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Jacco H. Snoeijer, Emmanuelle Rio, Nolwenn Le Grand, and Laurent Limat

Laboratoire de Physique et Mécanique des Milieux Hétérogénes and Fédération de Recherche Matiere

et Systemes Complexes [Unite Mixte de Recherche (UMR) Centre National de la Recherche Scientifique
(CNRS) 7636 and Fydyration de Recherche (FR) Centre National de la Recherche Scientifique

(CNRS) 2438], ESPCI, 10 rue Vauquelin 75005, Paris, France

(Received 7 January 2005; accepted 13 May 2005; published online 21 June 2005

Partially wetting drops sliding down an inclined plane develop a “corner singularity” at the rear,
consisting of two dynamic contact lines that intersect. We analyze the three-dimensional flow in the
vicinity of this singularity by exploring similarity solutions of the lubrication equations. These
predict a self-similar structure of the velocity field, in which the fluid velocity does not depend on
the distance to the corner tip; this is verified experimentally by particle image velocimetry. The
paper then addresses the small-scale structure of the corner, at which the singularity is regularized
by a nonzero radius of curvatuReof the contact line. Deriving the lubrication equation up to the
lowest order in 1R, we show that contact line curvature postpones the destabilization of receding
contact lines to liquid deposition, and thatRLincreases dramatically close to the “pearling”
instability. The general scenario is thus that sliding drops avoid a forced wetting transition by
forming a corner of two inclined contact lines, which is regularized by a rounded section of rapidly
decreasing size. @005 American Institute of PhysidDOI: 10.1063/1.1946607

I. INTRODUCTION the contact line such that the wetting transition is avoided. A
) ] similar structure appears at the rear of sliding dﬂﬁfé‘,
Wetting and dewetting phenomena are encountered iyhich develops a sharp corri@ig. 1(a)]. In all these experi-
many everyday life situations, such as drops sliding down @ents; the normal velocity of the inclined contact lines was
window or meandering rivulets. However, the description Offo 0 to stay precisely at the threshold of instability, which
moving contact lines, separating wet from dry regions, re5ylies that the half opening angleb, scales as Sif

mains controversial; in classical hydrodynamics the Viscou%cl/Ca[Fig 2(c)]. Note that in some cases receding contact
tsr':resse? dLvl_erge_ aé t_he cgntact _Ilf:’?eTf}IS V'SCOUZ flpw hear ; lines can also develop a transverse instability, with a finite

€ contact line Is driven by capifiary Torces and gives rise 9wavelength along the contact line, as observed, e.g., for lig-
extremely curved interfaces, even down to the mlcroscopch:jid ridges on an inclined plaﬁ 26 0p dewetting of polymeric
molecular scale. To release the hydrodynamic singularity Onﬁquids 27

has to include the microscopic physics near the contact line, . . . .
pic phy In this paper we unravel the singular three-dimensional

for which various approaches have been prop&s et flow that occurs in “cornered” sliding drops, both theoreti-

ting dynamics thus involves length scales ranging from a I d X tallv. The first part of th ‘
microscopic length up to the capillary length, and forms acally and experimentally. 1he first part of the paper forms a

challenge that is not only of fundamental interest; dynamicfUII gxp03|tlon and expansion (,)f the self-s.|m|lar hydrody-
contact lines are crucial in many industrial applications sucHramic quel of f"‘ sharp corz[;ﬂg. 1_(C)]’ which has 'F’ee_”
as coating and paintin]@. prpposed in previous pape%ﬂs.. Ip tr_ns apprpach the liquid _
A particularly intriguing phenomenon is thagceding th|ckness.|s Qescrlbed by a similarity function of space vari-
contact lines become unstable beyond a critical sp&éd. ables, which is a common strategy near surface smgul_anu_es.
This “forced wetting transition” can be studied by withdraw- Indeed, the corner is reminiscent of other hydrodynamic sin-
ing a solid plate with a velocity, from a bath of partially ~9ularities, such as the pinching of a jet into dropfEtshe
wetting liquid; a liquid film is deposited above a critical selective withdrawal transitioft, or the formation of a cusp
value of the capillary number Cagtly/y, where s and y  between two rotating immersed cylindéfsFor the first
denote the viscosity and surface tension of the liquid. Thigime, however, we investigate the self-similar velocity fields
instability exemplifies that the physics at the contact line hagnd provide a detailed comparison with experimental mea-
macroscopic consequences, since the critical Ca strongly déurements using particle image velocimetry. Figurés and
pends on the contact angle at the microscopic sédftEven  1(d) show the experimental and theoretical flow fields, re-
though close to the contact line the system is far from equispectively, which display a very good agreement. Our mea-
librium, one usually makes the strong assumption of impossurements reveal that the structure of the velocity field does
ing the equilibrium contact angle. Another open question ighot depend on the distance to the corner tip, and confirm the
what happens beyond the critical velocity. In particular, thepredictions of the similarity solutions also quantitatively.
contact line geometry often becomes truly three dimensionaParticular attention will be paid to the flow near the contact
Blake and RuschaR observed contact lines inclined with line, which turns out to be oriented perpendicularly to the
respect to the horizontal—this reduces the normal velocity otontact line®

1070-6631/2005/17(7)/072101/12/$22.50 17, 072101-1 © 2005 American Institute of Physics

Downloaded 28 Jun 2005 to 193.54.81.84. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


http://dx.doi.org/10.1063/1.1946607

072101-2 Snoeijer et al. Phys. Fluids 17, 072101 (2005)

(@) straight inclined contact lines away from the rear. Recent
measurements show thRtrapidly decreases as a function of
drop velocity whend becomes smaller than 9P,

Such a finite radius of curvature, however, puts forward
an intriguing paradox; while the normal velocity of the in-
clined contact linedJ, sin® is maintained at the maximum
speed of dewetting, the velocity at the rear remdigsand
thus exceeds this critical spefig. 2(d)]. In other words, a
straight contact line moving at such a high velocity would be
forced to emit little droplets or to leave a film. To resolve this
problem we develop a one-dimensional description for
curved contact lingswhich takes this curvature into account
up to the lowest order. We show that this gives rise to addi-
tional capillary forces that are responsible for an increase of
the maximum speed of dewetting with R/ This lowest-
order model provides a satisfactory agreement with experi-
mental results.

FIG. 1. (a) A silicon oil drop sliding down a glass plate coated with fluo- The paper is organized as follows. In Sec. Il we consider
ropolymers develops a singularity at the rear above a critical veldtlly.  the |ubrication equations in the limit of Stokes flow, from
The corresponding velocity field in the laboratory frame visualized by tracer., . . . . .
particles using particle image velocimetfg) and (d) Modeling the inter- Wh_ICh we qe”Ve the general fo_rmallsm leadmg_ tf) the simi-
face by a sharp cone, we quantitatively reproduce the experimental velocitd@fity solutions. In Sec. Il we discuss the predictions of the
field, except at the very tip of the singularity; this cusp-like structure doesmodel concerning both the structure of the velocity field and
not seem to affect the velocity field away from the tip. that of the free surface. We then compare the obtained veloc-
ity fields to particle image velocimetr§PIV) measurements

in th q ¢ of th . tigate the t performed on silicon oil drops sliding on a glass plate coated
h the second part of the paper we Investigate the trang ., fluoropolymers in Sec. IV. In Sec. V we investigate the

sition from rounded drops to cornered.drops in more deta“t:urved score” of the singularity by developing a model of
As can be seen from the photographs in Fig. 2, the corner '%fynamic curved contact lines. We derive the lubrication

the rear of the drop is never infinitely sharp but has a nonzergquaﬂon in the limit of small contact line curvature and show

radius of curvaturd; there is a small-scale cutoff at which that the additional curvature postpones the forced wetting

the smgglanty Is regularized. This is n conflict W'.th,the transition. The paper closes with a discussion in Sec. VI.
assumption of a sharp coieas well as with the prediction

of another recent model based upon a gravity-capillarity
balance®* Despite this rounded edge there is still a well- Il HYDRODYNAMIC DESCRIPTION OF FLOW
defined corner angleb, following from the two nearly IN'A CORNER GEOMETRY

(©

A. Physics of three-dimensional corner flow

We will first investigate some general aspects of the
three-dimensional flow occuring at the rear of a sliding drop
exhibiting a corner. Indicating the location of the interface by
z=h(x,y), we consider drops of conical shape

h(x,y) & xH(y/x), (1)

where the definitions of the axes are given in Fifc)1We

thus assume that cross sections at a given distanage
self-similar and depend only on the ratjéx. Since in the
experiments of Refs. 23 and 24 the drops flow at low-
Reynolds numbers, the flow can be described by the Stokes

equations,
V-u=0, 2
- Vp+7Au=0, 3

where the three-dimensional velocity fieldand the pressure
FIG. 2. (a) and (b) Increasing the sliding velocity, one encounters a p E.l.l‘e functions of the spatial _coordlnatie,sy, andz. Th_e
transition from rounded to cornered drops that is characterized by a rapifieight at the rear of the drop will be well below the capillary
decrease of the radius of curvatuRe,of the rear(c) Side view of the drop length |7: \“”’y/pg, so we have omitted the gravitational

shown in(b), from which the apparent macroscopic contact arjle ex- : ; ; ; ; ;
tracted.(d) The corner angl® is defined from thénearly straight inclined forces in Eq'(3)' In this regime the viscous flow is entlrely

contact lines at the side of the drop; their normal velody,sin®, is  driven b_y the capillary pressure at Fhe free SUI'.f@GE‘)/K,
observed to remain constant Refs. 20, 23, and 24. wherex is the mean curvature of the interface. It is clear that
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the capillary number CasU,/y becomes the relevant di- C. Lubrication approximation
mensionless parameter describing the balance between vis-
cous and capillary forces.

One can now recover the scaling behavior of the corne
flow from a simple dimensional analysis. For the interface
height described by Eq1), the only length scale is provided
by x, the distance to the corner. The curvatuteand hence
the pressure, therefore have to scale as Ebllowing Eq.
(3) we obtainAu=0(1/x?), so that the velocity field itself
should only depend on the combinatiop/< and z/x; since
all lengths are now rescaled by this yields a Laplacian 1 (M
~1/x?. One can indeed show that Eq®) and (3) allow U(va)zﬁf dau(x,y,2). (5
scaling solutions of the type 0

We will now briefly repeat the derivation of the equation
for H(y/x) in the well-known lubrication approximation, as
bresented by Limat and StofIn the limit of small angles

it is well known that the velocity field becomes parallel to
the inclined plangu,=~0) and has a simple Poiseuille-like
parabolic vertical dependence. With the no-slip boundary
condition at the bottom plate the viscous term in E8).
becomes -3U/h?, where

Another consequence of~=0 is that the pressure becomes

independent of and simply readp(x,y)=-yAh, so that Eq.
~[Yy z
u(x,y,2) = U(;,)-(), (3) reduces to
3pU
) vah- 7= =0, ©)
= 35{22) T
PXY2= Py

whereU is the two-dimensional2D) depth-averaged veloc-

ity in the frame attached to the inclined plane. Throughout
The relevance of these corner solutions will be illustrated inthe paper we always work in this laboratory frame. Note that
Sec. IV, where we present experimental measurements of thé represents a local fluid velocity, which, in general, will be
velocity fields. Indeed, we observe a large range of distancedifferent from the global drop velocity. This equation should
from the corner tip in which the velocity only depends onbe complemented with the depth-averaged mass continuity
y/ X, supporting the hypothesis of a self-similar corner pro-equation

file. To make a more quantitative comparison for both the
velocity fields as well as geometrical properties of the cone, dgh+V -(hU)=0. ()

we will explicitly resolve the flow equations within the lu- props sliding at constant velocity, with constant shape can
brication limit for whichh/x<1. be described by an interfatéx—Ugt,y), so that upon elimi-
nation of U, we obtain an equation fdw(x,y),

3Caih=V -[h®V Ah], (8)

B. Corner flows: Three-dimensional capillary forces

Before we continue the analysis, let us briefly discuss the
driving mechanisms of the flow in the corner. In order towhere Ca=U,/y is the capillary number. If we now insert
maintain a viscous flow one requires gradientsaapillary)  the similarity ansatz
pressure; the height of the drop at the rear is too small for

gravity to play a role. Let us first consider the flow at the Y : _Yy

central axis of the drop, which is located yt0. Due to hixy) = Ca*xH(),  with £ x’ ©
symmetry, the local fluid velocity will be purely along the ) )

downwardx direction. At this symmetry axis the interface of One obtains an equation fét(Z),

the cone is flat along, but curved along the direction. 1+ 2)2(H3H + 371+ 2(HH,), + 2¢(1

Since cross sections at fixed distance from the xedo not (+¢ )2( . e+ 3L 25 )3( @it 24

change shape but are simply scaledxpythis “transverse” +OHH + (L4 3)HH,=3(H-(H). (10

radius of curvature increases withthis results in a decreas- This equation no longer depends explicitly on the capillar
ing capillary pressure, and hence provides a driving force. So d 9 P plicttly piiary

at the symmetry axis of the drop, the flow is entirely drivennumber ca.
by gradients of théransverse curvatute

This is very different from the flow near a one-
dimensional moving(straigh} contact line, which is the The corner profileH({) is governed by a fourth-order
common theoretical benchmark for contact line dynamics. Irequation, so we have to specify four boundary conditions.
this case the flow is perpendicular to the contact line. In thddue to symmetry around=0 we have to imposéd’(0)
direction perpendicular to the flow, the interface is flat, so=H"(0)=0, so one is left with two free parametdi$0) and
there is no transverse curvature; the driving force is nowH”(0). As an example, Fig.(d) displays numerical solutions
provided by strong curvatures of the interfadengthe flow  of Eq. (10) that haveH(0)=3, but with different initial cur-
direction. While globally the flow in the corner geometry is vaturesH”(0); a similar scenario is found for othé(0).
more complicated, we will show that the physics near theOne sees that for small initial curvatures the solutions do not
contact line aty/x=tan® reduces to that of a one- tend to zero, but, in fact, have a minimum height. This
dimensional(1D) moving contact line. clearly does not correspond to the situation of a droplet with

D. Boundary conditions
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crease of capillary pressure alofigrhis results in a nonzero
“outward” flux hU, . When approaching the separatrix, how-
ever, the height of the minimum will ultimately tend to zero
and hence yield a vanishing fluldJ, — 0.

In the regime to the left of the separatrix, on the other
hand, one truly encounters the singularity. Close to the con-
tact line at{,=tan®, Eq. (10) will be dominated by the
highest derivatives and reduces toL+¢)%(H%H,),
=-3{H,. This equation can be integrated once,

3tand® c
2 —
(1 +tarf ®)°H" = - o +m,

H()

(12)

wherec is the integration constant. First, note that this equa-
tion has the same structure as the lubrication equation for a
one-dimensional contact line, which reat¥=-3Cah?.
Second, we show in Sec. Il that the fluid velocity close to
the contact line is proportional tei?H”, so that only the
solution with c=0 corresponds to a finite velocity. Far
<0, the singularity gives rise to an unphysical source term at
the contact line, which yields a nonzero global flux. For
>0, on the other hand, the sign of the derivatives will
change aH=c/(3 tan®), which will later on give rise to a
minimum. There is thus a single value df(0) that corre-

_ _ _ o sponds to the physical solution, which verifies0.
FI”G 3. Solgthns of Eq(10) with H(0)=3fqr different initial curvatures To summarize, we have identified a one-parameter fam-
H _(Q). The solid Ilne‘ represents the separatrix betwgen solutlon‘s that have ;|1 . .
minimum and solutions that tend to zer) Only this separatrix obeys Iy Of self-similar corner profiles. In order to make a com-
global mass conservation; the total integrated () should vanish as  parison with experiments, it is convenient to simply param-
H(¢) becomes zer¢Ref. 36. etrize the solutions by the corner angbe=arctan/,, where
{. indicates the location wherel— 0. This illustrates the
strength of our analysis; for each value of the corner angle
?he model provides a prediction without any adjustable
parameters’

H©)

a contact line; in fact, we show below that there is a nonzer
flux of liquid from the “droplet” into the “reservoir” region
to the right of the minimum.

For strongly negatived”(0), on the other hand, the so-
lutions do tend to zero and one encounters the usual conta
line singularity asH—0. In general, however, these solu-
tions violate global conservation of mass; in order to be &A. Velocity profiles
physically reasonable solution of a drop sliding at steady
state, it is necessary that in the frame comoving with thc.?S ¢
drop, thex flux integrated over a cross section is z&td@his
argument is expressed mathematically by calculatingxthe
flux betweeny=-{x and y=¢x, which will be denoted by

. RESULTS FOR THE SELF-SIMILAR CORNER
ODEL

Perhaps the most interesting feature of the corner model
hat it predicts the nontrivial two-dimensional velocity
field that occurs within the corner singularity. Using E6),
this velocity field follows from the height profile abl
=(y/37)h?V Ah. Numerical evaluations of this equation lead
F(9), to the vector representation of flow fields displayed in Figs.
¢ , o 3 4(a) and 4b), for two typical values of the opening angle
F(Q) :f dZ H3<[§ &%+ DHypr]pr + m) (11) Upon a close inspection of these velocity fields one finds
0 that, close to the contact line, the direction of fluid flow
For a derivation of this integral we refer to Ref. 29. This flux always becomes perpendicular to the contact line. To eluci-
should vanish whehi(¢) tends to zero. In Fig.(®) we there-  date this intringuingly robust observation it is convenient to
fore show a parametric plot d¥({) vs H({); only a single introduce cylindrical coordinateg=r cose, y=r sin¢, and
curve obeys the zero-flux condition when approaching theo consider the radial and azimuthal velocity componédts,
contact line. Hence for eadt(0) there is a uniquéi”(0) that  and U, respectively. We use the symbelto indicate the
corresponds to a physical solution of the problem. angle within the corner, so thatb< ¢<®. The velocity
Let us now argue that this physical solution is preciselycomponentsJ), andU,, are plotted next to the vector fields in
the separatrixbetween the solutions that tend to zero and the~igs. 4c) and 4d). At the symmetry axisp=0, the flow is
solutions that display a minimum in Fig. 3. We already men-always purely radial as expected, sirlidg=0. Note that at
tioned above that whenevet has a minimum, the fluid ve- ¢=0 the velocityU, is always larger thaltlJo.37 At the con-
locity is directed from the drop region into the reservoir re-tact line (¢=®), on the other hand, the radial component
gion. This can be understood directly from Figa3 the vanishes and the flow becomes purely perpendicular to the
increase oH” when approaching the minimum yields a de- contact line. This property of perpendicular flow near a mov-
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FIG. 4. On the left we show the velocity fields as predicted by the corner

model for two opening angles=60° and®=35°. The plots on the right 0 0.5 1 1.5 2 2.5 3 35 4
represent the corresponding radial velodify (dotted ling and the azi- Hp

muthal velocityU,, (solid ling). SinceU,=0 at ¢=®, the velocity is locally

perpendicular to the contact line. FIG. 5. Relationship between the corner anglendHy,=tang/Ca’. The

solid line is obtained by numerical solution of E@.0), which for small
angles takes the asymptotic form of E#4) (dashed ling The symbols are

. . . . .__experimental data on drops of silicon oil for various viscosities, from Ref.
ing contact line is not special for the corner model, but, ingg’

fact, it constitutes a fundamental property of moving contact
lines?® a tangential velocity component would require di-
verging (or at least extremely largeradients of the curva-
tures of the contact line itself. Hence, for macroscopicallyz=0, which is twice the corner angie, and the angle in the
straight contact lines, i.e., contact lines with radius of curva{X,2) plane aty=0. The second angle can be measured from
ture much larger than the molecular scale, the tangential vea side view of the drop as the apparent contact afgeg.
locity component has to vanish. We have been able to ex2(0)].
perimentally confirm this property of perpendicular flow near ~ The value of targ can be obtained directly from E)
the contact line, both in the corner regirt®ec. I\V) and for ~ as tand=H(0)Ca"3. The model thus provides a relation be-
rounded drop&> tween# and ®, sinceH(0) is uniquely related tab. This is

In order to discuss the physics near the contact line irllustrated by the solid line in Fig. 5, showinB as a function
more detail, let us consider the explicit expressionsoénd  0f H(0). The symbols appearing in the same figure have been

U, in terms ofH, deduced from experimental measurents @&f via H(0)
=tang/Ca'’®, for a range of values ab. We thus find a good
Yo __ EHZH" cose(1 +tarf ¢), agreement between the prediction of the corner model, with-
Uo 3 out any adjustable parameters, and experiments. Note that

(13 strictly speaking the lubrication approximation is only valid

U, 1., in the limit of small slopes, while in the experiments one
UJ(; B §H cose(1 +tarf ¢) encounters angles up to 25°. One could thus expect minor
, ” quantitative differences.

X[3H" tang + H" (1 + tarf )]. The solid line in Fig. 5 has been obtained numerically,
These velocity components are independent of the radial didut it is possible to obtain an approximate description for the
tancer. As we saw in Fig. 4, the radial velocity, vanishes relation betweend and @, in the limit ®<1. Since at{
at the contact line. According to E@13) this implies that =tan® one always encounters the boundary conditién
H?H”—0 asH— 0. At the same tim&J,, and hencé4?H”, ~ =0, one can attempt a scaling solution of the fok)
remains finite. This is consistent with E(L2); the physical =cH(//tan®); the argument oH can take values between
solution for whichc=0 hasH?H”=-3 tan®/(1+tarf ®)2. -1 and 1. Since the radial fluid velocity, and hertd&H”,
Inserting this into the expression ftr,, one finds thaJ,  should remain finite, we find that®=tar? ®. Inserting this
=-U, sin®. Hence, we find that at the contact line, the Iocalscalmg form in Eq.(10), one derives that at the symmetry
fluid velocity coincides with the normal velocity of the mov- axis H"’(0) = tar? ®. The deviations from a simple parabola
ing contact line. In this respect, the hydrodynamics close tqhys become increasingly small d@— 0.3 Combining a

the contact line in the corner regime is really the same as thgdarabolic form ofH({) with the zero-flux conditionF(Z,)
of a 1D contact line with a reduced velocity, sin . =0, [Eq. (11)], one obtains

B. Geometrical properties tard 9= 3—5Ca taf d, whend <1, (14)
. o 1
The corner model also provides a prediction for the geo- 6
metrical properties of the interface. From Fidc)lit can be  which has been plotted as a dashed line in Fig. 5. Note that
seen that the cone has two characteristic angles that are edise prefactor of the parabolic approximation in Ref. 29 is
ily measured experimentally; the angle in they) plane at  slightly different, due to a planar approximation of the flow.
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(@) were obtained by averaging over 20 pictures. Such measure-
ments on drops exhibiting a corner are rather difficult since
the presence of the tracers perturbs the shape of the drop near
the corner tip and induces pearling, i.e., emission of little
droplets. We have therefore been limited to a measurement
on a drop that exhibits a cusp-like structure at the (Eag.

— ~ 6). As will be shown below, this does not seem to perturb the
velocity field in the region away from the cusp.

The fact that not all tracers are localized at the free sur-
face makes it difficult to access the absolute values of the
velocities. The velocity field in the vertical direction is
Poiseuille-like, which has a maximum at the free surface and
is zero at the plate. One effectively averages over tracers at
different heights, but the precise distribution of particles can-
not be controlled. Although this leads to an uncertainty for
the absolute values, the direction of the velocity at a given
FIG. 6. (a) Schematic picture of the experiment; drops of silicon oil are horizontal position(x,y) will be independent of the height.
depqsited on an inclineq plate covered with tracer parti¢l®sThe drops Therefore, the angl& defining the orientation of) can be
are filmed from above using a charge-coupled de(@@D) camera(c) The . - .
trajectories of the tracers in the frame attached to the inclined plane obtaine@easurec{ with a much greater precision and will be the cen-
from superposition of successive images. Note that the trajectories statfal quantity of our study—the definition oF is provided in
perpendicular to the contact line. Fig. 7(c). We furthermore obtain interesting results for the

velocity components as well, albeit with more experimental
noise.

(b)

IV. PARTICLE IMAGE VELOCIMETRY
MEASUREMENTS B. Experimental results

In order to test the self-similar corner model in more The main prediction of the corner model is that the ve-
detail we now present experimental measurements of the veocity field should be independent of the distance to the cor-
locity profile at the rear of sliding drops, obtained by PIV. In ner tip. To verify this self-similarity, we have plotted the
Fig. 1 we have already seen that the experimental and theexperimental results with different symbols according to the
retical flow fields are qualitatively very similar. In this sec- distance to the tip; the slices drawn in Figaj7each have a
tion we provide a more quantitative comparison and indeegyidth of 52 um. Note that we have defined the origin
confirm the self-similarity of the velocity field in the experi- (X,y):(o,()) by extrapo]ating the Straight contact lines away
mentally accessible range. from the cusp. We first consider the orientation of the veloc-
ity field, ¥, as a function of the positiop. The data shown
in Fig. 7(c) indeed collapse onto a master curve that is inde-

To visualize the velocity field at the rear of sliding drops, Pendent of the distance from the corner tip. The velocity field
we performed experiments on partially wetting drops con4dn the corner regime is indeed self-similar, at least within the
taining tracer particles. The experimental setup is sketched ifxperimentally accessible range, which comprises at least
Fig. 6. We consider millimeter-sized drops of silicon 6if ~ half a decadéfrom 52 to 312um). As a further test of the
=50 cP;y=20 mN nT?), sliding down an inclined glass plate corner model, we imposed the curdé as a function ofp
coated with fluoropolymer&=C725, sold by 3N These con-  obtained from the model fod =35° (solid ling). Given the
ditions are the same as in Refs. 23 and 24, and provide fact that there are no adjustable parameters, this curve is in
situation of partial wetting with a relatively small hysteresis very good agreement with the experimental data; small dif-
of static contact angleéf,, between 45° and 52°When ferences could be due to the assumption of small slopes un-
sliding at a velocityUy,=3 mm/s (Ca=0.0075, the drops derlying the lubrication approximation.
exhibit a corner at the rear. Particles with diameters ranging In Fig. 8 we have plotted the velocity componeits
from 1 to 10um are homogeneously dispersed on the plateandU,, as a function of the positiop. These measurements
so that a passing drop drags the particles downwards. Thi&re obtained from an average over particles at different
way, the majority of the tracers remain either at the freeheights, and therefore are much more scattered than the
surface of the drop or at the solid-liquid interface. data for¥. To account for this averaging we have further-

The trajectories of the tracers in the frame attached to thewore rescaled the data by an empirical factor of Wg5f
inclined plane can now be visualized by superimposing im-all particles would be localized at the free surface, one
ages obtained at different times. We can already note frorwvould require a factor of 3y/2. Although the data are rather
Fig. 6(c) that these trajectories leave the contact line perpenroisy, the results are consistent with the velocity fields ob-
dicularly, as was anticipated in Sec. Ill. A quantative mea-tained from the corner moddkolid and dashed lingsin
surement of the local fluid velocity can now be obtained byparticular, it is clear that the radial velocity at the contact line
particle image velocimetry, using the correlations betweervanishes, so that at the contact line the fluid velocity is truly
two successive pictures; the results presented in this papeerpendicular.

A. Experimental setup
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reproduced in Fig. 9; while the contact line curvature re-
mains almost constant at low Ca, one observes a dramatic
increase of 1R when the singularity is formed at the rear. A
similar curve is obtained for the contact anglewhich has
been measured at a macroscopic scale. It is well known that
this macroscopic angle decreases for increasing Ca, and the
experimental results in Fig. 10 clearly show that the transi-
tion to the corner occurs at a nonzero angle.

These observations provoke two fundamental questions.

First, it is found experimentally that the corner angle adjusts
_ itself such that the normal velocity, Ca sin remains at the
maximum speed of dewetting CéRefs. 20 and 24(see Fig.
2). The contact lines away from the rear are thus inclined
. with respect to the horizontal in order to avoid entrainment.
At the rear, however, the local velocity of the contact line
doesexceed this maximum speed Chut still the drop does

xy)=(0.0)

/ . \

80 T T T T T T

(@)

60 —

40

20

W (deg)

o

20 —

o "'f-;_ 7 not leave a film or little drops. A first problem is thus to
0 - ® understand why curved contact lines can avoid entrainment,

| | 1 . \ | | even above GaA second intriguing observation is that the

(C)'g% T 20 0 40 length scaleR at which the corner singularity is regularized

(=100 um) is neither the capillary length nor the micro-

FIG. 7. (a) To test the self-similarity of the velocity, we have divided our scopic molecular length; what determines the length scale of
data into slices of 52sm width, at different distances from the corner tip. R?

The position of the tip is defined by extrapolation of the contact lines away . . L
from the cusp(b) Definition of ¥, the orientation of the local fluid velocity To address these questions we will develop a description

U. (c) The experimental data foF as a function ofp collapse on a single  Of curved moving contact lingg which the transverse cur-

curve, due to the self-similarity of the velocity field. This master curve is in vature effects are taken into account up to the lowest order.

good agreement with the prediction of the corner model. We indeed find that the transition to entrainment is post-
poned by curving the contact line, and our results are con-

V. REAR OF THE DROP: A MODEL FOR CURVED sistent with experiments.

CONTACT LINES A. 1D lubrication equation for curved contact lines

In Sec. IV B we have seen that the self-similar conical
model provides a very good description of the flow within
the corner. To be precise, it agrees with the experimental da
in the regime where the contact lines on both sides of the
symmetry axis are nearly straight. However, the contact line
at the rear of the drop never forms an infinitely sharp corner, 35U
but was found to have a well-defined radius of curvattre — (dh + dyyh)|y=0= —h—;
(see Fig. 2. The experimental data of Ref. 35 have been Y

Let us consider the effect of contact line curvature right
at the symmetry axis of the drophe governing lubrication
uation becomes

(15

which, in fact, is thex component of Eq(6) at y=0. Thex
component of the velocityJ,, is equal to the global speed
U, at the rear of the drop, while in the self-similar corner
regime it is slightly larger thatJ, (see Fig. 4. In order to
keep the discussion transparent, however, we simply take
7 U,=U, to be constant throughout the analysis—in the Ap-
1 pendix we demonstrate that this hardly affects our results.
_ For a straight contact line one trivially hagh=0, so
that the problem becomes purely one dimensional, in the
sense that there is only a dependencecoRor curved con-
tact lines, however, this transverse curvature term gives a
nonzero contribution and starts to play an important role
when increasing 1R. In the Appendix we derive that,h
3 =-h/(xR) up to the lowest order in R, so that one still has

a closed one-dimensional description of the problem. This
6.8 Velod o andU. obtained _ I at dif lowest-order contribution of the contact line curvature can be
e e e e b gy Inerpreted as a parabolic approximation of the cross secion

(dashed and solid lines, respectivelffhe radial velocity vanishes at the at @ giyen distance from the regrbut it is possible to show
contact line, indicating a locally perpendicular fluid velocity. more rlgorously that

UyfUo, Up/Ug

051

-40
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h"’+~i Q—h’ =@, a7
R \X h?

where Ca Ca/tar} Ocq andR=Rtan feq Sinceh andx are of
the same order, it is clear that the curvature term will start to

play a role whenR and h become of the same order of

magnitude. At small heights, i.eh<<R, the curvature term

will thus be small compared to the viscous term and the
physics reduces to that of a straight contact line. For experi-
mental measurements performed at a macroscopic $cale

=L, the relevant dimensionless parameter will thus. bR
Before we continue the analysis, let us try to understand
qualitatively how the extra curvature term affects the hydro-
dynamics of curved contact lines. For receding contact lines,
the slope of the interface decreases when increasing the
height of the drop, i.€.0macro< Omicror Therefore, the local

line represents the theoretical prediction for the maximum capillary numbeslopeh’ will always be smaller thah/X so that the 1R term

from Eq. (17); éac can only increase by dramatically increasingilﬂ'he

in Eq. (17) gives a positive contribution to the capillary

numerical values of Gaare not well predicted by the solid line, but a forces. In the opposite case @f ,.;c> Omicro this contribution

quantative agreement can be obtained by slightly modifying the microscopi¢yacomes negative. We thus anticipate that contact line cur-
boundary conditior{dashed line, see text

1/(h 1
= X_R<; - (9xh) + O(E) (16)

The higher-order terms originate from deviations from the
parabolic shape, and can only be computed from a compl

analysis incorporating thg dependence.

After rescaling thex direction with respect to the equi-
librium contact anglex=x tan 6, we thus find the following

one-dimensional equation for curved contact lines:

0.8

tan0/tan(gq
o
(=

=
=

FIG. 10. The symbols are experimental data of contact line curvatiRed /
macroscopic contact angke (Ref. 36. The solid line represents the mini-
mum contact angle from Eq17); the contact angle can only continue to

decrease by dramatically increasingﬁlﬂ'he dashed line was obtained with

|
0 80 SO P Heo 8

T T T T T T T

® 10cP q
o 100 cP
+ 1040 ¢P

/R (mm-!)

a slightly modified microscopic boundary conditi¢see texk

et

vature provides an additional capillary driving mechanism in
the case of receding contact lines, which helps to postpone
the forced wetting transition. For advancing contact lines,
on the other hand, it behaves as an additional source of
dissipation.

B. Boundary conditions

A hydrodynamic description of moving contact lines
raises the fundamental difficulty of the singularity tas- 0,
due to the divergence of the viscous forces. This singularity
should be resolved on a microscopic, molecular length scale
|, for example, by introducing slip boundary conditions®
In the spirit of Voinov we assume that, apart from viscosity,
there are no additional microscopic dissipation mechanisms,
so one can impose the equilibrium contact angleat this
microscopic scald.® It was furthermore shown by Eggers
that the macroscopic physics is only weakly dependent on
the precise slip law, so we are allowed to boldly cut the
solutions ah=1.2*°In rescaled coordinates we thus encoun-
terh’=1 ath=I atxy=I (x=0 corresponds to the position of
the contact ling At the end of this section we come back to
the validity of these two boundary conditions. Depending on
the chemical composition of the fluid, this microscopic
length should range from nanometers to several tens of na-
nometers, and we therefore take108 m 224

To close the problem we should provide a third boundary
condition, which in general depends on the global properties
of the droplet. Our description up to the lowest order in the
curvature is only valid in the vicinity of the contact line, and
hence, we cannot rigorously match the solutions of [#@)
to the global behavior of the drop. However, it was recently
demonstrated that the critical capillary number for the prob-
lem of a plate withdrawn from a bath only weakly depends
on the global geometrﬁﬁ, the explicit dependence on the
inclination angle of the plate shows up as a logarithmic fac-
tor. This allows us to perform the following semi-
guantitative analysis. The solutions of Ef7) should cross-
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over to the corner solutions, which hawgh=0 at a curve (solid line) but the numerical values of Califfer by
macroscopic scale. In order for the solutions to have suf- apout a factor of 2* Let us now make the following obser-
ficient overlap, we therefore tak#'=0 ath=L as the third  vation. Within the lubrication theory, the numerical value of
boundary condition for Eq(17). Such anad hocboundary  the critical capillary number is very sensitive to the micro-

condition indeed provides a reasonable estimaNte ferféa  scopic boundary condition org,hl;, since C@:éac( ahl3.
straight contact lines we numerically obtain that.Gaales That is, if the slope of the interface at a microscopic scale
roughly as 1/16L/1), and the precise values lie within 30% would be about 20% smaller than the equilibrium contact
(Ref. 40 of the exact results of Ref. 16. Although our ap- angle 6., one would already lower the critical capillary
proach is not rigorous, we are confident that it provides anumber by a factor of 2. This is illustrated by the dashed
semi-quantitative description of the dynamics of curved concurve in Fig. 9, which has been obtained from the micro-
tact lines. scopic boundary conditioh’ =0.8 (instead ofh’ =1). Given
Since in typical experiments the maximum height of thethe fact that overall, the theoretical predictions of the lubri-
drops is less than a millimeter, we take=10* m, so that cation theory work very well, the experimental data suggest
L/I=10% However, let us make the following important re- that at high Ca, the microscopic contact angle starts to devi-
mark.A priori, it is not clear at what scale the curved contactate significantly fromée,
line solutions should be matched to the self-similar corner
solutions. This matching should occur well below the capil-D- Qualitative features from energy balance

lary length (=1 mm), but in principle it could be much As was shown by de Genn&spne can obtain a simpli-
smaller than the experimental scalelf this were the case, fiaq, put very insightful description of dynamic contact lines
however, one should even find smaller valuegaan those  fom a global energy balance. Formally one would obtain a
presented in our paper. In this respect, our analysis possibyenth-averaged energy balance by multiplying both sides of
underestimates the curvature of the contact line at the reédEq. (17) by hU,, and integrating once from a microscopic to

We come back to this point in the Discussion at the end of, macroscopic positior. By estimating the contribution of
the paper. each of the terms, one already captures qualitative features of

the physics. Note that different approaches or approxima-

tions can lead to slightly different laws for the macroscopic
To investigate how the extra curvature term affects thecontact angle as a function of ¢4°Our aim here is not to

dynamics of receding contact lines, we have numericallyfine-tune any of these models, but just to illustrate how con-

evaluated Eq(17) for different values of 1R, with the pa-  tact line curvature might affect the dynamics.
rameters specified in the preceding paragraph. We found that Oné can estimate the integrated viscous dissipation by
beyond a certain value of the capillary numbNer: Ghere no approxmatmg the gepmetry near the contact ".”e by_a wedge
I . . . . . ' with a macroscopic contact angled; this vyields
onger exist solutions consistent with the imposed boundary i ~ S
conditions. This corresponds to the maximum speed of dew37Uo In(L/1)/tan 6. Without the 1R term, this dissipation

etting or the entrainment threshdft’® Interestingly, this should be compensated by the unbalanced Young force
dyUO(cosa—cosaeq), resulting into de Gennes’ law for the

(Eac depends on the curvature of the contact line; the soli . ) 4 .
L ~ . L~ o macroscopic or dynamic contact angﬂé Even though this

line in Fig. 9 shows that Gancreases with 1R This implies  5.0,ment ignores the strong curvatures of the interface it
that the drop can avoid entrainment by increasing the contagf,es capture the entrainment transition at a nonzero contact

line curvature at the rear. angle, as observed for the sliding drdfig. 10. Note, how-

Th|s entr4a|_nment threshold oceurs at a nonzero MacrOayer, that the predicted anglé,= 6.,/ \3, is somewhat larger
scopic slopé? i.e., h’#0 ath=L. In Fig. 10 we plot this

A than those observed experimentally.

critical slope, tar,, as a function of 1R (solid line); the Let us now estimate the contribution of the additional

critical contact angle decreases as a function of the contagérm in Eq.(17). In Sec. V A we argued that this term pro-

line curvature. This is in good agreement with the symbols,ides additional capillary forces for receding contact lines

representing experimental measurements of the macroscopig< 4,,), while it favors dissipation for advancing contact

contact angle as a function of R/ This angle is first ob- lines (6> 6,y). At low speeds we can therefore expect the

served to decrease continuously, due to an increase of Citegrated contribution to scale é&4~6)/R, so that we ob-

without significant changes of the contact line curvature. Apiain a modified energy balance,

proaching the critical speed of dewetting, however, a further

decrease of the contact angle has to be accompanied by a PP+ aE[G B 01) _ 6Ca InL/l)

dramatic increase of the contact line curvatures. This in- & R- ¢4 0

crease is well predicted by E¢L7). The experimental data

do not extend belonR~80 um, around which a cusp is where we have developed cédor small §. The factorL

formed at the rear of the drop and small droplets are emittecemerges from the integration frohto L, and « is expected
Analyzing the experimental data in terms of the capillaryto be of order unity.

number, however, we find a striking quantitative discrepancy  Although the linear correction term in E(L8) can only

with the prediction of our model; the experimental databe justified in the limit of small Ca, it is interesting to see

shown in Fig. 9 follow a similar trend as the theoreticalthat Eq. (18) indeed predicts a shift of the entrainment

C. The entrainment threshold for finite R

: (18
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FIG. 11. The critical capillary numbé_fgaand critical slope, tafi;/tan 6, as a function of the dimensionless contact line curvatilréR obtained from Eq.
(18). These features are in qualitative agreement with full simulations of .

threshold due to curvature of the contact line. This is illus-bal shape of the drop, it cannot be expected to describe struc-
trated in Fig. 11 where we plot Cand the miminum angle tures of scales below the capillary length. For example, the
6. as a function of the curvature, computed from Etg).  existence of a purely conical shafféig. 2(c)] crucially re-

This qualitatively reproduces the features of the full numeri-quires viscosity; a balance between gravity and surface ten-

cal integration in Figs. 9 and 10. sion would yield a strongly convex side viélTo further
quantify this we have estimated the distance from the contact
VI. DISCUSSION line at which gravity and viscous forces attain the same mag-

In this paper we have analyzed the three-dimensiondpitude, directly from our experimental da%.Flggre_ 12
flow and morphology of the corner singularity at the rear ofClearly shows that VISCOSI’Fy dominates over gravity in basi-
sliding drops. We have provided a detailed comparison bec@lly the entire corner region. _
tween theoretical predictions from similarity solutions of the ~ Let us also mention that there exist fully two-
lubrication equations, and direct experimental measurementgimensional numerical simulations using a disjoining pres-
The relevance of the similarity solutions is emphasized bysure with a precursor film, in which cusping droplets have
the excellent agreement for the nontrivial velocity field at thebeen observet** At present, however, such simulations
rear of the drop. A striking feature of this flow is that the €an only incorporate a limited spatial resolution, i.e.,
fluid velocity at the contact line is always oriented perpen-micro/l,~107%, and appear to miss the experimentally ob-
dicularly to the contact line, while its absolute value coin- served evolution of the corner singularity as a function of Ca.
cides with the normal velocity of the contact line. In this paper we avoid this numerical problem by residing to

We furthermore analyzed the transition from rounded toone-dimensional descriptions of the two-dimensional flow,
cornered drops, by developing a model for curved contacwhich allows resolving the physically relevant length scales.
lines. We found that the forced wetting transition can be  The present work provokes a number of questions. The
postponed by increasing the curvature of the contact line aritical values of Ca predicted by the curved contact line
the rear of the drop. This strongly curved part serves as godel differ by about a factor of 2 from the experimental
small-scale regularization of the corner singularity, and itsvalues. A similar disagreement was encountered by Hocking
typical length scale decreases rapidly when Ca approachedor the problem of a plate withdrawn from a bafhwe sug-
the transition. The general scenario is thus thatdrop can  gest that this may provide fundamental information on the
avoid the forced wetting transitioby simultaneously devel- microscopic boundary conditions; one recovers the experi-
oping a strongly curved contact line at the rear of the dropmental results when taking a microscopic contact angle
and the straight inclined contact lines at the sides. This morslightly below the equilibrium anglé, It would be inter-
phology mobilizes additional capillary driving forces due to esting to see whether this could be captured by including a
interface curvatures perpendicular to the direction of themicroscopic disjoining potentidl®*****Such an approach
flow. allows us to explicitly incorporate microscopic physics, from

The results presented in this paper strongly suggest thavhich effective microscopic boundary conditions emerge
the structure and the flow in the corner are entirely governedvithout additional assumptions. Results by Thiele, Velarde,
by a balance between viscous and capillary forces. This corNeuffer, Bestehorn, and Poméawand Thiele, Neuffer, Be-
trasts the approach by Ben Amar, Cummings, and Porffeau,stehorn, Pomeau, and Velaféén which contact angles are
in which all viscous forces are assumed to be effectivelyobserved to decrease with velocity even at very small scales,
localized at the contact line so that the shape of the freappear to be consistent with our findings. Another reason for
surface follows from a balance between gravity and surfacéhe discrepancy may be that surface roughness, which has
tension. While this assumption allows us to resolve the glohot been taken into account here, can lower the critical
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h(x,y) = f(x)[1 - &] [ 1+ a2n(X)§2“} - (A1)

viscosity > gravity n=1

The functionf(x) is simply the height profile at the symme-
try axis of the drop, i.e.h(x,y=0), while we write the cross
viscosity < gravity section of the interface in a polynomial expansion. We have
conveniently factored out the term that vanishes at the con-
tact line. Note that the function(x) and a(x) implicitly
depend onR; eventually, the goal is to determine how the
kz center profilef(x) is affected by a finiteR.
- In Eg. (15) we have to evaluaté,,h at the symmetry

FIG. 12. One can separate the viscosity-dominated regime from the gravity"-;‘xIs y=0. Using the parametrization introduced above this

dominated regime by equating the corresponding terms in the full lubricaPd€COMES

tion equation(Ref. 42. It is clear that viscous effects are dominant in the

entire corner regime, and not only close to the contact line. The remarkable 1 f ,

asymmetry between the front and the back of the drop has two orig)ns: (9xyy h|y:0 =-—|@1- az)ﬁx ] —a” |, (A2)
dh/ax>0 at the rear and therefore reduces the effect of gravity, while at the R X X

front oh/9x<0, so that gravity is enhancd&ef. 42. (ii) the macroscopic

contact angles at the rear are much smaller than those at the front, resultiri:y’ld thus requires EXp”Cit knowledge ﬂf(X)- Let us now

into larger distances to attain the cross-over height. make the following crucial observation. In order to avoid a
singularity of the slope of the interface when going around
the drop, it turns out that a#(x) should vanish ag— 0. For
example, the contact angkeat the rear of the drop simply

speed® However, the values of the critical contact angle follows from tand=f’, while elsewhere on the contact line

predicted by this theory are much larger than those observed

experimentally. f(x) “ 2x
Finally, we have not addressed the selection of the cor- t@n#=|Vhl|.; = |1 + 2 an(x) [/1 "R (A3)
ner angle® as a function of the capillary number, which n=t

requires a proper matching of the singular behavipr_ near Fhﬁw order thatf varies continuously along the contact line, we
contact line to the global corner geometry. The difficulty IS thus require thaEa,,(x) vanishes in the limik— 0. Repeat-

that a tf“'y self—s_|m|lar .|nterface has no '!’““”S'C length SCakf"’ing the same argument for contours at arbitrary fixed values
and is incompatible with the usual wetting boundary condi- /<1, one finds that, in fact, atl,,(x) vanish individually at
tions imposed at a microscopic scale. We speculate that t "

finite curvature at the rear effectively provides a length scale;
only whenR becomes orders of magnitudes smaller than th%(x/R) sinceR provides the only length scale faf. This
capillary lengthl,, which forms the macroscopic cutoff, the results in the expression of E(L6)
corner can no longer obey physical wetting boundary condi- '
tions. This would explain why the formation of a cusp emit- 1/f 1
ting little drops coincides wittR/I,—0.% ydyy hly=0= X—R()‘( - f') + 0(@) (A4)

We can thus writea,(x) = a;x, which should be of order

Let us now address the approximation thafx)=U,
that was made in Sec. V. From the continuity equation it is

We are grateful to Howard Stone, Adrian Daerr andclear that this approximation disregards the velocity compo-

Bruno Andreotti for many valuable discussions. This worknené_uy:t alIJthougthy vanlshesTat the slynlmketr%/h axis, th;
was supported by a Marie Curie Intra-European FeIIowship?Jra lentd,Uy can be nonzero. To properly take these gradi-

(MEIF-CT2003-50200Bwithin the sixth European Commu- ents into account one should thus incorporate continuity and
nity Framework Programme start from Eq(8). Using the parametrization of E¢A1) and

keeping only the lowest order in R/ we then obtain a
fourth-order equation,

ACKNOWLEDGMENTS

APPENDIX: CURVED CONTACT LINES

1 f 1 f

In this appendix we derive the lowest-order term of the HLfH"]=3Cd" + E&X{fgﬁx[;(]} ' Eif%xx[)_(]' (A9
transverse capillary pressuggh for a moving contact line
that has a finite radius of curvatu® We then show that Without the last term on the right-hand side, one could im-
gradients of the velocity,(x) complicates the analysis pre- mediately integrate this equation to Hd.7). To investigate
sented in Sec. V, but that it has little impact on the results. the effect of the extra term, we have numerically integrated

Since locally, the contact line can be described by a pathis fourth-order equation; this yields results that are very
rabolax=y?/(2R), the relevant dimensionless variable in this similar to those presented in Sec. V. We have therefore pre-
problem will be é=y/\2Rx which can range from -1 to 1. ferred to discuss the physics of rounded drops using the sim-
Without loss of generality, we parametrize the interface as plified third-order equation instead of EGAS).
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