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Abstract Results on two laboratory scale avalanches
experiments taking place both in the air and under-water, are
presented. In both cases a family of solitary erosion/depo-
sition waves are observed. At higher inclination angles, we
show the existence of a long wavelength transverse instabil-
ity followed by a coarsening and the onset of a fingering pat-
tern. While the experiments strongly differ by the spatial and
time scales, the agreement between the stability diagram, the
wavelengths selection and the avalanche morphology suggest
a common erosion/deposition scenario. These experiments
are studied theoretically in the framework of the “partial flu-
idization” model of dense granular flows. This model iden-
tifies a family of propagating solitary waves displaying a
behavior similar to the experimental observation. A primary
cause for the transverse instability is related to the depen-
dence of avalanche velocity on the granular mass trapped by
the flow.
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1 Introduction

Avalanching processes leading to catastrophic transport of
various natural materials do not only occur in the air as
we know of snow avalanches, mud flows, land slides. Such
events frequently happen below the see level as they take
many forms from turbidity currents to thick sediment waves
sliding down the continental shelf. From the risk assessment
point of view, important issue is evaluation to which extend
an initial triggering event (an earth quake or an eruption)
would be responsible for a subsequent process that might
propagate or amplify over large distances as an unstable mat-
ter wave. Unfortunately, the dynamics of such catastrophic
events so far lacks a conceptual clarity [1,2] since (i) the
rheology of the flows involved in an avalanche is complex
and still not unraveled; (ii) the physics of erosion/deposition
mechanisms is essentially limited to empirical descriptions
based on dimensional analysis and semi-empirical formu-
lations. There were several theoretical attempts to describe
from a phenomenological point of view the dynamics of ero-
sion waves as an interplay between a rolling phase and a
static phase [3,4]. While extensive laboratory-scale experi-
ments on dry and submerged granular materials flowing on
rough inclined plane [5-7] have brought new perspectives
for the elaboration of reliable constitutive relations, many
aspects of avalanches propagation on erodible substrates still
are not understood [8—14]. It has been shown experimentally
that families of localized triangular shape avalanches can
be triggered in the metastability domain, between the stop-
page angle and maximal avalanche angle. [8]. Also, the shape
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of other localized droplet-like waves was recently shown to
depend strongly on the intimate nature of the granular mate-
rial [11]. All these issues are closely related to the compelling
need for reliable description of the fluid/solid transition for
particulate assemblies in the vicinity of the flow arrest. Here,
we present experimental results concerning avalanche fronts
developing over an erodible granular substrate, both in the
air and under water. The avalanche fronts flowing on solid
rough substrates (non-erodible) are transversally stable: the
transverse coupling due to gravity being essentially a stabi-
lizing mechanism [5, 15]. But, when a segregation occurs, an
avalanche front on a rough substrate may exhibit a fingering
pattern explained by a pinning mechanism [16, 17]. Since the
rough grains we used in experiment have a narrow polydis-
persity (25%), we investigate here a quite different mech-
anism. We demonstrate the existence of a linear transverse
instability of the solitary front occurring at higher inclination
angles.

A model of “partially fluidized” dense granular flows was
developed to couple a phenomenological description of a
solid/fluid transition with hydrodynamic transport equations.
It reproduces many features found experimentally such as
metastability of a granular deposits, triangular down-hill and
balloon-type up-hill avalanches and variety of shear flow
instabilities [9,10,18]. The model was later calibrated with
molecular dynamics simulations [19]. Here the partial fluid-
ization model is applied to solitary avalanches flowing over
a thin erodible sediment layer. A set of equations describing
the dynamics of fully eroding waves is derived and a family
of solitary wave solutions propagating downhill is obtained.
The velocity and shape selection of these waves is investi-
gated as well as the existence of a linear transverse instability.
The primary cause for the transverse instability is associated
with the dependence of the solitary avalanche velocity with
the mass trapped in the flow. A numerical study is conducted
to follow the nonlinear evolution of the avalanche front. The
results are discussed in the context of experimental findings
[12-14].

2 Experiments on erosion waves

Description of the setups. The experimental setups con-
sist of a thin granular layer deposited on an incline plane
(chute) that can be tilted at a value 6 (Fig. 1a). The “dry” set-
up is similar to the one of Daerr et al. [8,20]. The size of the
chute is 70 cm wide and 120 cm long. The granular medium
is either Fontainebleau sand; typical size d = 300 % 60, or
500pum monodisperse glass beads. The chute bottom is made
of black velvet. For the under water avalanches, the setup size
is smaller: the chute width is 15 cm and so is the length. The
granular sediment is an aluminum oxide powder of size either
d =30o0r40 +£ 11 um. To avoid inter-particle cohesion, the
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Fig. 1 a Experimental setup. b Stability diagram: Ay is the thick-
ness of the sediment left after an avalanche for a given angle 6, in air,
sand (filled circle) and in water (open circle); hgy(0) is the maxi-
mum stable height of sediment, in air (inverted filled triangle) and in
water (inverted open triangle). hsart (0) and hsop(6) are fitted by the
form h = blog((tan6 — w)/8u) (solid lines). In region I, an avalanche
front cannot propagate autonomously down the slope: the perturbations
fade away when the driving stops. Avalanches triggered in region II
are stable while they exhibit a transverse instability in region III. In
particular, solitary erosion waves are observed when starting from the
stable height Agop. ¢ Front profile x (y) obtained from image process-
ing. d The corresponding correlation function C(y) allows defining the
average wavelength A and the amplitude A,,

pH value is maintained close to 4 by adequate addition of
hydrochloric acid [21]. The chute is initially set at an hor-
izontal position and a fixed mass of powder is poured and
suspended by vigorous stirring. A uniform sediment layer of
height / then forms within 10 min. The bottom is an abraded
but transparent plexiglass plate which offers the possibility to
monitor the avalanche dynamics by transparency when illu-
minated from below. The profile of the avalanche front 4 (x, t)
is obtained with a laser slicing technique and is resolved
within 30 pm (0.1 &) in the dry case. The front dynamics
is quantitatively monitored by image processing of the ava-
lanche front pictures. The front line position x (y, t) is then
extracted (Fig. 1c) and the front line autocorrelation function
C(y,.t) = (x(y +y',0Hx (', 1))y is computed. Then, the
correlation function’s first maximum is identified from which
the average wavelength A and the amplitude A,, = /8C (L)
are extracted, see Fig. 1d. In addition, the surface velocity
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field is measured by a Particle Image Velocimetry technique
for dry avalanches.

The sand layer stability diagrams. It has been shown
that the stability of dry granular layers of depth 4 lying on
a flat substrate inclined at an angle 6 can be described by a
diagram with two critical curves [5]: A (0) and hgop(9),
see Fig. 1b. The curves have the following interpretation: a
uniform deposit of height 4 will globally loose its stability if
tilted above the angle 6 defined by h = hgart () and the ava-
lanching process will leave at rest a deposit of height Ag0p (6).
hstart and hgop curves diverge at two different asymptotic
angles, respectively, equal to the avalanche angle of the gran-
ular pile 6, and to the repose angle 6,. Between these two
curves, a domain of metastability for the granular deposit
is present. Aggart stop curves obtained for dry and underwater
layers bear the same features and fall on the same curve when
the deposited height is rescaled by d, see Fig. 1b.

Solitary erosion/deposition waves. To initiate avalanche
fronts both in air and under water, we designed a “bull-
dozer” technique: a plate perpendicular to the avalanche track
scrapes the sediment at a constant velocity (Fig. 1a). While
our results on avalanche stability are valid in the whole
metastable region (Fig. 1b), we will limit ourselves to the
experiments started from a stable sediment layer of height
hstop(6). Once an autonomous avalanche front separates from
the plate, the bulldozer driving stops. For 6, < 0 < 6,, we
always obtain transversely stable avalanche fronts, both in
wet and dry cases. We observed that the avalanche quickly
converges toward an asymptotic form. For this systematic
study, we have kept a constant scraping velocity at about
one-third of the typical avalanche velocity v, and depos-
ited the minimal mass required to trigger a solitary wave.
Then, under these conditions the solitary wave is found to be
rather insensitive to the preparation details within a range of
scraping velocities. For this systematic study, we have kept
a constant scraping velocity at about one-third of the typical
avalanche velocity v,. In the water, v, is of the order of the

. Ap gd®
Stokes velocity =
. Pw Vw )
the density contrast between grains and water, v,, the water

kinematic viscosity and g the gravity acceleration. In the air,
the propagation velocity is of the order of \/gd >~ 5 cm/s.
Figure 2 shows the sediment height /2 and the surface velocity
v profiles for such an avalanche.

=~ 2 mm/s where Ap/p, = 3 is

The transverse instability. In the case of rough sand par-
ticles, the autonomous wave fronts are transversally unstable
for & > 6,. However, no transverse instability was observed
for smooth monodisperse glass beads. Itis worth noticing that
for the same angles, avalanches down a solid rough plate are
stable (at least in the dry case). After the initial instability,

0 = T T | | -0
-1200  -1000  -800 -600 -400 -200 0
x/d

Fig. 2 Solitary erosion wave profile 84 = h — hgp rescaled by d (dot-
ted line) and surface velocity profile v rescaled by +/gd (solid line) (dry
sand, 0 = 32°, hgop = 2.3 mm = 7.8 d, region II). Inset spatio-
temporal diagram done with a fast camera (125 Hz), showing the
particle motion as well as the profile height (deflection of the laser
sheet). It is observed that the surface grain velocity at the front tends to-
wards the solitary wave velocity v, (v, &~ 24/gd for given experimental
conditions)

Fig. 3 Flowing part of solitary waves visualized by image difference
(air, sand, d = 300 pum, 6 = 35°, time interval 1.1 s), starting from
a flat bed (left) or from an initial bed presenting a forced wavelength
A=6.5cm

we have identified a coarsening scenario responsible for a
sequence of fusion processes increasing the spatial modula-
tion lengths. Finally, the transverse destabilization ends up
as a fingering pattern. In this final stage, the flowing zones
are disconnected one from the others so that the wavelength
does not evolve. Figure 4 displays a typical time evolution
of the dominant wavelength extracted from the correlation
function. In inset, a typical fusion event illustrates the coars-
ening scenario. Because of the competition between unsta-
ble modes and the coarsening process, the identification of a
generic scenario for the transverse instability is technically
difficult.

In addition to the experiments started from a flat bed
described above, we performed series of experiments start-
ing from a modulated initial condition. The modulation at a
given wavelength is simply produced by imprinting on the
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t(s)

Fig. 4 Time evolution of the wavelength A (water, d = 40 um, =
37.1°) in a typical realization (filled circle) and averaged over many
realizations (solid line, the shadow zone indicates the standard devi-
ation). After a small plateau at the initial wavelength 1¢, A increases
due to coalescence processes (lower photograph) until it reaches the
value Ao, corresponding to formation of non-interacting fingers (upper
photograph)

t(s)

Fig. 5 Time evolution of the amplitude A,, (air,sand d = 300 pm,
6 = 35°) for initial condition forced at the wavelength A = 12 mm
(open circle), » = 30 mm (open square), A = 90 mm (triangle) and
A = 178 mm (filled triangles). Inset linear growth rate o as a function of
the wave number k. The solid line is the best fit by o = a|k| — bk?2, with
a maximum growth rate o, =~ 2.5 s~! for A9 >~ 4 cm. Measurement of
Ao from an undisturbed solitary wave (Fig. 3) gives 3.3 cm

sediment surface regularly spaced thin scarification (shal-
low scratches). We have found that the forced modes always
fade away in region II. On the other hand, in region III the
front modulation amplifies exponentially for a wide band
of wavelengths. The linear regime is clearly evidenced over
one decade in amplitude. Nonlinear effects start being visible
when the amplitude becomes of the order of 1 cm. The inset
to Fig. 5 shows the dispersion relationship deduced from
these measurements confirming a long wavelength linear
instability.

For experiments both in the air and in the water, performed
in the unstable regime, we extracted two characteristic wave-
lengths. The initial wavelength Ao would correspond, to the
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Fig. 6 Initial (filled circle) and final (open circle) wavelengths rescaled
by d as a function of 6 (d = 40 pm, in water). The initial wavelength
data in air (filled square) and water (filled circle) coincide, as well as
the final wavelength data in air, sand (open square) and water (open
circle). The error bars correspond to the dispersion of the data from a
realization to the other. As Ao diverges at 6,,, we have superimposed the
curve 10 X hgiart () (solid line), which is a good approximation of Ag to
some extent. The dotted line is the best fit of the final wavelength Ao
by the same logarithmic law similar to Astart (6) oOr hsop(6)

best of our experimental possibilities, to the fastest growing
linear mode. Then, the larger wavelength A, is measure at
the onset of the fingering instability. Figure 6 displays both
wavelengths rescaled by the grains sizes: Ag/d and Ao /d,
versus the inclination angle 6. The selected wavelengths are
typically larger than a grain size by at least two orders of
magnitude.! Constrained by finite size effects and measure-
ments uncertainties, we obtain that the value § = 0, cor-
responds to a diverging boundary for the initial wavelength
Ao/d. This is a signature of a zero wave-number instability
with a threshold close to 6,. Another striking feature is the
collapse, on the same curve, of the data obtained in the air
and underwater, once rescaled by the grain size. In the range
of parameters where the fingering regime is reached before
the end of the chute, the ratio of the final to the initial wave-
length is approximately constant and close to Ao /Ao = 3.5.
The presence of a fingering is a quite fascinating feature of
this avalanching process. The fingering front stems from the
onset of localized propagating waves following the trans-
verse instability regime. These fingers are localized matter
droplets with levees on the side. They evolve into a quasi
solitary mode when they are fully developed; their selected
width is found to be quite sensitive to the slope (~ ¢ for
both wet and dry cases).

! Note that the largest wavelengths measured are of the order of the
chute width (1,800 d in water and 750 d in air).
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3 The partial fluidization model

We apply the partial fluidization model to investigate the ava-
lanche dynamics on a thin erodible sediment layer. Accord-
ing to the partial fluidization theory [9,10], the ratio of the
static part of the shear stress ¢* to the fluid part o/ of the
full stress tensor o is controlled by an order parameter (OP)
p.0f = Q(p)o; o° = (1 — Q(p))o, where the OP p is
scaled in such a way that in granular solid p = 1 and in the
fully developed flow (granular liquid) p — 0. Correspond-
ingly, the function Q(p) satisfies the following conditions
Q — Oforp — 1and Q — 1 for p — 0. The simplest
choice Q = 1 — p appears to be in a good agreement with
soft particles simulations [19]. The fluid stress o f is assumed
to be of the form

ol = @i+ 0iv)), i o))

where v; is the velocity component and v is the granular shear
viscosity. The full stress o can be obtained, for example, from
the static equilibrium conditions.

At the “microscopic level”, the OP is defined as a fraction
of the number of persistent particle contacts to the total num-
ber of contacts. Due to a strong dissipation in dense granular
flows, p is assumed to obey purely relaxational dynamics
controlled by the Ginzburg-Landau equation for generic first
order phase transition,

dF(p, )

=12V2p —
pY P 30

0
“Dr 5

Here 7,,[, &~ d are the OP characteristic time and length
scales, d is the grain size. F(p, §) is a free energy density
which is postulated to have two local minima at p = 1 (solid
phase) and p = 0 (fluid phase) to account for the bistability
near the solid—fluid transition. The relative stability of the
two phases is controlled by the parameter 6 which in turn is
determined by the stress tensor o,,,. The simplest assump-
tion consistent with the Mohr-Coulomb yield criterion is
to take it as a function of ¢ = max |0y, /04|, Where the
maximum is sought over all possible orthogonal directions
m and n.

For thin layers Eq. (2) can be simplified by fixing the struc-
ture of the OP in z-direction (z perpendicular to the bottom,
x is directed down the chute and y in the vorticity direction):
o0 = 1— A(x, y)sin(rz/2h), h is the local layer thickness, A
is slowly-varying function. This approximation valid for thin
layers when there is no formation of static layer beneath the
avalanche (see below). Then one obtains equations governing
the evolution 4 and A (coordinates x, y, height 4, and time ¢
are normalized by /,, 7, correspondingly [9,10,14,18]),

dh Ah3A  «

— == —v (r3AVh

TR TR ( ) 3
dA 82-8) , 3

— = Agd VA ——— AP~ " 45 4
a1 BT o= 4 “)

where V2 = 82 + 8y2, Ag =8 — 1 —n?/4h?, dimensionless
transport coefficient:
_ 2Am* —8) ,

o~ Tgrplp sin @, (®))
where ¢ = tan6. Control parameter § assumes the form
8(0) = ((tan)? — ¢2)/(¢? — ¢?). ¢o,1 are tangents of
dynamic and static repose angles respectively, 6, and 6,.
Correspondingly, tan @ is the local slope of granular layer.
Assuming that the slope of the layers tan 6 is close to the
chute slope tan 6, we can expand the control parameter § ~
80 + Bhy,80 = 8(0), B =~ 1.5 — 3 depending on the value of
0, see for detail [9,10,14,18]. The last term in Eq. (3) is also
due to change of local slope and is obtained from expansion
6 = 6 + hy. This term is responsible for the saturation of the
slope of avalanche front (without it the front can be arbitrary
steep) [14,18].

Solitary wave shape selection. In the frame co-moving
with the velocity V, Egs. (3),(4) assume the form

oh A«

— = Voh— —v (h3AVh

ot A T ( ) ©)
9A 8(2 — 6) K. 3

— = V8,A+ AgA + V*A eyl 7
3t mil g A Ll 4 )

Numerical studies revealed that the one-dimensional Egs. (6),
(7) possess a one-parametric family of localized (solitary)
solutions, see Fig 7:

Ax,t) = Ax = V1), hx,t)=h(x—-V1t) (8)

Here the boundary conditions take a form A — hg, A — 0
for x — +o00, where hg is the asymptotic height. The one-
dimensional steady-state solution (8) satisfy

ah
V(h—ho)zah3A(1—x—> 9)
¢
9A 82 —4) 5+ 3.4
W Jod Ry S Q0 P S Wl il . QAR 10
dx ga T e T 4 G

The solutions can be parameterized by the “trapped mass”
m carried by the wave, i.e. the area above Ay,

m = /(h — ho)dx (11)

The velocity V is increasing function of m, see inset to
Fig. 7a. The family of admissible solutions for a propagative
solitary wave terminates at m = m, and V = V, = V(m,).
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Fig. 7 Height i (a) and fluidization parameter A (b) for various val-
ues of avalanche mass m and transport coefficient a. Solid line is for
m = 147.7, V. = 2.72, dashed line is for m = = 211, V = 3.12, for
8§ =1, a = 0.08, B = 2; point-dashed line is for ¢ = 0.025,8 = 1.15,
m = 62, V = 0.86. Inset to Fig. 7a: Representative height profiles for
avalanches in sand (solid line) and glass beads (dashed line). Inset to b:
Avalanche velocity V vs. m (solid line), diamonds depict experimental
data for sand avalanches

The critical mass m, decreases with the increase in . The
dependence of V vs. m is (qualitatively) consistent with
experimental data, see inset to Fig. 7b for sandy avalanches
in the air. Note that this experimental curve was obtained by
collecting the falling sand at the end of the avalanche plane
when erosion waves of different sizes were triggered. We
also notice that below a mass threshold, no propagation of
an erosive wave is possible. The structure of the solutions is
sensitive to the value of «: for large o the solution has a well-
pronounced shock-wave shape, Fig. 7a, with the height of
the crest hmax several times larger than the asymptotic depth
ho. For a — 0 the solution assumes more rectangular form,
see Fig. 7b, and hmax — ho < ho. The results are consistent
with the shape of sand (compare with large o) and glass bead
(e — 0) avalanches, see inset to Fig. 7a /

The front linear transverse instability. To understand
transverse instability we focus on the solitary solution with
slowly varying position xo(y, )

@ Springer

AQx, 1) = A(x — xo(t, y)), h(x,t) =h(x —x0(, »))

(12)

Substituting Eq. (12) in Eq. (6) and integrating over x, one
obtains
dm =V (m)(h+ — h™(m)) = §183x0 + L2d5m (13)

where ¢ 2 = const is defined as

o0

Z/(Ahah) =%Z Ah3am

—o0

&=

Here ht = h(x — oo) is the height of the deposit layer
ahead of the front and A~ = h(x — —o0) is the height
behind the front, see Fig. 7a. While the value of ht is pre-
scribed by the initial sediment height, the value of A~ behind
the front is determined by the velocity (or mass) of the front.
For steady-state solution At = h~ = hg. For the slowly-
evolving solution the difference between ht and A~ can
be small, however it is important for the stability analysis.
These terms are also necessary to describe the experimentally
observed initial acceleration/slowdown of the avalanches.
Substituting Egs. (12) into Eq. (4) and performing orthog-
onality conditions one obtains®

dixo = V (m) + 8} x0 (14)

To see the onset of the instability we keep only the leading
terms in Eqs. (13), (14), using expansions V (m) ~ V(mg)+
Vin(m — mg), and m = m — mo < mo:

o = —Tm — {18y2x0 + {283@; 0rxg = Vium + 83)60

a5)

where mo = const is the steady-state mass of the solitary
wave, and T = V (mo)d,h~. Seeking solution in the form
m, xo ~ explot+igy], q is the transverse modulation wave-
number, for the most unstable mode we obtain from Eq. (15)
the growthrate o

_ >0 +0)—1+ V(@A =) — 1)? +4Val1g?
2

(16)

Expanding Eq. (16) forg — 0 we obtain o ~ §(2Vp£1/7 —
1)g% + O(g*). The instability occurs if V,,¢1/7 — 1/2 > 0.
Substituting T and using Vi, / hy = Vp, we obtain a simple
instability criterion 2V;,¢1/V > 1 giving a value of threshold
« since £ ~ a. For @ < a, no instability occurs, and the
modulation wavelength diverges for @ — . Far away from
the threshold we neglect T and then obtain for o (¢q):

2 There are also higher order terms in Eq. (14) which we neglect for
simplicity.
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Fig. 8 Growthrate o(g) vs. ¢ for 8 = 1.15 and @ = 0.08 for the
mass of the avalanche m = 102. Solid line o (q) obtained by numerical
stability analysis of one-dimensional solution Eq. (12). Dashed line is
solution of Eq. (16). Inset optimal wavenumber of ¢* vs. « for § = 1.15

o =gV Vm — 1+ 82)g*/2 + 0(gY) (17)

The optimal wavenumber ¢* is given by g* ~ /{1 V,, ~ a.

Figure 8 shows o (g) obtained by numerical stability anal-
ysis of linearized Eqs. (3), (4) near the one-dimensional solu-
tion Eq. (8). For comparison the solution to Eq. (16) is shown,
with the parameters extracted from the corresponding one-
dimensional steady-state problem Egs. (9), (10). One sees
that Eq. (16) gives correct description for small g, however
fails to predict o (g) in the whole range of ¢. For this pur-
pose one needs to include higher order terms. Thus, Eq. (16)
gives correct description of the onset of instability and qual-
itative estimate for the selected wavenumber g*. Inset to
Fig. 8 shows the dependence of optimal wavenumber ¢* vs o,
obtained by numerical linear stability analysis of the solitary
solution. It shows almost linear decrease of ¢g* with « con-
sistent with prediction. For very small « the plot indicates
that ¢* — 0 at « — «,, consistent with Eq. (17). From the
qualitative point of view, the transverse instability of planar
front is caused by the following mechanism: local increase of
solitary wave mass results in the increase of its velocity and,
consequently, “bulging” of the front. Since the bulge “rolls”
forward, i.e below the level of the avalanche, the granular
fluid flows towards the bulge, further draining the trailing
regions.

Coarsening and fingering. To study avalanche fronts
beyond the initial linear instability, a fully two-dimensional
numerical analysis of Egs. (3), (4) was performed. Integra-
tion was carried out in a rectangular domain with periodic
boundary conditions in x and y directions. Number of mesh
points was up to 1,200 x600 or higher. As an initial con-
dition we used a flat state » = ho with a narrow stipe
h = hg + 2 deposited along the y-direction. To trigger the

Fig. 9 Grey-coded images of height profile 4 (x, y) (white corresponds
to larger height) for three different moments of time, a r = 170, b
t = 300 and ¢ ¢+ = 500 units of time. Domain size is 600 units in x
direction and 450 units in y direction, only part of domain in x direction
is shown. Parameters: § = 1.16, « = 0.14, 8 = 2 and initial height
ho = 2.285

transverse instability, a small noise was added to the ini-
tial condition. The initial condition rapidly developed into a
quasi-one-dimensional solution described by Eq. (8). Due to
the periodicity in the x-direction, the solitary solution could
pass through the integration domain several times. It allowed
us performing analysis in a relatively small domain in the
x-direction. The transverse modulation of the solitary wave
leading front was observed after about 100 units of time for
the parameters of Fig. 9. We observe that modulation ini-
tially grows in amplitude, eventually coarsens and leads to
the formation of large-scale finger structures.
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Fig. 10 Representative height &, the static layer depth zs:er and the
top surface velocity v(x) profiles for solitary avalanche for §o = 0.729,
ho = 2.6 which is close to Astop

Solitary avalanches in deep layers. The method of solu-
tion to Eq. (2) described above is applicable to relatively thin
layers when the vertical profile of the OP can be approx-
imated by p = 1 — A(x, y) sin(nz/2hj. In deep granular
layers this approximation breaks down, and, consequently,
Eq. (4) becomes invalid. To study avalanches in relatively
thick layers we solved two-dimensional (x, z) Eq. (2) directly
in a rectangular mesh N, X N, with the periodic bound-
ary conditions in x-direction and the following conditions
in vertical direction: p = 1 forz = 0, 3,0 = 0 for z = h.
Equidistant mesh was used in x-direction. In z -direction, the
mesh size was adjusted to h, dz = h(x)/N;. The height h
was obtained from the mass conservation law, 9,4 = —0xJ,
where the total grain flux is J = foh v(x, z)dz, v(x, z) is the
hydrodynamic velocity obtained from integration of constit-
utive relation (1). We also took into account that in the deep
layers the viscosity v is the function of hydrostatic pressure
p, i.e depends on z-coordinate as v ~ «/h — z (the details
will be published elsewhere). We used Ny = 600, N, = 50,
length in x-direction L = 250. Representative results are
shown in Fig. 10. As an initial condition we choose localized
bump. After short transient the bump develops into a local-
ized avalanche traveling with a constant speed. The shape
of the avalanche and the surface velocity profile are similar
to the experimental observations, compare with Fig. 2. From
the numerical results we were able also to obtain the depth of
static layer beneath the moving avalanche, zsq;. The value
of zs:4: Was extracted from the condition v(z = Zzstar) =
0.1v(z = h). As one sees from the figure, only a small frac-
tion of the sand is fluidized (zs:q: < z < h) in the course of
avalanche propagation, the rest of the material is in the static
state.
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4 Conclusions

We have investigated the dynamics of underwater and dry
granular avalanches on a erodible substrate. We have identi-
fied the domain of existence for solitary waves propagating
down the slope without changing form. For angles larger than
the avalanche angle 6,, we proved the existence of a linear
transverse instability which further develops via a coarsening
process and finally ends up as a fingering pattern. The exis-
tence of solitary waves provide a new important test to mod-
els. Forinstance, it may be shown that they cannot be captured
by Saint-Venant-type models not including a static erodible
layer below the avalanche. The mechanism responsible for
the instability reminiscent of a standard zero wave number
instability at threshold 6,. The inhibition of this instability
on a solid bottom suggests that erosion/deposition processes
in the avalanche depth could play a crucial role. Further stud-
ies with other materials on different substrates are needed to
determine the robustness of instability scenario. A challeng-
ing experimental issue is obtaining a more focused vision on
the interface separating the jammed and the rolling phases,
and its relation to the instability onset. In the final stage of the
instability, the fingers appear as localized “droplets” of the
erosion/deposition process and thus look essentially differ-
ent from the segregation fingers reported on a rough substrate
[16]. Note that their shape is reminiscent of many natural pat-
terns obtained in debris or mud flows [17] displaying well-
defined widths at the values of about hundreds of a typical
rock size.

The experimental findings were put to test in the context
of a phase-field model developed for the description of dense
granular flows. At a qualitative level the agreement between
theory and experiments is impressive. (i) Existence of steady-
state solitary avalanches propagating downhill with a shape
similar to experiment. (ii) Generic zero wave number (long-
wave) transverse instability compatible with the experimental
divergence of the selected wavelength close to the instability
threshold. Far from the threshold, linear growth rate depen-
dence with the modulation wavenumber ¢ compatible with
measurements. (iii) Coarsening in the later evolution of the
instability. (iv) Fingering instability with localized droplet-
like avalanches (also similar to those described in [11]). The
analysis predicts that the transverse instability ceases to ex-
ist when the rescaled transport coefficient @ decreases (see
Fig. 8). However, the model does not provide explicit expres-
sion for « due to the dependence of granular viscosity v on
other external parameters (e.g. local pressure, see [9,10]).
Rough estimates of « can be extracted from the flow rules
in Ref. [6] which gives the relation between depth-average
velocity (V) and height i: (V) //hg ~ Bh/ hsop(0)+const,
where dimensionless material constant 8 & 1 for sand and
B ~ 0.2 for glass beads. Since flux of grains J = h(V) ~
B\/§h5/ 2 / hswop(8), to compare with flux expression in
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Eq. (3), we write for the fully-fluidized state (A ~ 1): J ~
B./gh | hi (). Since the typical time in the problem 1, is
of the order collision time +/d/g, after rescaling x — x/d,
h — h/d,t — t/1,, we obtain in the dimensionless form
the estimate for @ ~ B(d /hstop(é'))3/ 2. Since hsiop — 00
with the decrease of the angle 0, the instability should dis-
appear for smaller angles, which is verified experimentally.
The analysis also predicts that the instability could be sup-
pressed for the case of small rheological parameter B corre-
sponding to smooth glass beads. Thus, the model provides
a crucial prediction on the transverse instability mechanism
which lies in the dependence of the solitary wave velocity
on the flowing mass trapped in the avalanche. This result
is recovered experimentally. Still, important issue remains
on how to bring more quantitative comparison between the
theory and the experimental measurements.
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