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Dripping is usually associated with fluid motion, but here we describe the analogous phenomenon of a 3He
crystal growing and melting under the influence of surface tension and gravity. The pinch-off of the crystal is
described by a purely geometric equation of motion, viscous dissipation or inertia being negligible. In analogy
to fluid pinch-off, the minimum neck radius Rn goes to zero like a power law, but with a new scaling exponent
of 1 /2. However, for a significant part of the neck’s macroscopic evolution the scaling exponent is found to be
much closer to 1/3. This observation may be consistent with simulations and theoretical results showing a very
slow approach to the asymptotic pinch solution, making the “critical region” very small, both in time and
space. After pinch-off, we observe a similar 1 /3-scaling for the recoil of a crystal tip, both in simulation and
experiment. For very early times our experiments are consistent with an approximate theory predicting an
asymptotic regime with exponent 1 /2. Future experiments must show whether the transient 1 /3 scaling is a
universal feature of crystal melting, or perhaps an artifact of our experimental setup.
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I. INTRODUCTION

A liquid jet coming out of a nozzle is unstable: due to
capillary forces, it splits into droplets: this is the well-known
Plateau instability �1�. When the drop detaches at a critical
time ts, its neck radius Rn tends to zero and the equations of
hydrodynamics form a singularity. The profiles near the sin-
gularity are self-similar, and Rn goes to zero linearly in time
�2�. In the case that viscosity is negligible and the dynamics
is dominated by inertial effects, a different critical behavior
was found, and the exponent becomes 2/3 �3,4�.

Here we present a third situation where both viscous dis-
sipation in the bulk and inertial effects are negligible. This is
the unusual case of crystals whose shape evolves by local
growth and melting in a situation where the temperature is
very homogeneous so that the driving forces are gravity and
surface tension, as for usual liquids. Dripping becomes a
purely geometrical effect for which simple arguments lead to
the prediction Rn��t1/2, where �t= �t− ts�. We were surprised
to find a �t1/3 behavior in the experiment but, as we shall
see, our results are compatible with a 1/2 exponent for very
small radii, and numerical simulations confirm that this
asymptotic behavior is reached at very small Rn only.

Helium crystals are known to change shape rather quickly
by local crystallization and melting �5�. These crystals are
very pure and can be studied in equilibrium or close to equi-
librium with liquid helium in cells where the temperature is
very homogeneous. As a result, their shape is governed by
gravity and surface tension, not by temperature nor by con-
centration gradients as in the usual crystals. Except when

facets come into play, the evolution of their shape looks like
that of flowing liquids; there is no mass transport inside the
crystals themselves, only some in the surrounding liquid
which allows local crystallization and melting. The dynamics
of 4He crystals is very fast at low temperature �5�. The dy-
namics of 3He crystals is not as fast as that of 4He but still
much faster than classical crystals: their shape relaxes typi-
cally in a few seconds at 0.32 K, the temperature of the
minimum in the melting curve where the latent heat is zero.
At that temperature, 3He crystals are not facetted and they
look like transparent drops of some viscous fluid like honey
although they are high quality crystals. We have recorded the
time evolution of their shape with an ordinary CCD camera.

In a previous paper �6�, we have taken advantage of the
properties of these 3He crystals to investigate the coales-
cence of crystalline drops. By analyzing video sequences
which had been recorded earlier by some of us �7� we could
verify a prediction by Maris �8� for the time evolution of the
neck which forms when two crystalline drops come into con-
tact. We found good agreement with theory, and it confirmed
that, with such crystals, coalescence is a purely geometrical
problem: as we shall see, the local velocity dRn /dt, which is
the time derivative of the neck radius is simply related to the
local curvature 1/Rn.

II. THEORY

The driving force for growth is the difference �� between
the chemical potential �L �per unit mass� of the surrounding
liquid and that of the crystal, �C. It is linearly related to the
growth velocity of the crystal vn by the relation �see Ref. �9�,
p. 74�

vn = k�� . �1�

The mobility k has been calculated and measured experimen-
tally �5�. Near Tmin=0.32 K, it is given by
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k−1 = 5.5 + �3.9 � 104��T − Tmin�2 m/s �2�

with T in K �7�.
Assuming that the crystal grows at constant strain, ��

can be calculated from a mechanical equilibrium between the
liquid and solid �see Ref. �9�, p. 18�. Neglecting the aniso-
tropy of the surface tension �, which is small for bcc crystals
such as 3He, this gives ���C=�pL�� /�L−�	, where 	 is the
local curvature and �pL is the pressure in the liquid relative
to the melting pressure. The physical constants are �
=0.06 erg/cm2 �10� �surface tension� and ��=�C−�L=5.7
�10−3 g /cm3 �density difference�. The liquid pressure �pL
includes a hydrostatic contribution; we will approximate �pL

by a constant, since the capillary length �c=�� / ���g�
=1.026 mm is large compared to the size of the pinch region.

If the radius of the axisymmetric crystal is R�z , t� �cf. Fig.
3�, the shape of the crystal changes according to

Ṙ = �1 + R�2k�� , �3�

where the dot and the prime are the derivatives with respect
to the time and space, respectively. We nondimensionalize R
with respect to the radius of the nozzle R0=0.5 mm: h�x ,
�
=R�z ,�t� /R0, where x=z /R0 and time is rescaled according
to 
=�tk� / �R0

2�C�. Then �3� leads to

dh

d

= −

1

h
+

h�

1 + h�2 + ��1 + h�2, �4�

where � is the nondimensionalized departure of the liquid
pressure from the value corresponding to equilibrium. The
first two terms on the right-hand side come from the mean
curvature of the crystal surface.

To initiate pinch-off, we will set � to a small negative
value in the simulations to be reported below. The radial
curvature �first term on the left-hand side�, drives pinch-off
as expected: a melting of the crystal �reduction in h and thus
in surface area� leads to a lower energy state. For small h,
Eq. �4� is dominated by the mean curvature terms, and thus
reduces to the famous �axisymmetric� mean curvature flow,
which has been studied extensively in the Mathematics lit-
erature �11,12�. In particular, this equation exhibits blow-up
at a finite time 
=0, corresponding to the pinch-off seen in
Fig. 2. If the second �axial� curvature term is negligible near
the minimum hmin=Rn /R0 of the profile, one ends up with

the simple equation ḣminhmin=−1. This can be integrated to
give

hmin
2 = 2
 , �5�

which is indeed the correct asymptotics for the pinching of
the neck, as we are going to see below. However, contribu-
tions from the axial curvature are only logarithmically sub-
dominant, so the convergence toward �5� is exceedingly
slow.

Before comparing the above prediction with experiment,
we need to describe more precisely how this experiment was
done. As already explained in Refs. �6� and �7�, 3He crystals
were grown at 0.32 K in a cell which had two parts con-
nected by a vertical capillary �see Fig. 1� and it was im-
mersed in a 4He liquid bath which provided a good thermal

homogeneity. When increasing the pressure of liquid 4He,
the double membrane in the upper part of the 3He cell was
deformed and the 3He pressure increased. When the 3He
crystallization pressure was reached, the first crystal seed
happened to nucleate in the upper part. It was grown by
increasing the 4He pressure further. When the 3He crystal
was large enough, it started invading the lower part, and
became visible at the lower end of the capillary �see Fig.
2�a��. At that moment, the pressure was fixed and the shape
evolved at constant total crystal volume. By exchanging
mass with its liquid phase, i.e., by local growth and melting,
the 3He crystal started to move down because of gravity.

At Tmin=0.32 K, the latent heat vanishes and the liquid-
solid transition is sensitive to T only to second order in
�T−Tmin�. At the surface of 3He crystals, facets appear only
below 100 mK �5,13–15�, and the dynamics of the liquid-
solid interface is governed by �1� and �2�. Since the measure-
ments were done at Tmin+9 mK where the growth resistance
is k−1=0.115 s /m, �5� predicts the asymptotic behavior Rn

2

= �1.145�10−4��t mm2 with �t in ms, a prediction that con-
tains no adjustable parameters.

As shown in Fig. 2, the transfer of the 3He crystal from
the upper part of the cell to the lower visible part occurs by
successive dripping �b,c and g,h� and coalescence events
�e, f, and j�. Here, we analyze the dripping. Figure 3 shows
that the shape of the neck is symmetric with respect to a
horizontal plane, contrary to what is observed for ordinary
fluids �1�, breaking up in air, as long as inertia is important.
We have analyzed the time variation of the neck radius Rn
and attempted to find the scaling exponent with which the
minimum neck radius vanishes by plotting appropriate pow-
ers of Rn as function of time. Figure 4 shows that by plotting
Rn

3 one finds the closest approximation of a straight line over
the entire time period. This observation seems to contradict
�5�, which predicts an exponent of 1 /2 as opposed to 1/3
supported by experiment.

FIG. 1. The experimental cell where 3He crystals were grown
thanks to a flexible membrane. The lower part was 3.45 mm wide
and 3.27 mm high; it could be observed through windows from the
outside of the cryostat, as shown in Fig. 2.
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However, in Fig. 4 we have also included data from two
simulations of �4�, starting from different initial conditions to
be detailed below. To an accuracy within the experimental
scatter, the simulations are also consistent with a 1/3 scaling
law, albeit with a prefactor which is not universal. For the
simulations we know, and will confirm below, that the true
asymptotic behavior is given by �5�. Thus a transient behav-
ior close to the experimentally observed 1/3 law is also
found for �4�, and there is no reason to invoke other physical
effects, not included in �4�. We now show that the approach
to the asymptotic behavior �5� is very slow, so transient scal-
ing can be observed for a significant period of time.

To understand the nature of the convergence toward the
asymptotic solution, it is crucial to look at a more complete
description, which includes the spatial structure of the solu-

tion. We begin by rewriting the solution in a different coor-
dinate system:

h�x,
� = 
1/2���,l
�, � = �x − x0�/
1/2, �6�

where l
= �ln�
�� and x0 is the point where pinch-off occurs.
For fluids, the solution converges very quickly to a similarity
function � which is in fact independent of l
 �2,16�. This
means that profiles, taken at different times, are related to
each other simply by a rescaling of the coordinate axes. In

FIG. 2. Twelve images �of width 3.5 mm� showing how a 3He
crystal “flows” down from the upper part of the cell into its lower
part. For this recording, which took a few minutes, the temperature
was Tmin+11 mK. The crystal first “drips” down, so that a crystal-
line “drop” forms at the bottom �a� to �c�; then a second drop
appears �d� and comes into contact with the first one �e�; coales-
cence is observed �f� and was quantitatively analyzed in �6�. It is
followed by the dripping of a second drop which has exactly the
same crystalline orientation as the first one because this is not real
flow, it is local melting and growth of a single crystal which keeps
the same orientation all the time. It drips down and coalescence
occurs again �j�. Usually, the last drop �k� behaves differently be-
cause, being smaller than the orifice, it falls in the liquid and
changes orientation before touching the lower crystal. As a conse-
quence, there is a grain boundary between the two crystals which do
not coalesce; the last drop keeps round, moves to the right and
finally vanishes �l�. At this temperature, 3He crystals have no facets,
they are rough in all directions.

Rn

z

R(z,t)

FIG. 3. Just before separation of the two crystalline drops, the
neck shape is symmetric, contrary to what is usually observed with
liquids.

FIG. 4. �Color online� To within experimental scatter, the cube
of the neck radius Rn is linearly related to the time �t before the
singularity, where the two crystals separate from each other. Differ-
ent symbols correspond to different recordings at Tmin+9 mK. The
dotted and dashed lines are simulations of �4�, described in more
detail in Sec. III below.
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many cases involving the breakup of liquid threads or jets,
measurements of the minimum radius or of the entire profile
show excellent agreement with similarity theory �1,17–19�.

However, the similarity structure of the pinch-off solution
of �4� is different in two important respects �12�, the similar-
ity function being

���,l
� = �2�1 +
�2 − 2

4l


+ O� ln�l
�
l

2 	
 . �7�

Note that �7� is symmetric in space, in agreement with ob-
servation �cf. Fig. 3�. First, � contains a contribution which
depends explicitly on the logarithmic time l
; this contribu-
tion comes from the axial curvature of the interface. In the
asymptotic limit l
→
 �5� is recovered for �=0, but only on
a logarithmic scale, as opposed to the rapid convergence of
classical similarity solutions. Second, the convergence to the
similarity form is not uniform �16�, but only in a small re-
gion around the neck which is of the same size as the mini-
mum neck radius itself, such that the similarity variable �
remains of order one. This can be seen from the next order in
an expansion in 1/ l
, which was performed recently �20�.
Namely, for the higher order terms to be small, ��� must be
small compared to �l
. For all practical purposes, the latter is
never much larger than unity. Note also the appearance of
logarithms of ln�
� appearing at second order in �7�, imply-
ing a very slow convergence indeed.

Singularities in which the logarithm l
 appears explicitly
are called “type II singularities” �21�. Mathematically, they
come about as follows: if the equations of motion are rewrit-
ten in the coordinate system described by �6�, the singularity
appears as a fixed point. For the singularity to be observed,
the dynamics must be driven toward the fixed point, which
means that all eigenvalues of the linearization must be nega-
tive: this is known as “type I singularity.” Mean curvature
flow belongs to the “critical” case in which one of the eigen-
values is zero. A careful analysis reveals that the singularity
is reached, but only on a logarithmic scale, cf. �7�. However,
this effect has never been estimated quantitatively. Our re-
cent results show that the second order contribution to �7� is
still universal �20�, as confirmed by the numerical simula-
tions reported below. We suspect this remains true at higher
orders, but this still needs to be investigated.

III. NUMERICS AND COMPARISON TO EXPERIMENT

We now return to the numerical solution of �4�, which
lead to the dashed and solid lines in Fig. 4. We performed
numerical simulations of the axisymmetric mean curvature
flow equation �4�, including the pressure term on the right-
hand side. We used an implicit, second order, finite differ-
ence method as developed originally for the fluid drop pinch-
off problem in �22�. As hmin decreases, smaller features need
to be resolved near the neck. We use an automatic mesh
refinement as developed in �23� to make sure all parts of the
solution are well resolved. This permits us to follow the so-
lution through seven orders of magnitude in the neck radius.

Unfortunately, we were unable to reproduce the experi-
mental boundary conditions provided by the cell, and thus to

obtain a direct comparison between experimental and nu-
merical free-surface shapes. We tried two different numerical
approaches: First, we let a crystal “drip” from a circular hole
of fixed radius �corresponding to the vertical capillary in the
experiment�, adding a hydrostatic pressure contribution to
the right-hand side of �4�. Depending on the value of the
liquid pressure �, an initially spherical crystal either shrank
and disappeared, or grew to a very large size, without any
tendency to pinch off. One must keep in mind, however, that
experimentally the radius of the crystal at the upper wall of
the container is not fixed, as seen in Fig. 2. The presence of
the container wall, not included in the simulation, could also
be responsible for the outcome of the simulation to be dif-
ferent from experiment.

Second, we used an experimental profile as an initial con-
dition, i.e., �g� in Fig. 2. Once more, the problem is that the
boundary conditions at the top and bottom of the cell are not
known. For simplicity, we chose a “liquid bridge” geometry,
where the crystal radius at the boundaries of the computation
are held constant. At the top, this is the radius of the capil-
lary, and at the bottom the point of intersection of the crystal
with the cell walls. For �=0, Eq. �4� converged to a equilib-
rium shape without pinching off. For sufficiently negative �
pinch-off occurs, but only after a significant deformation of
the lower part of the crystal, in disagreement with experi-
ment. Crucially, what is not included in the simulation is the
fact that the crystal is mechanically supported by the
container walls on which it rests, making it much more
immobile.

These observations show that the evolution of the crystal
is strongly dependent on the boundary conditions away from
the point where the neck radius is smallest. As we will see in
more detail below, only for very small neck radii does pinch-
off occur in a universal fashion. To nevertheless explore the
dynamics away from pinch-off numerically, we chose the
liquid bridge geometry, see Fig. 5.

Qualitatively, the left end corresponds to the nozzle open-
ing, which has been normalized to one, the right end corre-

FIG. 5. A sequence of numerical profiles, obtained by simulat-
ing �4� in the liquid bridge geometry. The nondimensional pressure
has been set to �=−0.2 for all simulations. The initial condition is
given by �8�, with a=0.4.
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sponds to the half-width Rc=3.5R0 of the container. The
length of the computational domain is L=Rc. As initial con-
dition we take a linear profile, modulated by a sine function
of dimensionless amplitude a,

hinit = �1 + �Rc/R0 − 1�x/L��1 − a sin�2�x/L�� . �8�

The purpose of the amplitude a is to mimic potential changes
in the initial conditions, without making an effort to approxi-
mate experimental initial conditions quantitatively. In Fig. 6
we have replotted the square of the rescaled neck radius,
using the same data as in Fig. 4 above. Thus the asymptotic
behavior �5� should give a straight line of slope 2. The full
line in Fig. 6 corresponds to �7�, which includes logarithmic
corrections to �5�. The result of two simulations for two dif-
ferent values of a, already shown in Fig. 4, is included as the
dashed and the dotted line. The experiment agrees with �7�
only for the last stages of pinch-off, 
�0.02.

This is also consistent with the direct numerical simula-
tions of �4�. First, numerics start to agree with asymptotics
around the same reduced time that the experiment does. Sec-
ond, the deviations from asymptotics are clearly nonuniver-
sal: they depend strongly on the initial condition. Only as the
asymptotic regime described by �7� is reached, does the sys-
tem “forget” about the initial condition. This is illustrated in
Fig. 7, where we have plotted the deviation of the numerical
solutions from the theoretical prediction �7�,

hmin = �2
�1 − 1/�2l
� + O�l

−2�� . �9�

Considerable differences between the two initial conditions
persist to times �
��10−4 away from the singularity, followed
by very slow convergence toward �9�. Eventually the devia-
tions corresponding to the two numerical solutions become
very close, suggesting that even higher order corrections to
�9� are universal.

Of course, these arguments only explain why a behavior
different from the asymptotic scaling is observed for a sig-
nificant part of the evolution. The question why this transient
behavior appears to be close to a 1/3 law, in both experiment
and simulation, remains open. This could be fortuitous, as
very different initial conditions might give other behaviors.
However, we cannot exclude the possibility that a more fun-
damental scaling argument could be made, which explains a
transient 1 /3 scaling.

The prefactor of this scaling law appears to be reasonably
universal experimentally, while it depends on the initial con-
ditions of the numerical simulation. However, one must keep
in mind that the three experimental data sets represent drip-
ping events which are relatively alike. Unfortunately, as we
are merely analyzing data taken previously, we are not able
to address this question by changing the experimental condi-
tions significantly.

IV. RECOIL

We have also analyzed the retraction of the two tips of the
crystal after it pinched off, and the results are shown in Fig.
8. Plotting the third power of the half-gap D between the two
tips, we find it being even more convincingly described by a
1/3 power law. However, in one of the data sets the prefactor
is significantly different from that of the others.

Once more, we have no explanation for the observed mac-
roscopic scaling, but conclude that it is consistent with mean
curvature flow �4�. Namely, the dotted and dashed lines are
simulations of �4�, which continue the simulations of Fig. 4
to times after pinch-off. Both lines are equally consistent
with 1/3 scaling as the experiments are, but their prefactors
are different. Numerical continuations were constructed by
cutting the neck at the minimum and splicing the tips on
either side to a spherical cap, once hmin has reached 10−3.
The results for the retracting tips, continuing the simulation
shown in Fig. 5, is seen in Fig. 9. Extracting the half-gap for

FIG. 6. �Color online� The square of the rescaled neck radius,
compared to both simulation and theory. Symbols are the same data
as Fig. 4, the dashed and dotted lines are simulations of �4� with
two different initial conditions, corresponding to a=0.7 and 0.4,
respectively. The full line is the asymptotic result �7�.

FIG. 7. Reduced deviations from the asymptotic result �9� for
the two initial conditions, a=0.7 �dashed line� and 0.4 �dotted line�.
Note the logarithmic scale on the abscissa.
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the two initial conditions, we obtain the curves shown in Fig.
8 and in Fig. 10 below.

Again, the situation is very different from fluid drop
breakup, where a universal solution for tip retraction was
found �24�. The reason is the different character of the simi-
larity description before breakup. Namely, in the fluid case
the profile converges onto a universal shape for all values of
the similarity variable �. This means that the behavior for
large � can serve as a boundary condition for the solution
after breakup, leading to a universal post-breakup solution.
However, the validity of �7� is restricted to a small region
����1, whereas everything outside of this region is nonuni-

versal. Hence the receding tip is in fact invading a region
where the solution depends on the initial condition, and so
also depends on initial conditions.

Nevertheless, one can estimate the retraction by approxi-
mating the profile at the moment of breakup by a cone of
half-angle �, which is reasonable as seen in Fig. 11. Let
us begin by giving a rough argument for the speed of retrac-
tion, which captures the essential physics. Namely, we model
the shape of each drop just after detachment as a cone with
half-angle � which terminates as a spherical tip with radius
R. The curvature is 	=2/R so that dR /d
=2 in nondimen-
sional variables. From simple geometry we find the dimen-
sionless half-gap d=D /R0 between the two tips to be
d=R�1−sin �� / sin �, so that the time dependence is

d2 = 4
�1 − sin ��2

sin2 �

 . �10�

FIG. 8. �Color online� As for dripping but now for their separa-
tion, the cube of the half-gap D between the two crystals is propor-
tional to the time �t. Different symbols correspond to successive
events recorded at Tmin+9 mK. The dotted and dashed lines repre-
sent the continuation of the corresponding simulations of Figs. 4
and 6.

FIG. 9. A numerical simulation of �4� after pinch-off, corre-
sponding to the profiles shown in Fig. 5.

FIG. 10. �Color online� The square of the rescaled half-gap,
compared to simulation and theory. Symbols are the same data as
Fig. 4, the dashed and dotted lines are simulations of �4� with two
different initial conditions, corresponding to a=0.7 and 0.4, respec-
tively. The full line corresponds to the retraction of a cone of open-
ing angle 34.8 degrees.

FIG. 11. After separation of the two crystalline drops, a gap
opens. We approximate the shape of the two drops as cones with a
spherical tip; here the half-angle of the cone is 34.8 degrees.
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Of course, �10� cannot be completely quantitative, since
the real shape of the receding tip will not have the precise
form assumed above. A more accurate description can be
obtained using the a similarity form analogous to �6�:

h�x,t� = 
1/2�a��� . �11�

If the motion starts from a cone, for large arguments of �, �a
must be a linear function with the same cone angle �.
Namely, far away from the moving tip, the time dependence
on the right-hand side of �11� drops out and one matches
onto a static profile. Inserting �11� into �4� for �=0 one
obtains the similarity equation

�a�

1 + �a�
2 + ��a� − �a −

1

�a
= 0. �12�

To obtain a solution of �12�, we integrate �12� from a
value �=�0 to 
. By the structure of �11�, d2=�0

2
; from an
analysis near �=�0 it follows that �a�2���−�0� /�0�1/2 near
the tip. Using this local solution to construct an initial con-
dition, there is a unique solution for each value of �0. The
asymptotic slope s=tan��� for large � establishes a relation-
ship between �0 and the cone angle, shown in Fig. 12. Evi-
dently, while �10� captures the right qualitative behavior,
quantitative results require the solution of the full similarity
equation �12�.

For one set of data �squares� we have fitted a cone to the
profile �cf. Fig. 11�, and found an opening angle of about �
=34.8 degrees. From Fig. 12, this corresponds to �0

2=5.87,
which is the slope of the full line in Fig. 10. The predicted
asymptotic behavior, based on the simplifying assumption of
initial cones, fits the data well, but again only at very small
time after separation of the two drops.

In conclusion, we have studied the dripping of crystals
where viscosity and inertia are negligible, and the dissipation
is taking place only at the moving crystal surface. From the
thermodynamics of melting crystals one finds that the crystal
shape is described by mean-curvature flow. Simulations of
the mean curvature flow equations show results consistent
with experiment, both on the macroscopic scale and very
close to pinch-off. Owing to the sensitivity of the dynamics
to initial and boundary conditions, we were however not able
to reproduce the experimental conditions exactly. Although
this possibility cannot be excluded, we see no reason why
any effect beyond the physics of crystal melting used by us
should be needed to explain the experiment. A fully quanti-
tative description of the experimental setup, which would
settle this issue definitively, is beyond the scope of this paper.

Very close to pinch-off, mean-curvature flow exhibits an
unusual type of self-similar behavior including logarithmic
terms. The important physical consequence is that the ap-
proach to the singularity is extremely slow, so experimental
observation, without the benefit of theory, may lead to an
incorrect identification of scaling exponents. Indeed, for di-
mensionless times 
�0.02 both experiment and simulation
suggest a scaling exponent of 1 /3, significantly different
from the asymptotic value of 1 /2. It is possible that this
behavior is fortuitous, and merely a reflection of the re-
stricted class of initial conditions we are considering. On the
other hand, the relative robustness of this observation sug-
gests that there might be an intermediate asymptotics at work
here, which we have not been able to identify.

Another instance where the approach to a final asymptotic
regime is slow, and where a dependence on the initial con-
dition persists to very close to pinch-off, has been observed
for the problem of the pinch-off of a bubble in water �25,26�.
A more recent analysis of the problem has shown �27� that
the nature of bubble pinch-off is quite different from the
mean curvature flow problem at hand, although logarithms
are involved in both cases. Nevertheless, both examples tell a
cautionary tale, as statements about the universality of
asymptotic behavior are virtually impossible to make by ob-
servation alone, in the absence of quantitative theoretical es-
timates of transients.
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