

ρp
ρf
d which is

the length that naturally emerges when the motion of
the grains is dominated by the balance between inertia
and hydrodynamical drag. This length is thus expected
to control the characteristic hop height and hop length,
which naturally leads to wider transport layers for lighter
fluids.

Nevertheless, the transition from bed load to saltation
is slightly more complex as λ does not strictly obey the

0.1

1

10

100

1 10 100 1000 10000
ρp/ρf

λ/d
〈(wp)

2〉/gd

FIG. 5: Characteristic transport layer thickness λ (•) as func-
tion of the density ratio for Θ = 2Θd. At small density ratios
it is limited by the grain size (dashed line), while for large
ones it scales as ρp/ρf (solid line). The averaged vertical en-
ergy per grain 〈(wp)2〉/g (◦) is also shown to illustrate the
dynamical origin of λ (see text).

simple scaling law λ ∝ ρp
ρf
d. In sub-aqueous conditions,

the transport layer thickness is actually limited by the
grain size λ ∼ d, which is the characteristic length scale
for contact forces and geometrical trapping of particles
[76, 77]. The hop height can be estimated from the par-
ticle vertical velocity wp using the ballistic approxima-
tion, neglecting the vertical component of the drag force.
Under this hypothesis, one expects the hop height to in-
crease like (wp)2/g. Figure 5 shows the dependence of the
average squared vertical velocity 〈(wp)2〉 on the density
ratio. One observes that the transport layer thickness λ is
determined by the hop length 〈(wp)2〉/g for ρp/ρf >∼ 10.
Below this cross-over value, the transport layer thickness
is given by the grain diameter d, although the trajec-
tories are almost horizontal. The transition from bed
load to saltation therefore takes place when the vertical
velocities of the particles are sufficiently large for these
particles to escape the traps formed by the grains of the
static bed. Formally, the criterion of this transition can
then be written as

√
〈(wp)2〉 ' √gd.

IV. INTERPRETATION

A. A simple transport model for bedload

We propose here a simple model of bed load inspired
from Bagnold’s original ideas [32]. We hypothesise that
moving grains are confined in a thin layer of thickness on
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the order of d. As the average particle vertical velocity is
very small, grain hop heights are typically much smaller
than d (Fig. 5), which means that the vertical motion
of the grains can effectively be neglected. The saturated
flux can then be decomposed as the product of the num-
ber n of transported grains per unit area by the mean
grain horizontal velocity ūp:

qsat =
1

φb

π

6
d3nūp. (14)

In the numerical simulations, we compute n and ūp as

n =

(∑
p up

)2

A
∑
p u

2
p

, (15)

ūp =

∑
p u

2
p∑

p up
, (16)

where A is the surface area. Notice that these definitions
are consistent with the definition of qsat (12). If all grains
were moving at the same velocity, then n and up would
indeed be respectively the density of moving grains and
their velocity.

We write that the grain born shear stress is propor-
tional to the moving grain density n and to the drag
force acting on a grain moving at the average velocity ūp

due to a flow at the velocity u:

τp = nfd with fd =
π

8
C∞d ρf (u− ūp)2 d2. (17)

Here, for the sake of the argument, we neglect the de-
pendence of the drag coefficient on the particle Reynolds
number (see Eq. 3). A key assumption now is that grains
are in a steady motion, which means that the drag force
fd balances a resistive force due to friction, to collisions
with the bed, and to viscous lubrication forces. These
different dissipative mechanisms can be modelled as an
overall effective friction force characterized by a friction
coefficient µd:

fd =
π

6
µd(ρp − ρf )gd3. (18)

We can furthermore express the fluid velocity ud at the
transport threshold by assuming that the hydrodynamic
drag exerted on a static grain (up = 0) has to overcome
a static friction, characterized by a coefficient µs:

ud =

√
4µs

3C∞d

(
ρp
ρf
− 1

)
gd . (19)

For later use, we define the corresponding threshold
Shields number Θd as

Θd =
ρfu

2
d

(ρp − ρf )gd
. (20)

Combining the above equations shows that the velocity
difference between the grain and the flow is constant:

ūp = u−
√
µd
µs
ud (21)

We now assume that the transported grains do not dis-
turb the flow. Then, the flow velocity around grains
u must be proportional to the shear velocity, so that
u/ud =

√
Θ/Θd. One therefore deduces:

ūp = ud

(√
Θ

Θd
−
√
µd
µs

)
. (22)

This predicts that the grain velocity does not vanish at
the threshold, if friction is lowered during motion. The
velocity at threshold ud(1−

√
µd/µs) can be interpreted

as the velocity needed by a grain to be extracted from
the bed and entrained by the flow.

Saturation is reached when the fluid shear stress
reaches the transport threshold at the surface of the static
bed i.e. when τp = ρu2∗−τd. As consequence, the number
of transported particles per unit area is solely determined
by the excess shear stress:

n =
ρu2∗ − τd

fd
=

Θ−Θd
π
6µdd

2
. (23)

Finally, the saturated flux reads:

qsat =
udd

φbµd
(Θ−Θd)

(√
Θ

Θd
−
√
µd
µs

)
. (24)

Inserting the expression (19) of ud, one gets the scaling
law for the flux at large Θ:

qsat ∝ Θ3/2

√(
ρp
ρf
− 1

)
gd3 . (25)

B. A simple transport model for saltation

We now proceed in a similar manner for the aeolian
saltation regime, following ideas initially proposed by
Owen (1964) and Ungar & Haff (1987). In this regime,
the motion of the grains is not confined to a thin layer
at the surface of the bed. We consider an average grain
trajectory, in which the particle takes off the bed with
the horizontal velocity ūp↑, and comes back to it with a

velocity ūp↓, after a hop of length a. Some momentum is
extracted from the wind flow by the grains to perform
their jumps, so that the particle shear stress writes

τp = ρpφb
ūp↓ − ū

p
↑

a
qsat. (26)

Now we use again the decomposition of the saturated
flux as the product of the grain density n and the grain
velocity ūp (Eq. 14). Saturated transport corresponds to
the balance τp = ρfu

2
∗ − τd so that n still has the same

form as in the bed-load case:

n =
(ρp − ρf )gd

fd
(Θ−Θd) , (27)
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FIG. 6: Flow velocity vertical profiles at different shear veloc-
ity ratios

√
Θ/Θd for water (a) and air (b). Insets: velocity at

z = d and z = 20d respectively, as a function of the rescaled
shear velocity. The dashed line in the upper inset corresponds
to the fit u ∝ u∗.

but with a different effective drag force fd, not related to
friction anymore but to grain velocities. As the grain hop
length can be related to the grain velocity as a ∝ ūp↑w̄

p
↑/g

(balistic approximation), we can effectively write

fd ∝
π

6
d3ρpg

ūp↓ − ū
p
↑

w̄p↑

ūp

ūp↑
. (28)

Now, for saltation, steady transport also implies that
the number of grains expelled from the bed into the flow
exactly balance those trapped by the bed, i.e. a replace-
ment capacity equal to one. Due to the grain feedback on
the flow, in contrast with bed load, grains in the trans-
port layer feel a flow independent of the wind strength
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z 0
/
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ρp/ρf
2
5
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2000

FIG. 7: Rescaled hydrodynamical roughness length as func-
tion of the shear velocity for different density ratios. Solid
lines are the predictions based on the focal point assumption
(Eq. 31).

(see Fig. 6 (b) below) and new moving grains thus come
only from high energy bed collisions. Since the number of
ejected grains is function of the impact energy (or equiv-
alently on the impact velocity), the mean grain velocity
ūp must be constant, independently of the shear velocity,
scaling with ud:

ūp ∝ ud. (29)

From this argument, it follows that all particle surface
velocities (ūp↓, ū

p
↑, w̄

p
↑) also scale with ud, so that fd is

also a constant. Finally, the scaling law followed by the
saturated flux becomes,

qsat ∝ (1− ρf/ρp)udd (Θ−Θd) . (30)

C. Comparison with simulations

The above simple models suggest simple test to investi-
gate the dynamical mechanisms in the DEM simulation.
(i) Is saturation of transport due (or not) to the negative
feedback of moving grains on the fluid? (ii) Do we re-
cover the linear relation between the grain density n and
the excess Shield number Θ−Θd, whatever the transport
rgime. (iii) Does the mean grain velocity up depend (or
not) on the shear velocity?

1. Grain feedback on the flow

The information of the feedback for the moving grains
on the fluid flow is formally encoded in the flow roughness
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FIG. 8: Linear relation between the rescaled number of trans-
ported grains per unit area and the rescaled excess of shear
stress for different density ratios.

length z0. However, it can first be qualitatively under-
stood from the shape of the flow velocity profile inside
the transport layer (Fig. 6). For bed load, as shown in
the inset of Fig. 6 (a), the flow velocity at z ' d, where
most of transport takes place, increases with the shear
velocity. This indicates that the flow is barely disturbed.
In contrast, for aeolian transport (Fig. 6 (b)) the flow
velocity is strongly affected by the motion of grains as
it becomes almost independent of the wind in the region
z <∼ 20d, which accounts for most of the transport layer.

The data of the hydrodynamical roughness length z0
show a similar, or rather more complete, picture (Fig. 7).
In the saltation regime the roughness length increases
with the shear velocity as a result of grain feedback,
which can be modeled from the existence of a focal point
where u = Uf at z = Hf independently of u∗ (Fig. 6 b),
and above which the flow velocity recovers its log profile
u = u∗/κ ln(z/z0). This gives

z0 ' Hf exp (−κUf/u∗). (31)

This expression fits rather well the increase of z0 for
stronger winds, when the density ratio ρp/ρf is large
enough (Fig. 7). Typically below ρp/ρf ' 10, Eq. 31
does not reproduce the data anymore. This is consistent
with the absence of a focal point in the bed load regime
(Fig. 6 a). Also, in the small ρp/ρf limit, the roughness
length remains very small (substantially smaller than d).

2. Number of transported grains and average grain velocity

From expressions (15) and (16), we can compute the
number of transported grain per unit area and the mean
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FIG. 9: Rescaled mean grain velocity as function of the
rescaled the shear velocity for different density ratios. Full
lines show the analytical prediction given in the text for the
two limiting cases: water (Eq. 22) and air (Eq. 29).

grain horizontal velocity as a function of the shear veloc-
ity of the flow. Figure 8 shows a linear relation between
n and Θ − Θd for both bed load and saltation. This is
consistent with the predictions of the above models. In-
terestingly, the friction coefficient µd, defined from the
proportionality factor (see Eq. 23), has the same value
' 1 in both cases. This suggests that dissipation due
to collisions of the moving grains with the bed plays the
same role in both transport regimes.

The dependence of the mean grain velocity ūp is also
fully consistent with the picture emerging from the sim-
ple models. As shows in Fig. 9, ūp increases linearly with√

Θ/Θd for bed load (Eq. 22) while it remains roughly
constant for aeolian saltation (Eq. 29). Interestingly, the
different curves shown in Fig. 9 cross at Θ = Θd. In
other words, the grain velocity at the transport thresh-
old scale on

√
gd(ρp/ρf − 1), with a prefactor slightly

smaller than unity, whatever the transport regime. This
common behaviour between bed-load and saltation re-
sults from the fact that the negative feedback of transport
on the flow disappears at the threshold, as n vanishes.

Fitting the grain density and the mean grain velocity
to the simple model of bedload, one can extract the ef-
fective friction coefficients µd and µs. The static friction
coefficient µs turns out to be ' 4 times larger than the
dynamical friction coefficient µd. This means that the
motion is lubrified by the fluid once grain are entrained.
Therefore, the grain velocity at the threshold remains
finite (but n vanishes).
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V. SATURATION TRANSIENT

Beyond the properties of steady and homogeneous
transport, we address in this section the time and length
scales involved in the relaxation of the sediment flux to-
ward its saturated value, which are relevant in the con-
text of pattern formation [78–83]. We furthermore em-
phasize the difference between the saturation time and
the exchange time.

A. Saturation length and time

Whatever the transport regime, the saturation tran-
sient is controlled by two mechanisms. On the one hand,
bed erosion or deposition must take place to adapt the
number of transported grains to the flow velocity. On
the other hand, grains must be accelerated by the flow
to their asymptotic velocity.

The authors have addressed the case of saltation in
a series of articles, starting from a controversy between
us [79, 87, 88] and resolving it [89]. In summary, the
horizontal acceleration of a grain entrained by the wind
is governed by the equation of motion:

dup

dt
=

3

4

C∞d ρf
ρpd

(u− up)2. (32)

Contrarily to bed load, in the saltation regime, dissipa-
tion only takes place during collisions and not through
a permanent friction on the static bed. The only length
scale in this equation is the so-called drag length

ρp
ρf
d. As

a consequence, the relaxation of the particle velocity to
the fluid velocity occurs over a length which varies as

Lsat ∝
ρp

C∞d ρf
d, (33)

independently of the wind speed, with a proportionality
factor that depends on the restitution coefficient e[73].
Except in the vicinity of the transport threshold, the
length over which the number of grains transported re-
laxes to its saturated state is much shorter than the drag
length – it decays as u−2∗ . Therefore, the overall satu-
ration length is proportional to the drag length, as con-
firmed by direct measurements [84].

The case of bed-load is still under debate [37, 52, 82].
We derive here saturation time and the saturation length
in the simple bed-load model detailed above. As the mov-
ing grains form a surface layer of thickness d, the number
of moving particles per unit area adapts immediately to
a change of shear velocity. By contrast, the grain veloc-
ity relaxes to its asymptotic value with a characteristic
time. This is what gives the saturation time. Neglecting
for the sake of simplicity the dependence of the drag co-
efficient on the particle Reynolds number, the horizontal
component of the grain equation of motion reads:

dup

dt
=

3C∞d ρf
4ρpd

[
(u− up)2 − µd

µs
u2d

]
. (34)

Linearising this equation around the asymptotic value,
we obtain the following expression for the saturation
time:

Tsat =

√
µs
µd

2ρpd

3C∞d ρfud
. (35)

Using expression (19) for ud and typical values for the

various parameters, we get Tsat on the order of few
√
d/g.

The saturation length is then the length over which the
grain moves during Tsat at velocity ūp:

Lsat =
2

3

ρpd

C∞d ρf

(√
µs
µd

u

ud
− 1

)
. (36)

Inserting again typical numbers in this expression, we
get, for u close to ud, a value for Lsat on the order of few
grain diameters. This is consistent with indirect mea-
surements of the saturation length based on the initial
wavelength of sub-aqueous ripples [82]. Preliminary sim-
ulations of transport over a sinusoidal sand bed also con-
firm this order of magnitude.

B. Exchange time vs saturation time

An important problem that cannot be tackled using
the simple transport model presented here (or any Eule-
rian continuous model) is the exchange between the mo-
bile and the static phases. Indeed, such a model does
not aim to describe the lagrangian pathes of individual
grains. In particular, recent studies have focused on the
characteristic time a given grain spend in the transport
layer before being trapped by the bed [37, 52, 82]. This
time, noted Tex hereafter, is either called the deposition
time or the exchange time. It is relevant in geology as
it is reflects the time scale associated with storage and
reworking of sediments. The residence time should a pri-
ori not be confused with the saturation time. Imagine
for instance the case where all the grains in the transport
layer would move with a uniform and perfectly horizon-
tal velocity. Then there would be no exchange with the
static phase and Tex would be infinite, although transport
could reach saturation after a very short time. Despite
this conceptual difference, the formalism proposed in [52]
leads to the identity between the exchange time and the
saturation time.

Using our granular based transport simulations, we ad-
dress here this issue for bed load (ρp/ρf = 2) by tracking
all grains with velocities above a certain value at t = 0.
For the sake of the discussion, we have chosen this value
to be

√
gd/2, which allows us to determine the grains in-

side the transport layer at this initial time. Noting this
particle ensemble E , we define the density nt of trans-
ported grains at time t = 0 that remains in the transport
layer after a time t:

nt =

(∑
p∈E up

)2

A
∑
p∈E u

2
p

, (37)
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FIG. 10: (a) Time decay of the fraction of grains with an ini-
tial velocity above

√
gd/2 that remain in the transport layer,

for different shear velocities. The solid line is the exponential
fit (Eq. 38) of the data for

√
Θ/Θd = 1.6 (•). Panels (b) and

(c) respectively show the ratio of the asymptotic to initial
value and the characteristic exchange time, as a function of
the rescaled shear velocity.

The time evolution of nt in our numerical simulations is
displayed in Fig. 10 (a). It can be seen that nt(t) follows
an exponential relaxation with time

nt(t) = (n0 − n∞) exp (−t/Tex) + n∞, (38)

where n0 and n∞ are the initial and asymptotic values,
respectively. As the grains that do not move any-more
have been exchanged with the static phase, the relaxation
time of nt is by definition the exchange time Tex.

When analyzed for different shear velocities, the frac-
tion of grains re-entrained in the flow after being trapped
by the bed, which is given by the ratio n∞/n0 (Fig. 10

(b)), weakly depends on
√

Θ, except that it seems to tend
to zero at the threshold. It is reasonable in that case
that all transported grains are eventually trapped by the
surface and replaced by new ones. The exchange time is
also roughly constant, with a mean value Tex ' 100

√
d/g

(Fig. 10 (c)). This time is larger by two orders of magni-
tude than the saturation time. This means that exchange

between the bed and the transport layer is not the dom-
inant mechanism for the relaxation of the sediment flux
towards saturation.

VI. CONCLUSIONS

The aim of this paper was to present a novel numerical
approach for sediment transport based on a discrete el-
ement method (DEM) for particles coupled to a contin-
uum Reynolds averaged description of hydrodynamics.
We have studied the effect of the grain to fluid density
ratio ρp/ρf and showed that we can reproduce both (sub-
aqueous) bed load at ρp/ρf close to unity, where trans-
port occurs in a thin layer at the surface of the static
bed, and (aeolian) saltation at large ρp/ρf , where the
transport layer is wider and more dilute.

We have studied the mechanisms controlling steady, or
saturated transport. In the bed load case, saturation is
reached when the fluid borne shear stress at the interface
between the mobile grains and the static grains is reduced
to its threshold value. The number of grains transported
per unit surface is therefore limited by the available mo-
mentum at the bed surface. However, the fluid velocity
in the transport layer remains almost undisturbed so that
the mean grain velocity scales with the shear velocity u∗.
In the saltation case, particles in motion are able to eject
others when they collide with the static bed, and satura-
tion is reached when one grain is statistically replaced by
exactly another one after collision. As a consequence, the
mean grain velocity scales on the shear velocity thresh-
old ud, independently of u∗. This provides evidence for
a strong negative feedback of the moving grains on the
flow within the transport layer, where the wind velocity
is reduced. In both bed load and saltation regimes, the
number of grains transported per unit area is found pro-
portional to the distance to threshold Θ − Θd, with an
identical prefactor on the order of 1/d2.

We have systematically varied the density ratio in or-
der to reveal the transition between these two transport
regimes. This is also relevant for sediment transport in
extraterrestrial atmospheres (e.g. Mars, Venus and Ti-
tan) [81, 85, 86]. We have shown that the properties of
bed load transport are observed when s <∼ 10), whereas
those of aeolian saltation are well established when ρp/ρf
is larger than a few hundred. We have finally discussed
the saturation transient of sediment transport. Based on
the mechanisms identified in the steady case, we have
derived expressions for the saturation time and length in
the two regimes. In the bed load case, we have also shown
that the exchange time, which reflects the time scale as-
sociated to exchange of particles between the mobile and
static phases is two orders of magnitude larger than the
saturation time.

This study could be continued in different directions.
First, it would be interesting to look at the case where
the bed is non erodible. This situation has been experi-
mentally investigated in the aeolian regime [90], showing
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a much wider transport layer λ, and new scaling laws
for λ, the roughness z0 and the flux qsat as a function of
u∗. Further work should also be done to perform direct
measurements of Lsat and Tsat. However, the study of in-
homogeneous or unsteady situations requires a finer im-

plementation of the model, especially for averaging pro-
cedures. A third axis is to take into account the turbulent
fluctuations and to address the case of suspended trans-
port [91].
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