
September 2009

EPL, 87 (2009) 56001 www.epljournal.org

doi: 10.1209/0295-5075/87/56001

Height fluctuations of a contact line: A direct measurement
of the renormalized disorder correlator
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PACS 68.35.Rh – Phase transitions and critical phenomena

Abstract – We measure the center-of-mass fluctuations of the height of a contact line at depinning
for two different systems: liquid hydrogen on a rough cesium substrate and isopropanol on a
silicon wafer grafted with silanized patches. The contact line is subject to a confining quadratic
well, provided by gravity. From the second cumulant of the height fluctuations, we measure the
renormalized disorder correlator ∆(u), predicted by Functional RG to attain a fixed point, as soon
as the capillary length is large compared to the Larkin length set by the microscopic disorder.
The experiments are consistent with the asymptotic form for ∆(u) predicted by Functional RG,
including a linear cusp at u= 0. The observed small deviations could be used as a probe of
the underlying physical processes. The third moment, as well as avalanche-size distributions are
measured and compared to predictions from Functional RG.

Copyright c© EPLA, 2009

A direct measurement of the fixed-point function ∆(u),
the so-called renormalized disorder correlator, which plays
a central role in the Functional RG (FRG) of pinned elastic
systems, was recently proposed [1] and verified in an exact
numerical determination of ground states for interfaces in
various types of disorders [2]. The main idea is to put
the elastic system in a quadratic potential well, which
acts as a large-scale cutoff and makes the problem well
defined. The shift between the center of mass and the
center of the well is proportional to the renormalized force
and its fluctuations are the quantity computed in the
FRG [1]. The results of [2] show a remarkable agreement
in the statics between the measured ∆(u) and the 1- and
2-loop predictions from the Functional RG [3–5]. These
ideas and numerical tests have been extended to the
depinning transition [6,7] in the case of local elasticity,
and to reaction diffusion models [8]. Finally, a first-
principle calculation of the distribution of avalanches from
the FRG was performed and verified by numerics [9–11].
An outstanding challenge is to test these predictions in
experiments.
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The depinning of the contact line of a fluid on
a disordered substrate has been studied experimen-
tally [12–15] and its critical scaling established. Since
gravity creates a quadratic well, this raises the interesting
possibility of measuring a FRG fixed-point function for
depinning or, conversely, to learn more about the physical
system using these (universal) fluctuations as a probe. To
do so, the capillary length, which provides the well, does
not need to be larger than the measurement scale. In fact,
the finite capillary length is used as an advantage.
Consider a fluid in a large reservoir and its contact line

(CL) on a plate, parameterized by (x, u(x)) within the
plate (fig. 1). Its energy can be modeled as

H[u] =
∫ L
0

dx
m2

2
[u(x)−w]2+V (x, u(x))+ E [u], (1)

where E [u] is a non-local elastic energy invariant under
u(x)→ u(x)+ const. The pinning force −∂uV (x, u) is a
local quenched random function. L is the total length of
the contact line. Additional boundary terms, not written
here, affect the line near x= 0 and x=L. The position
w of the center of the well with respect to the plate,
which is also the equilibrium position of the CL without
disorder, is fixed by the height w∞ in the reservoir far away
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Fig. 1: Sketch of the experimental setup. The size of the image
in the inset is 1.5mm.

from the contact line, up to a constant shift w=w∞+√
2Lc
√
1− sin θ, where Lc =

√
γ/ρg is the capillary length

and θ the contact angle. In the simplest model of the fluid
surface the elastic energy E [u] in Fourier space is E [u] =
1
2

∫
dk
2π εku−kuk, with an elastic kernel εk =m

2ε̃θ(k/kθ).
The curvature of the quadratic well is m2 = γkθ with
kθ =

√
2 sin(θ)/(Lc

√
1+ sin θ). The scaling function εθ(x)

is often approximated by ε̃π/2(x) =
√
x2+1− 1, but can

be computed for any θ [16].
One drives the system by slowly immersing the plate at

a constant velocity v, hence w= vt. The center of mass

ū(t) := 1
L

∫ L
0
dxu(x, t) is fluctuating as a function of w,

and contains valuable information about the system. In
particular, the second cumulant ∆(w), defined as

∆(vt) :=Lm4〈[ū(t+ τ)− v(t+ τ)][ū(τ)− vτ ]〉c (2)

with w= vt is exactly the renormalized disorder correlator
computed by the FRG theory. Here and below 〈. . .〉
denotes translational averages in the direction of the
motion of the CL. Thus a direct measurement of ∆(w)
is possible for the CL moving on a disordered substrate.
Two different systems have been used. The first one is

liquid hydrogen on a cesium substrate, denoted H2/Cs.
As in most previous experiments using H2/Cs, the Cs
substrate is prepared at low temperature, yielding a
rough surface with dense defects whose size is of the
order of 10 nm [12,13]. Such a small value leads to very
small distortions of the CL and precludes any optical
observation. We have thus annealed the Cs layer up
to 250K. This creates a large-scale structure (possibly
corrugation) which is visible but cannot be characterized
since its typical length scale is in the micrometer range,
below optical resolution.
The second system is isobutanol on a silicon wafer,

denoted iso/Si. We create a well-controlled disorder
by photolithographic techniques: the Si wafer is deco-
rated by random silanized square patches (10× 10µm2)
(see footnote 1) which cover about 22% of the total area.
As the silanized patches are less wettable than Si, each
patch can pin the CL.

1Silanization is done in the vapor phase, using 1H,1H,2H,2H-
Perfluorodecyltrichlorosilane from Alfa Aesar GmbH&Co KG.

Table 1: Wetting properties.

θ γ Lc η
(degrees) (mN/m) (mm) (mPa · s)

H2 at 15K ∼ 40 2.79 1.94 0.021
Isobutanol ∼ 40 20.9 1.64 4.0

Fig. 2: Height of the contact line h̄2Lc(w) averaged over 2Lc, as
a function of the position w of the plate (system: iso/Si). The
fast depinning events (upwards) are clearly visible. Between
them, the CL is advected downwards at the plate velocity v
(here 1 µm/s). The straight line is the reference level h0.

The relevant parameters (advancing contact angle θ,
liquid-vapor surface tension γ, capillary length Lc and
dynamic viscosity η) are listed in table 1 for both systems.
Note that contact angle and capillary length are similar. In
both systems defects are strong so that the Larkin length
is set by the size ξ of the defects; ξ is macroscopic so that
thermal activation is irrelevant [12].
A sketch of the experimental setup is shown in fig. 1.

The substrate is dipped into the liquid at constant velocity
v. The CL is imaged with a standard progressive-scan
CCD camera for velocities up to 10µm/s. At room
temperature we have also used a high-speed camera in
order to analyse the CL dynamics up to v= 1200µm/s.
For each time t, the CL profile is digitized to obtain the
CL height h(x, t). The correspondence with the above
notations is

h(x, t)−h0 = u(x, t)− vt −〈u(x, t)− vt〉. (3)

To define the reference level h0 we first calculate the
average height h̄l(t) over a CL length l: h̄l(t) :=
1
l

∫ l
0
h(x, t) dx. An example is shown in fig. 2. Then h0

is obtained as the time-averaged value of h̄l(t). As the
camera is fixed with respect to the liquid container,
one expects h0 to be constant. However, we allow for a
slow drift of h0 for two reasons: first, as the volume of
the container is finite, dipping the plate causes a slight
increase of the asymptotic level which results in a linear
increase of the reference level h0. Secondly, the slow vari-
ations of h̄l(t) are not linear, due to large-scale variations
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Fig. 3: Left: scaling of the correlator ∆̂(0) := 〈h̄l(w)h̄l(w)〉 as a
function of the averaging length l along the CL (here iso/Si).
The asymptotic scaling l−1 is marginally reached for l=Lc.
Right: roughness W (l′) of the contact line for iso/Si. Due to
the limited range between the defect size and the capillary
length, no scaling is achieved.

of the plate properties (defect size, mean contact angle,
etc.). Hence, h0(t) is determined experimentally by fitting
the data set h̄l(t) by a polynomial. As we are interested
in correlations over distances two orders of magnitude
smaller than the total swept distance, this only shifts the
correlator ∆ by a constant.
In the following, instead of h(x, t), we use h(x,w) :=
h(x,w/v)−h0, where w= vt, making it easier to compare
runs at different velocities v. We define the experimentally
measured correlator ∆̂ as

∆̂(w−w′) := 〈h̄l(w)h̄l(w′)〉. (4)

We need to choose the CL length l over which h is
averaged. It must be larger than the capillary length Lc,
and as large as possible, while remaining notably smaller
than the plate size L≈ 20mm, since strong distortions
occur at the edge of the plate. Moreover, slow changes of
the plate properties cause slow variations of the capillary
rise on the plate. These are small compared to the
fluctuations of the local CL height, but one expects
that ∆̂ varies like l−1 (for l�Lc). So, the larger l, the
stronger the effect of the large-scale heterogeneities. As a
compromise, we have chosen l= 2Lc. As shown in fig. 3,
∆̂(0) has almost reached the asymptotic behavior for
l= 2Lc. Once l is chosen, an accurate determination of
∆̂(w′−w) requires that the CL explore a large number
of pinned configurations, i.e. the CL has to sweep a
range of w much larger than the width of the line.
Following [14,15], we define the CL width W at scale l′

as W 2(l′) = 〈(h(x, t)−h(x+ l′, t))2〉, where the average is
taken over x and over all successive configurations. For
iso/Si, we find a widthW � 40µm for l′ � 2Lc; for H2/Cs,
the width is much smaller and difficult to measure, but
we estimate that W≈ 5µm at large scale. The CL sweeps
about 80mm for iso/Si and about 5mm for H2/Cs. The
plate displacement is thus much larger than W . This is
necessary in order to get a reproducible shape for ∆. As
a consequence, the disorder and the substrate properties
have to be fairly homogeneous over an area of at least
1 cm2, which is quite difficult to achieve. In particular,

Fig. 4: (Colour on-line) Inset: the disorder correlator ∆̂(w) for
H2/Cs, with error bars estimated from the experiment. Main
plot: the rescaled disorder correlator ∆̂(w)/∆̂(0) (green solid
line) with error bars (red). The dashed line is the 1-loop result
from eq. (5).

Fig. 5: (Colour on-line) Inset: the disorder correlator ∆̂(w)
for iso/Si at v= 1µm/s up to w= 35µm, and then at v=
10µm/s for w> 35µm, with error bars as estimated from
the experiment. Main plot: the rescaled disorder correlator
∆̂(w)/∆̂(0) (green solid line) with error bars (red). The dashed
line is the 1-loop result (5).

we have first tried to use water on glass decorated with
Cr defects as in [14], but we could not get rid of strong
variations of the capillary rise.
When comparing the two systems used in this work, the

main difference lies in the defect size ξ, which is roughly
one order of magnitude smaller for H2/Cs compared to
iso/Si. The drawback of the low-temperature system is
the poor characterization of the disorder which cannot be
resolved optically. But the small value of ξ is rather an
advantage as the separation between the small-scale cut-
off ξ (defect size) and the large-scale cut-off Lc (capillary
length) is about 3 orders of magnitude for H2/Cs, while
only about 2 for iso/Si. As a consequence, it is difficult to
observe the scaling regime for iso/Si. For instance, W (l′)
does not exhibit scaling in fig. 3. The case of H2/Cs is
closer to previous experiments of the same type which did
exhibit scaling.
We now discuss our experimental results and their

comparison to theory. The raw data for the correlator
∆̂(w) defined in (4) are shown in the insets of figs. 4
and 5. To compare with theory it is useful to define
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Fig. 6: (Colour on-line) The disorder correlator ∆̂(u) (left), and (minus) its first (middle) and second (right) derivatives.
The velocities are v= 1µm/s (dash-dotted pink line), v= 10µm/s (solid black line), v= 100µm/s (blue dashed line) and
v= 1200µm/s (green dotted line). Statistical errors for ∆′(w) are ≈ 5%. (The derivatives are obtained by fitting with a
polynomial of degree 50 to 100 for 0�w� 120.) The non-zero value of ∆̂′(0+) is the signature of the predicted linear cusp.

a dimensionless disorder correlator as in [2] and plot the
ratio Y := ∆̂(w)/∆̂(0) as a function of the variable z with
w= z

∫∞
0
dw′ ∆̂(w′)/∆̂(0) so that the area under the curve

is unity. The resulting function has no free parameter and
the functional RG theory of pinned systems predicts that
in the limit of small m: i) it should be the same function
for all systems in a given universality class (UC); ii) this
function should exhibit a linear cusp near w= 0+. In figs. 4
and 5 we have plotted these dimensionless correlators
(solid lines).
Also shown in figs. 4 and 5 is the 1-loop prediction

z =
√
Y1-loop− 1− lnY1-loop

/∫ 1
0

dy
√
y− 1− ln y (5)

for the universality class described by eq. (1), i.e. quasi-
static depinning with irrelevant non-linear terms, the
only class for which this function has been computed
analytically yet. One sees a very good agreement between
data and 1-loop FRG prediction. A similar agreement
was observed numerically both in the statics and the
dynamics of pinned systems with local elasticity [2,7].
At this stage we take this as a clear signature for a pinned
system, and that a description using eq. (1) is possible.
A significantly higher precision and statistics (of a factor
≈ 10–20) would be required to reach the one achieved
in numerics [2,7]. That would provide a decisive test on
the universality class, and shed light on the debate about
the large observed value for ζ ≈ 0.5 [15], while analytical
predictions based on model (1) lie around ζ = 0.4 [4,17].
Closer examination of the data in fig. 5 shows that
deviations from Y1-loop(z) can be mainly accounted for
by rounding, which thus must be better controlled and
quantified.
For iso/Si, we have performed the experiment at

different velocities, in order to see the approach to the
fixed point, and check for experimental artifacts. This
is shown in fig. 6. We first comment on the shape of
the correlator at the highest velocity (v= 1200µm/s).
The flattening at the origin is expected as the system is
driven away from the depinning threshold (i.e. away from
the fixed point). However the large oscillations in ∆̂(w)
(better visible in its derivative) are surprising. We believe

them to be due to surface waves of the liquid, possibly
excited by the motor moving the plate. Decreasing the
velocity, the cusp at the origin becomes more and more
pronounced, though even at the lowest velocity v= 1µm
the first derivative ∆̂′(w) is not yet monotonically
decreasing, as predicted by theory for v= 0+.
One possible origin of the observed rounding may be

that the dissipation is not simply due to viscous shear in
the meniscus but involves complex microscopic processes
at the solid surface. This is suggested by the fact that the
behavior of the correlator for vanishing z is sensitive to
the cleaning procedure of the plate, and by the fact that
the homogeneous bare silicon surface displays an intrinsic
hysteresis (for a discussion, see [18]). At this stage, we
have little idea how the underlying microscopic disorder
could change the behavior of the CL at the scale of the
macroscopically patterned defects, and how to predict the
possible resulting rounding effect.
On the other hand, there are also two fundamental

reasons why the system could be slightly off the fixed
point: i) rounding by the velocity, as observed above and
expected from the theory (although most models predict
that ∆′(0+) = 0 at v > 0; this point is still debated [19])
ii) as suggested by the width data in fig. 3, the ratio ξ/Lc
(or equivalently m) is yet too large to have reached the
fixed point. The shape of ∆̂′(w) is qualitatively what is
expected: ∆̂′(0+) is strictly positive, hence the system
is above the Larkin scale, but it is significantly smaller
than its putative fixed-point value, since ∆̂′(w) should
be monotonically decaying there. Similarly ∆̂′′(w)< 0
near w= 0 while the fixed-point value is expected to be
positive. This interpretation, if confirmed, is interesting,
as it implies that ∆̂(w) is a sensitive new probe, which
can be made quantitative, to test how far the system is
from criticality.
More information can be obtained from the experimen-

tal data by computing the third cumulant

Ŝ3(w−w′) := 〈[hl(w)− hl(w′)]3〉. (6)

It is convenient to plot the function

Q̂(w) :=
1

6

∫ w
0

dw′Ŝ3(w′). (7)
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Fig. 7: (Colour on-line) Dimensionless parametric plot of

Q̂(w)/∆̂(0)2 vs. [1− ∆̂(w)

∆̂(0)
]2 for both experiments H2/Cs (thick

red line) and iso/Si at v= 10µm/s (thick black line). The thin
red line is the mean-field prediction. The thick dashed green
line is an extrapolation based on a loop expansion, as discussed
in the text.

Indeed, the FRG predicts that

Q̂(w)

∆̂(0)2
≈A
[
1− ∆̂(w)
∆̂(0)

]2
, (8)

with an exact equality and the universal amplitude A= 1
at the mean-field level (i.e. resummation of tree diagrams,
d� duc = 2). The proportionality (with no attempt to
measure A) was checked numerically [7] for depinning with
local elasticity. In fig. 7 we plot both sides of eq. (8): we
see that the proportionality holds very nicely and that
the two experiments fall on top of each other, confirming
the universality of the slope A, which is measured to be
A≈ 0.53. The FRG calculation, using the scaled elastic
kernel ε̃π/2(x) yields A= 1/(1+

8
9ε)+O(ε

2) with ε= 2− d
(see (E12) of [10]) which yields 9/17 = 0.53 and 0.11 for
the two Padé approximants at ε= 1, while the kernel ε̃θ(x)
with θ= 40◦ gives [16] A= 0.48± 0.13 (shown in fig. 7).
These values are reasonable, given that the correction to
mean field is large and one cannot hope for high precision.
Also note that deviations from the functional form in
eq. (8) are expected at 1-loop order, but they should be
small as found numerically in [7]. We conclude that the
agreement between experiment and theory is satisfactory
for the third cumulant.
The properties of the CL can also be characterized by

the distribution of the sizes S of avalanches, or forward
jumps (see fig. 2), where by definition S is the area swept
during the avalanche. At the critical point, m= 0, the
distribution is expected to be a power law characterized
by an exponent τ . At small m> 0, the correlation length
is finite and the avalanche-size distribution P (S) for
S� Smin is cut off at scale

Sm :=
〈S2〉
2〈S〉 , (9)

where here and below 〈. . .〉 denotes an average over P (S).
One expects that in the variable s := S/Sm the avalanche-
size distribution exhibits universality, i.e. independence
from short scales, and that, for 1< τ < 2, it takes the form

P (S)dS :=
〈S〉
Sm
p

(
S

Sm

)
dS

Sm
. (10)

The function p(s) is universal, and by construction
from (9) and (10) normalized such that

∫∞
0
ds sp(s) = 1

and
∫∞
0
ds s2p(s) = 2 (see footnote 2). The analytical

prediction [10] for p(s) reads, based on the model (1) and
with the scaled elastic kernel ε̃π/2(x),

p(s) =A′s−τ exp
(
− B

′

4
sδ
′
+C ′

√
s−D′s 32

)
(11)

with B′ = 1+ 13 (γ− 2)ε, C ′ =
√
πε
3 , D

′ =
√
πε
36 , A

′ given
by the normalization and the exponent δ′ = 1+ ε3 . This
prediction is exact to first order in ε= 2− d, and to
produce our analytical estimate we set ε= 1 and rescale
both axes to ensure the two normalization conditions. For
the τ -exponent, we have used the conjectured relation
τ(ζ) = 2− 1/(d+ ζ) since we proved [10] that the latter is
exact at least to one loop. Inserting the measured ζ ≈ 0.5
yields the prediction τ ≈ 4/3.
The size distribution is measured only for iso/Si with

a standard camera (acquisition rate: 15Hz), at a veloc-
ity v= 1µm/s. We consider that an event occurs if the
local displacement between two successive images is larger
than a threshold δh� 8µm. This threshold is about the
defect size, which is the smallest displacement occurring
in an avalanche, and is about 10 times larger than the
resolution on the CL position. The area S swept in a
single avalanche is then computed as the sum of the
displacements occurring before the CL is pinned again.
We detected 16× 103 avalanches for a swept area of
3.5× 20mm2. We have checked that the resulting distri-
bution is not sensitive to the value of the threshold and
that the acquisition rate is fast enough to avoid lumping
together uncorrelated avalanches.
Experimental data and predictions are shown in fig. 8.

We see that the parameter-free scaling collapse is quite
good down to s= 10−2. This value of s corresponds to
S = 100µm2, which is the cutoff expected from the size of
the defects whose area is 100µm2. However, our accuracy
is limited by the available sizes, and e.g. not sufficient
to discriminate between τ(ζ = 0.5) = 4/3, and τ(ζ = 0.4)
= 1.29. While p(s) has strong statistical fluctuations, the
characteristic function

Z̃(λ) :=

∫ ∞
0

ds p(s)
(
eλs− 1) (12)

can be measured quite accurately as shown in fig. 9. The
1-loop extrapolation (ε= 1) is closer to the data than mean

2p(s) is itself not a probability distribution, since
∫
ds p(s) �= 1.
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Fig. 8: (Colour on-line) The measured dimensionless avalanche-
size distribution function p(s), as defined in the text, for iso/Si.
For comparison an analytical estimate, defined in eq. (11),
based on a one-loop calculation with the scaled elastic kernel
ε̃π/2(x). The small-size cutoff is log10(s) =−2, i.e. the size
of a defect.

Fig. 9: (Colour on-line) Z̃(λ) defined in (12), from bottom
to top: the mean-field prediction (red solid line), the experi-
mental data (black dots), and the extrapolation based on the
one-loop calculation for a scaled elastic kernel ε̃θ(x) with
θ= 40◦ (green dashed line).

field and using the elasticity ε̃θ=40◦(x) (shown in fig. 9) is
closer than with ε̃θ=π/2(x) (not shown). Hence comparison
to field-theory [10,16] is satisfactory.
We now come to a final test of the avalanche picture

underlying the FRG calculations. According to [9,10], the
slope ∆̂′(0+) of the linear cusp is proportional to the scale
Sm of the avalanche-size distribution,

L
∣∣∣∆̂′(0+)∣∣∣= Sm ≡

〈
S2
〉

2〈S〉 . (13)

We find Sm � 9000µm2. At the lowest velocity, |∆̂′(0+)|
= 1.75µm2, L= 3500µm, thus L|∆̂′(0+)| � 6100µm2.
However, estimating ∆̂′(0+) is difficult because we do
not understand the origin for the rounding of ∆̂(w) when
w→ 0. An upper bound for |∆̂′(0+)| is the slope of ∆̂′ at
the inflection point, which yields L|∆̂′(0+)|< 14000µm2.
The third moment of S can similarly be related to
the third cumulant of the center-of-mass fluctuations:
〈S3〉〈S〉/(3〈S2〉2) =A, with A defined in eq. (8). From
p(s) we find A= 0.77, while the relation between Q̂(w)
and ∆̂(w) yields A= 0.53. The agreement in both cases is

only fair and more experiments are needed. In particular,
a smaller ratio ξ/Lc would be helpful.
To conclude: by examining the fluctuations of the mean

height of the contact-line at depinning, we have measured
the renormalized disorder-correlator ∆(w). The latter is
the central object of the functional RG field theory, and
its predicted cusp, which is the sign of metastability,
shocks and avalanches, was under intense debate from the
field theory side. Here we have made the first comparison
between experiment and theory. It shows qualitatively and
quantitatively that the ideas in the latter are correct, and
opens new ways of quantifying the former, calling for new
experiments.
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