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In this supplementary part, we formulate the technical framework of the Reynolds aver-
aged hydrodynamical description of a turbulent flow over a wavy bottom that we use in
the main paper. We also relate it to a simplified depth averaged description. Through
linearising the equations in the limit of bedforms of vanishing amplitude, we determine
the different regimes and the dominant dynamical mechanisms at work in each of them.
finally, the role of secondary parameters in the bifurcation diagram for antidunes is
shown.

1. Hydrodynamical descriptions

1.1. Reynolds averaged description

We consider a turbulent flow over a wavy bed. Following Reynolds’ decomposition be-
tween average and fluctuating (denoted with a prime) quantities, the equations governing
the mean velocity field ui can be written as:

∂iui = 0, (1.1)

Dtui = ∂tui + uj∂jui = −∂jτij − ∂ip, (1.2)

where p is the pressure and τij = u′
iu

′
j is the Reynolds stress tensor (Reynolds 1874).

The density factor ρ is taken as unit. We use the same description of turbulence over
a relief as in Fourrière et al. 2010. The anisotropy of the Reynolds stress and the lag
between the shear rate and the resulting turbulent stress can be neglected. Introducing
the strain rate tensor γ̇ij = ∂iuj + ∂jui and its squared modulus |γ̇|2 = 1

2 γ̇ij γ̇ij , the
Reynolds stress τij is expressed in a tensorial form:

τij = κ2L2|γ̇|
(

1

3
χ2|γ̇| δij − γ̇ij

)

, (1.3)

where κ ≃ 0.4 is the von Kármán constant and χ another phenomenological constant
associated to normal stresses.
Considering a homogeneous river of depth H inclined at an angle θ to the horizontal,

the shear stress τxz must balance gravity. It thus varies linearly as τxz = g(z −H) sin θ
and vanishes at the free surface. By definition of the shear velocity u∗, we also write
τxz ≡ u2

∗(z/H − 1). The mixing length is chosen equal to L = (z + z0)
√

1− z/H, where
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z0 is the hydrodynamical roughness. This choice results into a logarithmic base flow,
consistently with field and experimental observations:

ux =
u∗

κ
ln

(

1 +
z

z0

)

. (1.4)

The stress balance equation along the z-axis allows to get the pressure, which reads:

p+ τzz = p0 + g(H − z) cos θ = p0 +
u2
∗

tan θ

(

1− z

H

)

. (1.5)

We define the surface Froude number as the ratio of the surface velocity to the velocity
of gravity surface waves (in the case of a flat bottom):

F ≡ 1√
gH

u∗

κ
ln

(

1 +
H

z0

)

=
1

κ
ln

(

1 +
H

z0

) √
sin θ. (1.6)

The Froude number can be of order 1 in flumes but is in general small for large natural
rivers, due to their small slopes.
We now consider a wavy bottom of the form Z = ζeik(cosα x+sinα y). We wish to

perform the linear expansion of the equations with respect to the small parameter kζ.
We note η = kz, η0 = kz0 and ηH = kH . We write the first order corrections to the base
flow as

ux = u∗ [µ+ kZU ] , (1.7)

uy = u∗kZV, (1.8)

uz = u∗kZW, (1.9)

τxz = τzx = −u2
∗

[

1− η

ηH
+ kZSxz

]

, (1.10)

τyz = τzy = −u2
∗ [kZSyz] , (1.11)

τxy = τyx = −u2
∗ [kZSxy] , (1.12)

p+ τzz = p0 + u2
∗

[

1

tan θ

(

1− η

ηH

)

+ kZSn

]

, (1.13)

τxx = u2
∗

[

1

3
χ2 + kZSxx

]

, (1.14)

τyy = u2
∗

[

1

3
χ2 + kZSyy

]

, (1.15)

τzz = u2
∗

[

1

3
χ2 + kZSzz

]

, (1.16)

where the function µ is defined by µ(η) = 1
κ
ln
(

η
η0

)

. The quantities U , W , etc, are

functions of η. The free surface is also perturbed and we denote h = H + ∆(x, y) the
flow depth at the position x, y. The modified expression for the mixing length then reads

L = (z0 + z − Z)

√

H +∆− z

H +∆− Z
. (1.17)

In the following, we write the free surface profile as ∆ = δZ.
At the linear order, the stress equations can be simplified into

µ′Sxz = 2

(

1− η

ηH

)



(U ′ + i cosα W )− κµ′2 +
µ′

2ηH
+

ηδµ′

2η2H

(

1− η
ηH

)



 , (1.18)



Ripples, chevrons and antidunes – Online Supplementary Material 3

µ′Sxy =

(

1− η

ηH

)

(i sinα U + i cosα V ) , (1.19)

µ′Syz =

(

1− η

ηH

)

(V ′ + i sinα W ) , (1.20)

µ′(Sxx − Szz) =

(

1− η

ηH

)

(−2i cosα U + 2W ′) , (1.21)

µ′(Syy − Szz) =

(

1− η

ηH

)

(−2i sinα V + 2W ′) , (1.22)

(1.23)

which give the following two equations:

U ′ = −i cosα W +
µ′Sxz

2
(

1− η
ηH

) + κµ′2 − µ′

2ηH
− δ

ηµ′

2η2H

(

1− η
ηH

) , (1.24)

V ′ = −i sinα W +
µ′Syz

(

1− η
ηH

) . (1.25)

The Navier-Stokes equations lead to

W ′ = −i cosα U − i sinα V, (1.26)

S′
xz = iµ cosα U + µ′W + i cosα (Sn + Sxx − Szz)− i sinα Sxy (1.27)

= iµ cosα U + µ′W + i cosα Sn +

(

1− η
ηH

)

µ′

[

(1 + 3 cos2 α) U + 3 sinα cosα V
]

,

S′
yz = iµ cosα V + i sinα (Sn + Syy − Szz)− i cosα Syx (1.28)

= iµ cosα V + i sinα Sn +

(

1− η
ηH

)

µ′

[

3 sinα cosα U + (1 + 3 sin2 α) V
]

,

S′
n = −iµ cosα W + i cosα Sxz + i sinα Syz. (1.29)

Introducing the vector ~X = (U, V,W, Sxz, Syz, Sn), at the first order in kζ, one has to
solve a closed system of six differential equations which can be written under the following
form:

d

dη
~X = P ~X + ~S + δ ~Sδ, (1.30)

with

P =

























0 0 −i cosα µ′

2
(

1− η

ηH

) 0 0

0 0 −i sinα 0 µ′

(

1− η

ηH

) 0

−i cosα −i sinα 0 0 0 0
1+3 cos2 α

µ′

(

1− η
ηH

)

+ iµ cosα 3 sinα cosα
µ′

(

1− η
ηH

)

µ′ 0 0 i cosα

3 sinα cosα
µ′

(

1− η
ηH

)

1+3 sin2 α
µ′

(

1− η
ηH

)

+ iµ cosα 0 0 0 i sinα

0 0 −iµ cosα i cosα i sinα 0

























,
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~S =

















κµ′2 − µ′

2ηH

0
0
0
0
0

















, and ~Sδ =



















− ηµ′

2η2

H

(

1− η

ηH

)

0
0
0
0
0



















. (1.31)

The boundary conditions are the following: the velocity vanishes on the bed; the particles
cannot cross the free surface; the shear and normal stesses vanish at the free surface.
Making use of the linearity of the equations, we seek the solution under the form ~X =
~X0 + axz ~Xxz + ayz ~Xyz + an ~Xn + δ ~Xδ, where the vectors ~X0, ~Xxz, ~Xyz, ~Xn and ~Xδ are
solutions of the equations:

d

dη
~Xs = P ~Xs + ~S with ~Xs(0) =

















−1/(κη0)
0
0
0
0
0

















, (1.32)

d

dη
~Xxz = P ~Xxz with ~Xxz(0) =

















0
0
0
1
0
0

















, (1.33)

d

dη
~Xyz = P ~Xyz with ~Xyz(0) =

















0
0
0
0
1
0

















, (1.34)

d

dη
~Xn = P ~Xn with ~Xn(0) =

















0
0
0
0
0
1

















. (1.35)

d

dη
~Xδ = P ~Xδ + ~Sδ with ~Xδ(0) =

















0
0
0
0
0
0

















. (1.36)

The bottom boundary conditions U(0) = −1/(κη0), V (0) = 0 and W (0) = 0 are then
automatically satisfied. At the free surface, we impose the material nature of the surface,
W (ηH) = iµ(ηH) cosα δ, and vanishing stresses: Sxz(ηH) = δ/ηH , Syz(ηH) = 0 and
Sn(ηH) = δ/(ηH tan θ). These last four conditions select the coefficients axz, ayz and an
as well as the value of δ.
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Figure 1. Basal shear stresses Ax, Bx, Ay, By as functions of kH and α for H/z0 = 102 and
F = 0.1.

We focus on the stress components on the bed and define the coefficients Ax, Bx, Ay

and By as:

Sxz(0) = Ax + iBx, (1.37)

Syz(0) = Ay + iBy, (1.38)

Integration of equation (1.31) yields to the variations of these stress coefficients with k
and α (Fig. 1).

1.2. Description à la Saint-Venant

In the limit of vanishing kH , one expects a simplified depth averaged (Saint-Venant)
description to be valid. We consider the Saint-Venant equations without source terms.
The continuity and momentum equations read:

~∇ · (h~u) = 0, (1.39)

~u · ~∇~u = −g~∇(Z + h)− C
|~u| ~u
h

. (1.40)
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To relate Saint-Venant to the Reynolds average model, we define the Chezy coefficient:

C =
u2

u2
∗

≃
(

κ

ln (1 +H/z0)− 1

)2

. (1.41)

For H/z0 in the range 103–104, C is on the order of few 10−3. One can normalise vertical
lengths Z and h by the flow depth H , the velocity u by its average u, horizontal lengths
x and y by H/C and the time t by a transport time-scale. Then, there remains a single
non-dimensional parameter in the flow equations, the Froude number F = u/

√
gH.

Contrarily to the Reynolds averaged description, the scaling laws with respect to the
ratio H/z0 can thus be deduced from dimensional analysis.

Considernig as before a wavy bottom Z = ζeik(cosα x+sinα y), we perform the linear
expansion with respect to the small parameter kζ around the base state h = H and
~u = u~ex:

h = H +∆, (1.42)

~u = u~ex + u‖~e‖ + u⊥~e⊥, (1.43)

where we have decomposed the velocity disturbance along the directions parallel and
transverse to the crests:

~e‖ = − sinα~ex + cosα~ey, (1.44)

~e⊥ = cosα~ex + sinα~ey. (1.45)

The linearised Saint-Venant equations then become:

u⊥

u
= − cosα

∆

H
(1.46)

ikH cosα
u‖

u
+ C

[

(1 + sin2 α)
u‖

u
− sinα cosα

u⊥

u
+ sinα

∆

H

]

= 0 (1.47)

ikH cosα
u⊥

u
+ C

[

(1 + cos2 α)
u⊥

u
− sinα cosα

u‖

u
− cosα

∆

H

]

+
ik

F2
(Z +∆) = 0 (1.48)

The conservation of mass directly relates the transverse velocity to the flow depth mod-
ulation. Along the direction parallel to the crest, there is a balance between inertia
and friction. Due to the invariance in that direction, there is no gravity effect in this
momentum balance. By contrast, along the direction normal to the crest, the balance
is between inertia, friction, and two different gravity terms (terms scaling as 1/F2): the
component of gravity proportional to the slope and the gravity induced pressure gradient,
proportional to the flow thickness gradient.

The shear stress is not part of the variables of this modeling, but we can consistently
define it as ~τ = −C|~u|~u. The basal shear stress coefficients are then related to the
velocity disturbance as:

Ax + iBx =
2

C kZ1

(

cosα
u⊥

u
− sinα

u‖

u

)

(1.49)

Ay + iBy =
1

C kZ1

(

sinα
u⊥

u
+ cosα

u‖

u

)

(1.50)
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Figure 2. Regime diagram. (a) Diagram in the plane F vs kH , for the angle α = 0. (b) Diagram
in the plane α vs kH , for F = 0.3. The line thick line is the resonance curve (Eq. 2.5) – we
display it dashed when the relative resonance amplitude is so small that the stress component
Bx remains positive. For the names of the different regimes, see section titles.

Introducing a rescaled wave-number k̃ = kH/C, these coefficients read:

Ax+ iBx =
2 cosα (i− k̃ cosα− i tan2 α)

C(k̃ cosα− i)
[

(F2 − 1) k̃ cosα− 3iF2
]

− k̃ sinα tanα(k̃ cosα− 2i)
, (1.51)

Ay+ iBy =
sinα (−k̃ cosα+ 3i)

C(k̃ cosα− i)
[

(F2 − 1) k̃ cosα− 3iF2
]

− k̃ sinα tanα(k̃ cosα− 2i)
. (1.52)

2. Linear response of the basal shear stress to the presence of

bedforms

As the result of the integration of the above linearised equations, we identify in
this section the different hydrodynamical regimes of a flow over a wavy bottom Z =
ζeik(cosαx+sinαy), for which kζ ≪ 1. As shown below, these regimes can be represented
in the plane (F , kH) for a given beform angle α, or in the plane (α, kH) for a given
Froude number F , see figure 2.

2.1. The unbounded limit (regime ∞)

We consider the limit of bedforms whose wavelength is much smaller than the flow
thickness: kH ≫ 1. We first consider the case of transverse bedforms, detailled in
Fourrière et al. 2010. As shown by Jackson & Hunt (1975), the turbulent flow over such
a wavy bottom can be decomposed into three regions.
• Outer layer – In the outer layer, away from the bottom, the pressure gradient is

mostly balanced by inertial terms, like in an inviscid potential flow. The streamlines
follow the topography so that the velocity at the bottom of the outer layer is in phase
with the bottom.
• Inner layer – In the inner layer, the inertial terms of the Navier-Stokes equation are

negligible, and the longitudinal pressure gradient is thus balanced by the Reynolds shear
stress transverse gradient i.e. by the mixing of momentum due to turbulent fluctuations.
The thickness ℓ of the inner layer is related to wavelength by λ ∼ ℓ ln2(ℓ/z0). At the
transition between the inner and outer layers, the fluid velocity is slowed down by the
shear stress. In the limit of a small aspect ratio kζ, the velocity, which is inherited from
the outer layer, is always phase delayed with respect to the shear stress.: when a stress is
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Figure 3. Dependence of the basal shear stresses on the bedform angle α in the unbounded
regime (regime ∞). Solid line: computation for η0 = 10 and for asymptotically large kH .
Dotted lines: equations (2.1-2.4). (a) Longitudinal shear stress coefficients Ax and Bx. (b)
Transverse shear stress coefficients Ay and By.

applied, the velocity response is lagged, due to inertia. As a consequence, the shear stress
is phase-advanced with respect to the topography, which means that the shear stress
reaches its maximum upstream of the crests of the bumps. The shear stress phase shift
Bx/Ax vanishes for asymptotically small kz0 and gently increases with ln(kz0) (see figures
in Fourrière et al. 2010). The asymptotic calculation performed by Jackson & Hunt 1975
and simplified by Kroy et al. 2002 is recovered but only for asymptotically large ln(λ/z0),
a limit hardly reached in real problems.
• Surface layer – The surface layer, of thickness h0, is responsible for the hydrody-

namical roughness z0 seen from the inner layer. The dominant physical mechanism at
work in this surface layer can be of different nature. For instance, z0 can result from
the mixing due to roughness elements, the predominance of viscous dissipation, or the
presence of bed-load transport. The shear stress profile is insensitive to the mechanisms
at work in the surface layer, provided that its thickness h0 is smaller than the inner layer
thickness ℓ: the hydrodynamical roughness z0 is then the single quantity inherited from
the surface layer.
We can now analyse the dependence of the shear stress coefficients on the angle α.

For an asymptotically small value of η0, one expects the basal shear stress to be directly
governed by the velocity at the bottom of the outer layer. In the latter, the pressure field
is solution of the Laplace equation so that all disturbance fields decrease exponentially
as exp(−η). At the linear order, the pressure gradient is balanced by the longitudinal
inertia: ū ∂xui ≃ −∂ip, where ū is the mean velocity in the outer layer. The planar
velocity disturbance is thus normal to the crest and in phase with the relief. As the
sand bed is a material surface, the vertical velocity is proportional to the longitudinal
bed slope: uz = iu cosαkZ exp(−η) and is thus proportional to cosα. The longitudinal
velocity component ux thus goes like cos2 α and the transverse one like sinα cosα. On
the bed, this would result into shear stress coefficients scaling as:

Ax(α) = Ax(0) cos
2 α, (2.1)

Bx(α) = Bx(0) cos
2, α, (2.2)

Ay(α) =
1

2
Ax(0) cosα sinα, (2.3)

By(α) =
1

2
Bx(0) cosα sinα. (2.4)
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Note that the factor 1/2 in the transverse direction comes from the scaling of the shear
stress as the square of the velocity. In figure 3, we compare these predictions to the
numerical integration of the linear equations. One observes that the main trends are
captured by the above expressions, but that there remain significant discrepancies. In
particular, the longitudinal velocity remains modulated (Ax 6= 0), even for purely longi-
tudinal patterns (for α → π/2).

2.2. Resonance of standing waves

We now consider bedforms whose wavelength λ is large enough to be influenced by the
free surface. The hydrodynamical behaviour depends both on the Froude number F and
on the wavenumber rescaled by the flow depth, kH . The undulations of the bottom
excite standing gravity waves at the free surface. Recall that we note H + ∆ the flow
depth, and define δ = |δ|eiϕ = ∆/Z. Resonant conditions are reached when these waves
propagate at a velocity equal to the flow velocity component along the direction normal
to the crest, i.e. when

F2 ≃ tanh(kH)

kH cos2 α
(2.5)

Along the resonant curve, inertial effects and gravity are on the same order. Figure 4a
shows the amplitude of deformation of the free surface predicted by the model. One
observes that equation (2.5) correctly predicts the qualitative behavior, i.e. the approxi-
mative location of the surface modulation maxima in the plane (α, kH). The discrepancy
comes from the definition of the Froude number, based on the surface velocity. In reality,
the resonance involves a region close to the surface, of thickness O(λ), on which the
velocity should be averaged.
Standing gravity waves excited at the free surface by the bedforms are in phase at

small λ/H (supercritical regime) and in antiphase at large λ/H (subcritical regime).
In between, at the resonance, the response of the free surface is in quadrature with the
disturbance (Fig. 4b) so that, in the outer layer, the streamlines are squeezed downstream
of the crests of the bump. Around the free surface resonance, the velocity at the bottom
of the outer layer is thus phase-delayed with respect to the topography. However, the
basal shear stress is phase-advanced with respect to this velocity. When the Froude
number F is large enough, the deformation of the free surface is so large that it has a
dominant effect on the flow close to the bottom and the phase shift B/A between the
shear stress and the topography becomes negative (Fig. 4d,f). Conversely, at small F ,
the free surface deformation does not influence enough the flow close to the bottom and
B/A remains positive.

2.3. Cross-over between the resonance and the shallow water limit (regime i)

Between the shallow water region (kH ≪ 1) and the resonance band (F2 ≃ tanh(kH)/(kH)),
the free surface is in antiphase with the topography and has a very small modulation
amplitude. Thus, the velocity at the bottom of the outer layer is in phase with the to-
pography. Due to the confinement, the velocity increases at the top of the bumps. From
the conservation of flow rate, one can infer that, in the limit of small kH , the velocity
disturbance in the inner layer is proportional to uζ/H . As the shear stress is quadratic
in ux, one expects a scaling law of the form Ax(α = 0) ≃ 2

kH
. Figure 5 shows that this

scaling is verified both for a rigid top boundary and for a free surface.
In the limit kH ≪ 1, the water depth becomes much thinner than the wavelength,

and the inner layer invades the whole flow (i.e. ℓ ≃ H). In the cross-over region between
the resonance and the shallow water limit, the transition zone between the outer and
inner layers responsible for the upstream shift of the shear stress with respect to the
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Figure 5. Basal shear stresses Ax and Bx as functions of kH in the cross-over regime (regime
III). The parameters are α = 0, H/z0 = 102 and F = 0.1. The free surface situation (solid line)
is compared to the unbounded one (dashed line) and to the case of a rigid top boundary (dotted
line). The large increase of Ax in this range of wavelength results from the confinement of the
flow. Due to inertia, the shear stress is still phase advanced with respect to the topography,
although the inner layer becomes comparable to the whole flow thickness.

topography progressively disappears. The phase lag Bx/Ax between the shear stress and
the topography thus decreases with kH and becomes negative (Bx/Ax < 0) below a
threshold value of kH that increases with the Froude number. As Ax is increasing at the
same time, Bx passes through a maximum value.

2.4. The flat free surface regime, with inertia dominating friction (regime g(i))

Going further in the limit of small kH , one can analyse the last three hydrodynamical
regimes within the simpler St-Venant framework, which gives close results to the full
model (Fig. 6). We consider here the asymptotic regime where the gravity-induced
pressure balances the slope effects (F → 0), with a negligible friction force (C → 0).
Then, from the force balance in the direction normal to the bedforms, one deduces
that the free surface is flat, i.e. ∆ = −Z. The conservation of mass then leads to
u⊥ = u cosα Z

H
. Along the direction parallel to the bedforms, inertia is balanced by

friction. In this inertia dominated regime, u‖ is null at the leading order, so that:

Ax =
2 cos2 α

kH
and Ay =

sinα cosα

kH
(2.6)

Reintroducing the friction force at the perturbative order, one obtains:

ikH cosα
u‖

u
∼ C sinα

[

cosα
u⊥

u
+

Z

H

]

∼ C sinα
(

cos2 α+ 1
) Z

H
(2.7)

The flow velocity is maximal and its thickness minimal on the crests. As a consequence,
friction increases. Inertia balances the component of this additional friction parallel to the
crest. The velocity component parallel to the crest is thus phase delayed (in quadrature)
with respect to friction. This results into a positive Bx and a negative By.

Bx =
2C (cos2 α+ 1) sinα tanα

(kH)2
and By = −C (cos2 α+ 1) sinα

(kH)2
(2.8)

One can observe in figure 7 that this analysis gives the correct qualitative picture.

2.5. Lubricated regime dominated by gravity induced pressure (regime g(f))

As before, we consider the asymptotic regime where gravity induced pressure balances
the slope effects (F → 0), leading to a flat free surface: ∆ = −Z. The conservation of
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mass then leads again to u⊥ = u cosα Z
H
. In the momentum balance along the direction

parallel to the bedforms, we now consider that the turbulent friction is dominant and
must vanish at the leading order:

(1 + sin2 α)u‖ ∼ sinα cosαu⊥ − sinα
∆

H
u ∼ sinα

(

cos2 α+ 1
) Z

H
u. (2.9)

This leads to:

Ax =
2 cos(2α)

(1 + sin2 α) kH
and Ay =

3 sin(2α)

2(1 + sin2 α) kH
. (2.10)

We now reintroduce inertia at the perturbative order: the inertial term ikH cosαu‖ is
equal to

ikH
cosα sinα

(

cos2 α+ 1
)

1 + sin2 α

Z1

H
u (2.11)

at the leading order. It is balanced by turbulent friction term −C(1 + sin2 α)u‖. As
before, this results into a positive Bx and a negative By:

Bx =
2 cosα sin2 α

(

1 + cos2 α
)

C
(

1 + sin2 α
)2 and By = −cos2 α sinα

(

1 + cos2 α
)

C
(

1 + sin2 α
)2 . (2.12)

One can observe in figure 8 that the prediction of the Saint-Venant equations compares
very well to the Reynolds averaged calculation, except for Bx in the neighbourhood of
α = 0.

2.6. Lubricated regime dominated by friction (regime f(g))

We finally consider the asymptotic regime in which both inertia and gravity induced
pressure can be neglected, so that the downslope gravity component is balanced by
turbulent friction. We call u1 and v1 the velocity disturbances respectively along the
main flow direction and transverse to it. The transverse velocity follows the transverse
slope:

v1 = − i

CF2
k sinαZ u. (2.13)

By conservation of mass, one gets:

u

H
∆+ u1 = − tanα v1. (2.14)
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The longitudinal slope tends also to entrain the fluid downslope:

2u1 −
u

H
∆ = − i

CF2
k cosαZ u. (2.15)

One then obtains Ax = Ay = 0, and

Bx =
2(sinα tanα− cosα)

3CF2
and By = − sinα

CF2
. (2.16)

This regime is reached in the limit of vanishing kH . The sign of Bx is determined by two
antagonist mechanisms. At small angle α, the dominant effect is that of the longitudinal
slope, which leads longitudinally to a downslope fluid motion (Bx < 0). At large angle
α, the dominant effect is that of the transverse slope which leads transversally to a
downslope fluid motion (By < 0). However, through mass conservation, this leads to
an upslope longitudinal fluid motion Bx > 0. When reintroducing the gravity-induced
pressure at the perturbative order, one obtains:

Ax =
2

9C2F4

[

2− cos(2α)− 2 tan2 α
]

kH and Ay =
1

6C2F4
[3− cos(2α)] tanαkH.

(2.17)
One can observe in figure 8 that, in this regime, the prediction of the Saint-Venant

equations almost perfectly fit the Reynolds averaged calculation.

2.7. Regime diagram

We can now come back to the regime diagram (Fig. 2). Friction dominates at vanishing
kH while gravity-induced pressure dominates at larger values of kH . The cross-over
between these regimes is associated to a transition of the flow thickness modulation from
0 to 1. At a vanishing bedform angle α = 0, the Saint-Venant equations predict that this
transition occurs at:

kH =
3CF2

1−F2
. (2.18)

It vanishes when the Froude approaches 0 and tends to infinity at F = 1. At an angle α
close to π/2, the transition wavenumber can be approximated into:

kH =
3
√
3

2

(π

2
− α

)

CF2. (2.19)
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In the flat free surface regime, the transition between friction dominating inertia and
inertia dominating friction occurs for:

kH = C
1 + sin2 α

cosα
(2.20)

At this wave-number, the asymptotic expansions of Bx and By determined previously
coincide.

The shallow water approximation is valid when the inner layer invades the whole flow
thickness. The cross-over with the regime in which an inner and an outer layers coexist
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occurs for:

kH ≃ 40C (2.21)

Finally, the resonance of standing surface waves occurs for F = 1/ cosα at low kH and
for F = 1/(

√
kH cosα) at large kH . These different transitions are reported in figure 2.

3. Influence of secondary parameters on the transition between

ripples and antidunes

Supplementary figure 10 shows the dependence of the bifurcation diagram on two
secondary parameters: u∗/uth and the effective friction coefficient µ. One observes that
they do not induce significant changes in the anti-dune regime.
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