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Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the
environment is almost invariably covered by a layer of fluid material. In this review, the surface forces
that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with
a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for
wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly
to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation
effects, which can be greatly enhanced for wetting of geometrically or chemically structured
substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities.
Macroscopic descriptions and microscopic theories have been developed to understand and predict
wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting
is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a
nonwetted substrate previously covered by a film dewets upon an appropriate change of system
parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the
three-phase contact line separating “wet” regions from those that are either dry or covered by a
microscopic film only. Recent theoretical, experimental, and numerical progress in the description of
moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is
explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines
and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways
to mold wetting characteristics according to technological constraints are discussed, for example, the
use of patterned surfaces, surfactants, or complex fluids.
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I. INTRODUCTION
A. How, what, and why?

Wetting phenomena are an area where chemistry,
physics, and engineering intersect. Surface chemistry is
of key importance in determining wetting behavior, and
much research has been devoted to modifying the sur-
face chemistry of various solids in order to obtain spe-
cific wetting properties (Durian and Franck, 1987). More
or less standard chemical means to do this is, for in-
stance, plasma treatment (Wu, 1982) or silanization
(Brzoska et al., 1992). By such treatments, one modifies
the chemical properties of the surface of the material,
and hence the contact energy of the surface with liquids,
vapors, or other solids.

As these “chemical” interactions act over the scale of
molecules, one often refers to them as short-ranged in-
teractions. In addition to the surface chemistry, surface
forces such as van der Waals or electrostatic forces are
paramount for determining whether or not a fluid will
wet a given surface. These forces have been studied in
detail by physicists and physical chemists. van der Waals
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surface forces can still be important over distances cor-
responding to a few tens of molecules, because their al-
gebraic decay is rather slow; we hence call them “long
ranged.” The van der Waals forces are responsible for
the equilibrium thickness of wetting films, and are be-
lieved to be important for the way fluids spread over a
solid surface. Both van der Waals and electrostatic
forces determine the stability of soap films (Vrij, 1966).

Indeed, wetting and spreading are of key importance
for many applications. At large scales, wetting or non-
wetting plays an important role in oil recovery (Ber-
trand, Bonn, Broseta, Shahidzadeh, et al., 2002) and the
efficient deposition of pesticides on plant leaves (Berg-
eron et al., 2000), and also in the drainage of water from
highways (Shahidzadeh et al., 2003) and the cooling of
industrial reactors. On a smaller scale, wetting solutions
have been proposed to solve technological problems in
microfluidics and nanoprinting, inkjet printing, etc.
(Tabeling, 2004). All these phenomena are governed by
the surface and interfacial interactions, acting usually at
small (a few nanometers for van der Waals or electro-
static interactions) or very small (molecular) distances.
These length scales are now being probed with relatively
new experimental techniques, such as atomic force mi-
croscopy and surface force apparatus, or theoretical
tools, such as molecular dynamics, etc., allowing new in-
sights into the old problems of surface forces. In addi-
tion, new concepts are being introduced to influence
both the statics and dynamics of wetting, such as pat-
terned surfaces, surfactants, and non-Newtonian flow, in
order to solve some of the technological problems men-
tioned above.

In this review, we first study the equilibrium state of
liquids deposited on a solid or another liquid, and how
this state is determined by both short-range and long-
range molecular interactions. As a thermodynamic pa-
rameter, such as the temperature, is varied, the system
may pass from one wetting state to another. These so-
called wetting transitions have perhaps been the most
active subdiscipline in the field of phase transitions over
the past two decades. In particular, a number of recent
experiments have reinvigorated interest and challenged
some long-held theoretical views.

Next we describe the dynamic problems involved in
reaching an equilibrium state, and their relation to the
surface chemistry. This is a subtle problem, as a classical
hydrodynamic description breaks down at the moving
contact line at the edge of a spreading droplet, and mi-
croscopic features have to be invoked. As a result, both
large-scale (hydrodynamic) features and short-scale (mo-
lecular) dynamics are inextricably linked into a truly
multiscale problem.

Finally, wetting is a subject in which disorder plays an
important role in practice, and even under idealized
laboratory conditions, for both statics and dynamics. On
the one hand, impurities may lead to frustration, so that
the true equilibrium state is never reached: a small drop-
let is often observed to rest on an inclined surface; see
Fig. 1. On the other hand, the resulting roughness of the
contact line leads to complicated dynamics, still poorly
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FIG. 1. (Color online) Plant leaves after rain.

understood. The close connections to other dynamical
problems involving many length scales, such as domain
walls, imbibition fronts, or vortex lattices, have made
this an extremely active field.

Some or all of the ground covered in this review has
been treated in a number of previous books and articles.
For older work, see the classical review by de Gennes
(1985), as well as that by Léger and Joanny (1992) and
the collection of articles in Berg (1993). More recent
work has been reviewed by Voinov (2002), Blake (2006),
and by de Gennes et al. (2003) and Starov et al. (2007).
Equilibrium phenomena are covered by Fisher (1986),
Sullivan and Telo da Gama (1986), Dietrich (1988),
Evans (1990), Schick (1990), Indekeu (1994), and more
recently by Bonn and Ross (2001) and Safran (2003).

B. Statics

1. Basic surface thermodynamics

If we consider a liquid drop on a solid substrate, there
are three different phases present; see Fig. 2. Therefore
there are three surface tensions that need to be consid-
ered: solid-liquid, liquid-gas, and solid-gas. Young’s
equation (Young, 1805) gives the relation between the
equilibrium contact angle 6., the drop makes with the
surface and the three surface tensions as

Ysi < Vsv

FIG. 2. (Color online) Young’s equation can also be inter-
preted as a mechanical force balance on the three-phase con-
tact line; the surface tension is an energy per unit area, equiva-
lent to a force per unit length acting on the contact line.
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completely wet completely dry

FIG. 3. (Color online) The three different possible wetting
states according to Young’s equation.

Ysv=YsL+ ¥ COS Ocq, (1)

where throughout y= vy, denotes the liquid-vapor sur-
face tension. Here the surface tensions are defined when
the three phases, solid, liquid, and gas, are at least in
mechanical equilibrium (force balance) with each other.
In addition, we consider chemical equilibrium (chemical
potential matching for each component present) and
thermal equilibrium (temperature matching) between
liquid and gas, so that the gas is the saturated vapor of
the liquid. Mechanical, chemical, and thermal equilib-
rium together are referred to as thermodynamic equilib-
rium. As stressed by de Gennes (1985), Eq. (1) is best
derived by considering a reversible change in contact
line position, using global energetic arguments. Thus the
nature of the contact line region, over which intermo-
lecular forces are acting, is not considered. Accordingly,
0cq 1s understood to be measured macroscopically, on a
scale above that of long-ranged intermolecular forces.

If the three tensions are known, the wetting state of
the fluid follows directly. If yg, < yg; + 7y, a droplet with a
finite contact angle minimizes the free energy of the sys-
tem; we speak of partial wetting. On the other hand, if
vsy="sr.+ 7Y, the contact angle is zero. The system will
consequently be in equilibrium when a macroscopic uni-
form liquid layer covers the whole solid surface, and we
speak of complete wetting. The distinction between the
different wetting states is usually made by considering
the equilibrium spreading coefficient S. <0, which rep-
resents the surface free energy 7y relative to its value
for complete wetting:

Seq = Ysv— (Y5 + ¥) = ¥(cos Oq—1). 2)

Figure 3 shows the three wetting states that may exist
in any three-phase system. For a solid-liquid-vapor sys-
tem, complete drying would correspond to the intrusion
of a macroscopic vapor layer between the solid and the
liquid. (“Drying” does not imply evaporation; see be-
low.) From a thermodynamic point of view, the wetting
and drying states are very similar, the only difference
being that liquid and vapor are interchanged. In prac-
tice, drying is rather rare (with mercury on, for instance,
glass as a notable exception) since van der Waals forces
tend to thin vapor layers. We thus focus here on wetting.
Partial wetting corresponds to drops, surrounded by a
microscopically thin film adsorbed at the surface, and
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complete wetting to a macroscopically thick layer. In a
partial wetting state the surface apart from the droplet is
never completely dry. In thermodynamic equilibrium
there will be at least some molecules adsorbed onto the
substrate, since the entropy gained by the system in do-
ing this is large. It is for this reason that we speak of a
microscopic film; in experiments the average thickness
of this film varies between a fraction of a molecule to
several molecules, depending on the affinity of the mol-
ecules for the substrate, and the distance to the bulk
critical point.

Note that for complete wetting the equilibrium
spreading coefficient is zero. The solid-vapor interface
then consists of a macroscopically thick wetting layer, so
that its tension is equal to the sum of the solid-liquid and
liquid-vapor surface tensions.

However, when a droplet is deposited on a dry sub-
strate, it is hardly ever in equilibrium. It is important to
emphasize in this context the distinction between vola-
tile (Bonn et al., 2001) and nonvolatile (Brochard-Wyart
et al., 1991; de Gennes et al., 2003) liquids. For volatile
liquids thermodynamic equilibrium can be reached in a
reasonable time span, so that away from the droplet
the substrate does not remain dry but establishes contact
with the saturated vapor phase, or at least some
(sub)monolayer of adsorbed molecules spreads diffu-
sively over the substrate, assuming a partial wetting con-
figuration. Even in the complete wetting regime, for
wetting layers of volatile liquids evaporating under non-
equilibrium conditions theory suggests and observations
confirm that a two-phase state can occur in which a mo-
lecularly thin film can coexist with a macroscopically
thick layer (e.g., for water evaporating on clean mica)
(Samid-Merzel et al., 1998; Leizerson and Lipson, 2003;
Leizerson et al., 2003). Possibly, the thin film is stabilized
by very short-ranged “polar” surface forces (exponen-
tially decaying on a microscopic scale). For nonvolatile
liquids thermodynamic equilibrium cannot be reached
within the experimental time window (typically days or
longer). To be able to deal with both cases, an initial
spreading coefficient can be defined (de Gennes, 1985):

Si=vso— (ysL+ ), (3)

which is the pertinent quantity for the dynamics—
indicating whether a droplet will spread or not. Here 7y
is the surface tension of the dry solid substrate. Note
that for nonvolatile liquids and for §;<<0 the drop will
display a finite static contact angle, say 6;, which is not
the equilibrium angle 6.4, but is found by replacing ygy
by yg in Eq. (1). For nonvolatile liquids and S;>0 the
droplet will flatten as it attempts to spread, while pre-
serving its volume (again, within the experimental time
window). This volume constraint is essential for describ-
ing nonvolatile adsorbates and leads to a “final” state
which differs from an equilibrium adsorbed film. We re-
turn to this difference and quantify it in Sec. II.A.

The equilibrium tension vygy is lower than yg, due to
adsorption of molecules on the solid from the vapor
phase. This follows from the Gibbs adsorption equation
(Rowlinson and Widom, 1982)
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dysy=-Tdu+3dT, 4)

where T is the adsorption, ¥ is the surface (excess) en-
tropy, and u is the chemical potential. From Eq. (4) it
follows that

(dysyldu)r=~-T. (5)

If not too many molecules are adsorbed, Eq. (5), com-
bined with du=kgTd In ¢ and I" ¢, where c is the (low)
bulk concentration of the adsorbed species, implies that
the surface tension is lowered by kzT per adsorbed mol-
ecule per unit area. In fact, for low adsorption Eq. (5)
results in a two-dimensional ideal gas law,

m= yso— Ysv=kpIT, (6)

where 7 is a positive “surface pressure,” a force per unit
length. It follows that S;>S.,. The initial S; can be posi-
tive or negative, but whenever §;<0, S is also negative
and the liquid does not spread. On the other hand, if
S;>0, there is no direct argument to indicate whether
Seq 18 less than or equal to zero.

In general if S; is large and positive, the equilibrium
state is characterized by S.,=0. However, an exception
to this empirical rule is illustrated by the example of a
benzene droplet placed on a water “substrate.” The
droplet spreads out quite violently for short times after
the deposition, but subsequently retracts into a droplet
again, with a final nonzero equilibrium contact angle.
This means that the initial spreading coefficient is posi-
tive, and the equilibrium spreading coefficient is nega-
tive. Since benzene is slightly soluble in water, yg; is low,
thus favoring complete wetting. However, this effect is
overpowered by the formation of a microscopic film of
the drop phase on the substrate in equilibrium. Accord-
ing to Eq. (5) the benzene layer decreases ygy signifi-
cantly; typical variations for light hydrocarbons such as
benzene on water are on the order of 10%. Thus accord-
ing to Eq. (2) S.q becomes negative due to the dominant
contribution of the benzene film.

The above example makes it clear that S, cannot be
determined in general from the surface tensions of the
pure substances. In the more favorable situation of a
drop (L,) wetting a liquid substrate L, for which more
general equations than Eq. (1) apply (Rowlinson and
Widom, 1982), care must be taken to measure the ten-
sions YL,V and YL,V each in the presence of the other
liquid. The measurement of y; ; is standard (Ferguson,
1929). This usually works reasonably well; however, it
should be kept in mind that the errors in an actual mea-
surement of the surface tension are of the order of
1-2 mN m™', and that in calculating the spreading coef-
ficient one usually subtracts two large numbers to obtain
a small number.

For a solid substrate, the usual (and almost the only)
way of evaluating the wettability is to deposit a droplet
of fluid and to measure the equilibrium contact angle
(Kabza et al., 2000). Zisman’s original idea is that the
difference yg,—vs; is a property of the solid, i.e., a con-
stant independent of the liquid used. Using a liquid with
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FIG. 4. (Color online) Zisman plot. Liquids of different liquid-
vapor surface tension are deposited on a Terphene surface,
and the variation of the contact angle of the liquid with the
solid is measured, yielding the critical surface tension of the
Terphene surface. A liquid with this surface tension just wets
the surface completely. The liquids used here are aqueous so-
lutions of the soluble surfactant cetyl trimethyl ammonium
bromide (CTAB) (Bonn, 2007). To within the experimental un-
certainty, the straight line goes through the origin.

a known liquid-vapor tension, this difference can readily
be evaluated by measuring the contact angle of that lig-
uid on the solid substrate, and using Eq. (1). The data
shown in Fig. 4 support Zisman’s original idea. The con-
stant is the intercept of a straight line through the data
with the horizontal cos 6.,=1, which motivates the name
critical surface tension (Fox and Zisman, 1950) for g,
—YsL-

However, although Zisman plots cos 6,, vs v, Eq. (1)
suggests rather that 1/cos 64 should be plotted. If this is
done, a straight line (whose extrapolation passes
through the origin) should be obtained. The data in Fig.
4 agree remarkably well with this conjecture.

It is even more difficult to estimate the initial spread-
ing coefficients for liquids on solids, which is crucial for
the dynamics of spreading; see below. One possible way
around this problem is to measure the adsorption iso-
therm of the liquid on a solid, and use Gibbs’ adsorption
equation to calculate the surface tension change associ-
ated with the adsorption (Ragil, Bonn, et al. 1996).

C. Drop spreading: Basic concepts

If a drop is placed on a solid surface, it will in general
be far from its equilibrium state, S;# S.,. Hence a flow is
set in motion until the equilibrium contact angle Eq. (1)
is reached, assuming the drop is not trapped in some
metastable state. The hydrodynamics of this problem
has been studied extensively, both experimentally (Tan-
ner, 1979; Huppert, 1982b; Cazabat and Cohen-Stuart,
1986; Levinson et al.,, 1988; Chen and Wada, 1989;
Ehrhard, 1993; McHale et al., 1995; Kavehpour et al.,
2002) and theoretically (Voinov, 1976; Greenspan, 1978;
Tanner, 1979; Hocking, 1983, 1992; de Gennes, 1985;
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(a)

(b)

FIG. 5. Two stages of the spreading of a silicone drop on a
glass substrate, which it wets completely: (a) t=3.25 s after
deposition, (b) r=18.25 s. Below the drop’s surface one sees its
reflection. The drop volume is V=1.7X10"* cm?, and /7
=10.6 cm/s. Although the equilibrium contact angle is zero,
the “apparent” angle is finite, and the drop is well fitted by a
spherical cap. From Chen, 1988.

Brenner and Bertozzi, 1993; Oron et al., 1997). For com-
plete wetting (6.,=0) the drop spreads almost forever,
presumably until it reaches a thickness set by the van
der Waals forces. If the static contact angle is finite but
small, the initial stages are similar, followed by relax-
ation toward a static shape.

Consider the simplest case of a small viscous droplet
spreading on a surface which it wets completely; see Fig.
5. By small we mean that the drop radius is smaller than
the capillary length €c:v/y/_pg, so that gravity is negli-
gible. As shown in Fig. 5(a), the drop is well approxi-
mated by a spherical cap, corresponding to an equilib-
rium liquid-vapor surface of the drop. This is to be
expected since the ratio of viscous to surface tension
forces, as measured by the capillary number

Ca=Unly, (7)
is very small (Ca=~107-1073), as is the case for most

spreading experiments. Here U=R is the contact line
speed and # is the viscosity of the liquid. Consequently,
except in a region very close to the contact line, the
interface shape is not affected by viscous forces. Once
the drop has become sufficiently flat (k' <1), its thick-
ness A(r,t) is described by

2 2
=21 (2] ®)

At a given volume V, the shape of the drop is thus de-
termined completely by the apparent contact angle 6,
between the spherical cap and the solid surface. For thin
droplets [-A'(R)=tan(6,,) =~ 6,,] one obtains

Onp = 4VITR, ©)

so the apparent contact angle 6,,(r) goes to zero as
1/R3(t) as the drop spreads.
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FIG. 6. The radius R of the drop of Fig. 5 as a function of time,
described by Tanner’s law (10).

Figure 6 shows a doubly logarithmic plot of the drop
radius as a function of time, which is given by

10 4V 3 11/10
R(t) = [#](7) ] ot (10)

Note that the spreading law is independent of the initial
spreading coefficient S;, which is a measure of the total
surface energy available to the system. The constant B
(for which a theoretical estimate will be given below) is
from Fig. 6 found to be close to B1°=1.186. Equation
(10) is universally known as Tanner’s law (Tanner, 1979),
although it was first obtained theoretically by Voinov
(1976), who found it to agree with earlier experiments by
Ogarev et al. (1974). The power n=1/10 found for the
viscous spreading of small droplets has been well cor-
roborated by many other experiments (Tanner, 1979;
Cazabat and Cohen-Stuart, 1986; Levinson et al., 1988;
Chen and Wada, 1989).

The speed of spreading is controlled by the balance of
the available energy (surface or gravitational energy)
and dissipation, which mostly occurs near the contact
line, but also in the bulk of the drop. If the drop is small,
only the surface energy needs to be considered, which is

Fg=4V*y/mR* - ©S,R? (11)

relative to the energy of the uncovered surface. The sec-
ond part of Eq. (11) comes from the base area of the
drop being covered by fluid, the first from the additional
liquid-vapor interface that arises because the drop is
curved.

From Eq. (11) one might conclude that for §;,>0
spreading can be made extremely effective, since any
increase in radius will lead to a decrease in surface en-
ergy proportional to S;R dR. This is not the case, how-
ever, since in practice the energy 7S;R*> cannot be con-
verted into macroscopic motion of the drop. Instead,
spreading becomes a two-stage process: the macroscopic
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FIG. 7. A cartoon of an advancing contact line. In a frame of
reference in which the contact line is stationary the solid
moves with velocity U to the right.

wetting front is preceded by a thin precursor film of dy-
namical origin [of typical thickness between 100 A
(Kavehpour et al., 2002) and a single molecular layer
(Cazabat et al., 1997)] in which all energy corresponding
to S; is used up (de Gennes, 1985). This dynamical struc-
ture is to be distinguished from the adsorbed film
around a partially wetting drop, which exists even in
equilibrium. Intuitively, movement of a small number of
molecules represents a more efficient pathway toward
using most of the energy than movement of the whole
drop at once. The structure of the precursor film can be
quite complicated, and depends in detail on the interac-
tion potentials.

Thus, on the time scale on which the macroscopic
drop spreads, the effective spreading coefficient has al-
ready been reduced to its equilibrium value S, =0; an
increase in the surface energy available for spreading
does not enhance the spreading rate. For vanishing §;
the decrease of Fg becomes very small if R is large,
which explains why spreading becomes exceedingly
slow, as is reflected by the very small exponent n=1/10
in Eq. (10). To compute the power n, the rate of energy
dissipation has to be calculated as well, which at low
capillary numbers is concentrated in a region close to
the contact line. In fact, the rate of viscous energy dissi-
pation increases so sharply near the drop that the total
dissipation formally diverges. This poses a fundamental
difficulty for the hydrodynamic treatment of spreading,
and determines the structure of most problems involving
a moving contact line.

1. Huh and Scriven’s paradox

It was first pointed out by Huh and Scriven (1971) that
application of the no-slip condition to a flow close to a
contact line leads to an energy dissipation that is loga-
rithmically diverging. This can be seen from a local de-
scription of the contact line, for which it is most conve-
nient to choose a frame of reference where the contact
line is stationary and the solid is moving; see Fig. 7. We
assume that the interface meets the solid boundary at
some finite angle 6. Owing to the no-slip condition, the
fluid at the bottom moves with constant velocity U to
the right, while the flux through the cross section is zero.
By mass conservation, the fluid at the top is moving to
the left. Thus at a distance x from the contact line, the
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TABLE 1. A list of mechanisms that have been proposed to
relieve the dynamical singularity near the contact line, along
with representative references.

Reference
Mechanism

Mesoscopic precursor film Hervet and de Gennes,

1984
Eres et al., 2000
Huh and Scriven, 1971

Thompson and Troian,
1997

Hocking, 1976

Weidner and Schwartz,
1993

Wayner, 1993
Seppecher, 1996
Boudaoud, 2007

Molecular film
Navier slip
Nonlinear slip

Surface roughness
Shear thinning

Evaporation and condensation
Diffuse interface
Normal stresses

typical vertical velocity gradient is du,/dz=U/h(x),
where h(x)= 6x for small 6. The rate of viscous dissi-
pation per unit volume in a fluid of viscosity # is
e~ n(du,/dz)> (Landau and Lifshitz, 1984). Integrating
(U/h)? over the wedge, one arrives at an estimate of the
dissipation per unit time and unit length of the contact
line,

Lout U 2 IJ2
Dvisc = 7]J (;) hdx = %ln(Lout/L)7 (12)
L

where L., is an appropriate outer length scale like the
radius of the spreading droplet. In addition, we were
forced to introduce some small cutoff length L to make
the integral finite. Thus assuming standard continuum
hydrodynamics with no slip, where L is set to zero, “not
even Herakles could sink a solid,” in Huh and Scriven’s
apt phrase.

To account for the experimental observation that con-
tact lines do in fact move, some microscopic features
have to be built into the hydrodynamic description. As a
result, macroscopic flow features must depend to some
degree on those microscopic details, and the usual uni-
versality of hydrodynamics is lost. In Table I we give a
list of different mechanisms that have been proposed to
relieve the contact line singularity. Unfortunately, only
very limited experimental information exists that would
pinpoint one or the other mechanism. That is, as is to be
expected from Eq. (12), the dependence on microscopic
parameters is only logarithmic, so it is difficult to extract
accurate information on their values.

Based on the above estimates for the dissipation near
the contact line, we are now in a position to derive the
spreading law (10) by equating the rate of change of

the surface energy with the energy dissipation: Fj
=27RD .. To that end we take the angle 6 in Eq. (12)
as an approximation for the apparent contact angle, and

find that D, RR?/ 6, R*R*. Using Fs R/R®, one ar-
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rives at dR'°/dr=10RR° = const, and thus at Tanner’s law
(10). This estimate neglects the logarithmic factor ap-
pearing in Eq. (12), which may be a time-dependent
quantity in itself. Only a more involved hydrodynamic
calculation, to which we return below, is able to predict
the exact form of the logarithmic corrections.

2. Apparent and microscopic contact angles

The concept of a contact angle becomes much more
problematic in the out-of-equilibrium situation of a
moving contact line, where the thermodynamic argu-
ments leading to Eq. (1) no longer apply. Namely, the
local angle the interface makes with the substrate de-
pends strongly on scale, i.e., on the distance from the
contact line. On hydrodynamic scales, the strong diver-
gence of viscous forces (Huh and Scriven, 1971) results
in an interface slope that varies logarithmically with the
distance from the contact line, as confirmed experimen-
tally (Chen and Wada, 1989; Marsh et al., 1993; Kaveh-
pour et al., 2003). We refer to this local angle, measured
macroscopically at a specified distance from the contact
line, as the dynamic contact angle 6.

As one approaches the contact line, the angle will also
be affected by long-ranged forces. If finally the angle is
determined on a molecular scale, the interface position
is no longer determined uniquely owing to thermal fluc-
tuations and the diffusiveness of the interface itself. The
concept of a microscopic or actual (Dussan, 1979) con-
tact angle 6,,, determined directly at the contact line,
thus has to be applied with care. It requires averaging
over microscopic data [e.g., from molecular simulations
(Thompson and Robbins, 1989)], or the application of
well-defined theoretical models, taking into account the
diffusiveness of the interface (Qian et al., 2003).

The only uniquely defined macroscopic angle is the
apparent contact angle (9), introduced in the context of
drop spreading. Unfortunately, its definition is contin-
gent on the fact that the interface shape sufficiently far
away from the contact line is quasistatic, and thus speed
independent. In many cases, and in particular if the cap-
illary number is no longer small, the surface is strongly
deformed by viscous forces and a general formula for
the interface shape can no longer be given. This makes it
difficult to define a unique apparent angle.

The situation is summarized in Fig. 8, which shows a
drop of partially wetting fluid spreading on a solid sub-
strate. Roughly speaking, the problem can be split up
into three distinct regions. First is the macroscopic flow
in the drop on the scale of its radius R, often referred to
as the “outer” region, in the language of asymptotic ex-
pansions (Cox, 1986). Second is the contact line region,
characterized by a balance of viscous and surface ten-
sion forces, over which the interface is strongly bent,
resulting in a rapid change of the interface slope. This is
called the “intermediate” region, whose size is estimated
as 3 Ca R/6,,, based on where the profile turns from
concave to convex (see Sec. IIL.LB below). Third is an
“inner” region, forming a neighborhood of the size of
nanometers around the contact line, where microscopic
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FIG. 8. A spreading drop that partially wets the solid surface,
whose shape is determined by the apparent contact angle. The
interface near the corner is highly curved, so 6, is larger than
the angle 6,, seen on a scale of nanometers. On this scale the
interface fluctuates, and the corrugation of the solid surface is
seen. The size of the crossover region between microscopic
and macroscopic, the “intermediate” region, is estimated
based on Eq. (58).

details matter and fluctuations are felt (Thompson and
Robbins, 1989).

Thus there are two important challenges in the large-
scale modeling of moving contact line phenomena:

(i) to describe the flow close to the contact line, and to

understand its consequences for the flow problem
on a large scale (for example, to compute 6,,);

(i) to match the hydrodynamic part of the problem to
a microscopic neighborhood of the contact line (of
the size of a nanometer), where a molecular de-
scription needs to be adopted.

It has been proposed (Greenspan, 1978; Oron et al.,
1997) that an alternative way of describing moving con-
tact line problems consists in prescribing an apparent
contact angle according to some empirical law. First, this
approach does not remove problems associated with the
singular viscous flow near the contact line. In particular,
even if the drop shape is assumed to be an equilibrium
surface, the appropriate dynamic contact angle will still
depend on the scale on which matching occurs. Second,
little insight is gained by imposing empirical laws. For
example, an assumption of linear response, 6,,~- GerCR,
does not suffice: applied to the spreading of a perfectly
wetting fluid, with Eq. (9), it leads to n=1/4, completely
at odds with experimental observation.

3. Spreading laws

The above analysis of drop spreading was based on
the assumption of small drop radius R<¢, (as well as
small volume V'3<¢,), and the corresponding Tanner’s
law is the most easily observed case. However, as the
radius grows beyond the capillary length, the drop
changes toward a “pancake” shape of constant thick-
ness, curved only at the rim, and the main driving force
is now gravity. It can be balanced against dissipation ei-
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TABLE II. The scaling exponents n, with R ¢", corresponding
to different balances in droplet spreading in two and three
dimensions. Driving forces are gravity (gr.) or surface tension
(s.t.), dissipation occurs either at the contact line (c.l.), or in the
bulk (vis.). Listed are also experimental papers frequently cited
in support of a given scaling law.

Balance n, theory Experiment
3D, s.t.-c.l. 1/10 Cazabat and Cohen-Stuart, 1986
2D, s.t.-c.l. 1/7 McHale et al., 1995
3D, gr.-c.l. 1/7 Ehrhard, 1993
2D, gr.-c.l. 1/4 None
3D, gr.-vis. 1/8 Huppert, 1982b
3D, gr.-vis. 1/8 Cazabat and Cohen-Stuart, 1986
(pancake)
2D, gr.-vis. 1/5 None

ther in the bulk of the drop (Lopez et al., 1976) or near
the contact line (Ehrhard and Davis, 1991), leading to
n=1/8 or 1/7, respectively.

These and similar analyses and experiments in two
dimensions (2D) [spreading on a strip (McHale et al.,
1995)] are summarized in Table II. Since n=1/8 corre-
sponds to slower spreading for long times than n=1/7,
bulk dissipation dominates over contact line dissipation
in the late stages of spreading. A detailed asymptotic
analysis for slip laws (Hocking, 1983, 1992) and for long-
ranged forces (Hocking, 1994) confirms this. A crossover
between n=1/10 and 1/8 was reported in the experi-
ments of Cazabat and Cohen-Stuart (1986), while
Ehrhard (1993) found a crossover to n=1/7. Available
experimental data are probably not sufficiently accurate
to distinguish between the two regimes.

If the drop is no longer small, neither surface tension
nor the particulars of contact line dynamics will matter
for such a “gravity current” (Lopez et al., 1976; Huppert,
1982b). As found from a balance of gravity and bulk
dissipation, the spreading exponent is again n=1/8, and
the shape of the drop is known from the exact solution
of a similarity equation (Pattle, 1959). This of course
neglects a possible fine structure near the contact line,
where surface tension still plays a role (Hocking, 1983).

Recently experimental studies of spreading drops at
low viscosities have appeared (Kavehpour ef al., 2002;
Biance et al., 2003). The theoretical analysis involves a
balance of inertia and surface tension, neglecting viscous
dissipation. Power laws close to n=1/2 for very early
stages of spreading, R<V'? (Biance et al., 2003), and
n=2/3 for later stages (Kavehpour et al., 2002) have
been reported.

D. Real solid surfaces: Contact line hysteresis

Most solid surfaces are not homogeneous; dust par-
ticles, roughness, and chemical heterogeneity may cause
the spreading coefficient S to become dependent on the
position on the substrate. If the defects are sufficiently
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FIG. 9. The edge of a water drop receding on a disordered
surface. The defects (size 10 um) appear as white dots.

weak, one may hope that Young’s relation still holds,

provided that S is replaced by its mean value S, i.e., its
value averaged over the substrate area. This leads to the
so-called Cassie-Baxter relation (Cassie, 1952),

(1 —cos Ocp) =S, (13)

which allows us to define the contact angle of a liquid on
a heterogeneous substrate. Very careful experiments
with a silicone wafer grafted with two different silanes
show that the cosine of the contact angle does indeed
vary linearly with the surface density X of one of the
components, exactly as expected from Eq. (13) (Silber-
zan et al., 1991). However, Eq. (13) only makes sense if
thermodynamic equilibrium can be reached. This im-
plies that the contact angle of a liquid drop deposited on
the substrate reaches a unique value 6,4, independent of
the way the droplet is deposited on the substrate. This
only very rarely happens in experiments, since even a
small heterogeneity of the substrate may lead to a sig-
nificant hysteresis of the contact angle.

That is, the contact angle 6, obtained by advancing
the meniscus over the substrate is larger than the contact
angle 6, for a meniscus that has been receding. Even for
surfaces prepared carefully, the hysteresis can be as large
as a few degrees, and in practice it is very often of the
order of several tens of degrees (Johnson and Dettre,
1993). This behavior complicates the understanding of
the wetting behavior of liquids on solids, and is due to
the pinning of the contact line on defects of the sub-
strate. The size of the defects may in addition vary
widely between different surfaces; when the size of the
defects is macroscopic (micrometer size), the pinning
can be observed directly as shown in Fig. 9. However, if
the defects are microscopic (nanometric), their effect is
still visible macroscopically as a hysteresis of the contact
line.

A surface is considered to be relatively clean and flat
if the contact angle hysteresis 6,— 6, is smaller than, say,
5°. However, it is important to realize that the magni-
tude of the hysteresis is better described in terms of the
forces that act on the three-phase contact line (recall
that the dimension of surface tension is force per unit
length) than in terms of the contact angle hysteresis. The
important parameter is the threshold force per unit
length which has to be applied to make the contact line
advance or recede, which follows directly from the un-
balanced Young’s forces, respectively, f;=2(cos b,
—cos 6,) and f_=y(cos 6,—cos b).
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FIG. 10. Force per unit length exerted on a plate that is im-
mersed in a liquid and then withdrawn (buoyancy force has
been subtracted). From Moulinet, Guthmann et al., 2004.

In practice, the equilibrium contact angle 6, cannot
be measured, except in a gedanken experiment where
thermal fluctuations are strong enough to enable the
contact line to find its minimum energy state (but then
the hysteresis would disappear, too). The measurable
quantity is the hysteresis force (per unit length)

H = v(cos 6,—cos 6,). (14)

H can be measured directly by measuring the force ex-
erted on a plate that is immersed in a liquid and then
withdrawn, as illustrated in Fig. 10. In a quasistatic ex-
periment, the energy (per unit length) dissipated at the
contact line equals the area, as one completes the loop.
In the advancing part of the loop, the rate of energy
dissipation is

W = Uy(cos 4~ cos 6,), (15)

with an analogous expression for the receding case.
For most systems, it turns out that H/y=0.1. Using
this value, it follows that the receding contact angle is
zero, and consequently the contact line cannot recede,
as soon as the advancing angle is smaller than about 20°.
The presence of a hysteresis force Eq. (14) allows drops
to be supported on an inclined plane without rolling off,
until the force of gravity, projected onto the direction of
the plane, equals H (Dussan and Chow, 1979). At the
critical slope of the plane the contact angles of the front
and back of the drop are 6, and 6,, respectively.
Because of the ubiquity of hysteresis, the understand-
ing of the contact line behavior on disordered solid sur-
faces is of great practical importance, and a variety of
optical and tensiometric techniques (Johnson and
Dettre, 1993) have been employed to measure the hys-
teresis in a large number of systems. However, in order
to understand the effect of the disorder on the hyster-
esis, systematic studies are necessary on well-defined
substrates as a function of the size, number, and strength
of the defects. An example of the results of such a sys-
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FIG. 11. Advancing and receding contact angles on a compos-
ite substrate as a function of the surface fraction of defects. (a)
Experimental measurements for liquid tin on SiO, partially
covered by a regular array of Si defects. Adapted from de
Jonghe and Chatain, 1995. (b) Prediction adapted from the
calculation by Schwartz and Garoff, 1985.

tematic study is shown in Fig. 11: the contact angle has
been measured as a function of the surface coverage X
for substrates composed of patches of two different spe-
cies. One may look upon the minority species as defects.
As shown in Fig. 11, the advancing angle is roughly con-
stant up to X=0.3. This is consistent with the general
trend that, for a nonwettable substrate polluted by a few
wettable defects, the advancing contact angle is close to
the equilibrium contact angle on the clean nonwettable
substrate. Namely, the contact line will advance only lo-
cally on the wettable patches; if the size of the defects is
not too large, this will lead only to a local distortion of
the contact line, which does not have a large effect on
the contact angle.

Early theoretical work concentrated mainly on the
calculation of the hysteresis on a substrate decorated by
regular or periodic patterns [see, e.g., Schwartz and Ga-
roff (1985); more extensive references are given by
Johnson and Dettre (1993)]. The hysteresis is deter-
mined by looking for the local minima of the total free
energy for a (periodically) distorted interface. The re-
sults obtained in various approximation schemes agree
qualitatively with the experimental data obtained on pe-
riodic substrates, such as those shown in Fig. 11. For the
more general problem of nonperiodic defects, a theoret-
ical breakthrough occurred in the 1980s when Robbins
and Joanny (1987) pointed out that the dynamics of a
contact line moving on a substrate with random defects
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was similar to the dynamics of other systems where an
elastic boundary (the contact line) moves in a random
medium (the disordered substrate). Examples are do-
main walls in ferromagnets (Lemerle et al., 1998; Zap-
peri et al., 1998), imbibition fronts (Alava et al., 2004),
and vortex lattices in type-II superconductors (Blatter et
al., 1994). These systems had been been studied for a
long time, and subsequently a number of (phenomeno-
logical) models developed for these systems were used
to study the behavior of the contact line. Perhaps the
most interesting prediction that emanated from this
work was that, close to the depinning threshold (f=f}),
the contact line undergoes a depinning transition that
can be characterized by a few universal critical expo-
nents.

This renewed theoretical interest also triggered new
experiments in order to measure not only the hysteresis,
but also the whole dynamical behavior of the contact
line on random substrates. The qualitative features of
the dynamics, such as stick-slip motion, were found to be
indeed similar to the ones observed for other elastic
boundaries. However, owing to the small number of con-
trolled experiments that exist to date, it is still unclear
whether quantitative agreement with current phenom-
enological models can be achieved.

II. EQUILIBRIUM WETTING PHENOMENA

A. Equilibrium wetting behavior in relation
to the intermolecular interactions

The wetting behavior of, say, a liquid on a solid sub-
strate is determined by the difference between the cohe-
sive interactions holding the liquid together and the ad-
hesive interactions between the liquid and the solid
(Schick, 1990; Israelachvili, 1992). In principle, the equi-
librium properties (such as S.q) can thus be related to
the molecular interaction potentials, for which the
Lennard-Jones form (Israelachvili, 1992)

w(r) = 4€(a/r)? = (o/r)®] (16)

with a short-range repulsion and an algebraically decay-
ing attraction is prototypical.

Although the algebraic 1/7° tail of the Lennard-Jones
form adequately describes the London dispersion en-
ergy between nonpolar molecules, the Debye energy be-
tween dipolar and nonpolar molecules, as well as the
Keesom energy between freely rotating dipolar mol-
ecules, there are other forces (e.g., hydrogen bonding,
hydration forces, etc.) which are very short ranged and
which lead to exponentially decaying forces between in-
terfaces rather than algebraic ones. Sharma (1993) and
Sharma and Jameel (1993) have referred to these short-
ranged forces as “polar” and to the Lifshitz—van der
Waals forces (arising from 1/r° potentials) as “apolar.”
In a first step toward a systematic study of the interplay
(or competition) between these short-ranged polar sur-
face forces and the apolar ones, they adopted the sim-
plifying assumption that the apolar spreading coefficient
is simply proportional to the amplitude of the tail of the
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net apolar interaction between interfaces. Using the
Young-Laplace and Navier-Stokes equations they then
related the stability properties of a thin adsorbed film to
macroscopic parameters of wetting such as the contact
angle.

One quantifies the net effect of the interaction poten-
tials on the wetting behavior by considering a liquid film
of thickness / on a solid substrate. If, for instance, the
adhesive solid-liquid interactions are strong, the system
can lower its free energy by increasing the distance be-
tween the two surfaces. This leads to a net repulsive
force per unit area between the solid-liquid and liquid-
vapor interfaces, which is called the disjoining pressure
I1(/) (de Feijter, 1988; Teletzke et al., 1988) and can be
measured in experiment. Theoretically, it can be derived
from the so-called effective interface potential V(l)
through

I1(l) =-dV(])/dl, 17)
where
Ysvl) = y+ ysp + V() (18)

is the excess free energy per unit area of the liquid film,
and V(%) =0. Surface excess free energies are well de-
fined thermodynamically and can be calculated using
statistical mechanics (Rowlinson and Widom, 1982).

The long-time static, but nonequilibrium behavior of
nonvolatile adsorbates can also be described by Eq. (18);
cf. Sec. I.B. To see this, it suffices to appreciate that the
previously introduced dry-substrate surface tension 7y
and the initial spreading coefficient S; correspond to tak-
ing the € —0 limit in Eq. (18),

¥s0= ¥sy(0) and S;=V(0). (19)

Now, in view of the volume conservation of nonvolatile
drops, the static film thickness after flattening, assuming
S;>0, is governed not by minimizing V(€), as would be
the case for an equilibrium film, but by minimizing the
surface free energy with the constraint. This leads to the
modified condition (Brochard-Wyart et al, 1991; de
Gennes et al., 2003)

[V(£) - V(0))/€ =dV(£)/de, (20)

allowing the determination of the static thickness of the
flattened drop through an elegant tangent rule in the
plot of V(£). Since the nonvolatile drop would ideally
like to spread over the entire dry substrate, but contains
insufficient material to do so, the compromise is a finite
pancake, slightly thinner than the infinitely wide equilib-
rium thin film (without volume constraint, i.e., for vola-
tile liquids).

If the disjoining pressure is known, the equilibrium
wetting state can be predicted, but a calculation based
on first principles is difficult. Starting from Lennard-
Jones potentials, density functional theory (DFT)
(Dietrich, 1988; Evans, 1990; Schick, 1990) in principle
provides a means of calculating the equilibrium wetting
state. DFT is based directly on microscopically specified
molecular interactions. Within mean-field theory, one at-
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tempts to find the free energy of the system as a func-
tional of the density profile p(r) alone. This is, however,
difficult owing to the slow decay of, e.g., the Lennard-
Jones potential w(r). Thus, either some simplifications
have to be made or the problem has to be solved nu-
merically. Quantitative predictions based on numerical
solutions of the full DFT that have been verified by ex-
periment are so far limited to the wetting behavior of
simple atoms or molecules (e.g., He) on simple sub-
strates (e.g., Cs) at zero temperature (Cheng et al., 1993).
Considering only the 1/7° van der Waals attractive tail of
w(r), the disjoining pressure for large distances can be
calculated explicitly. If in addition the spreading coeffi-
cient is known (for instance, from the phenomenological
Cahn-Landau theory), the wetting behavior can be pre-
dicted.

The subtleties and strengths of an approach based on
DFT are illustrated by derivations of an effective Hamil-
tonian for liquid-vapor interfaces (Dietrich and
Napidrkowski, 1991; Mecke and Dietrich, 1999;
Napiorkowski and Dietrich, 1993). Taking into account
only bulk fluctuations, first an intrinsic density profile is
obtained, and in the next step undulations of the inter-
face position are described by a statistical theory for
capillary waves on all length scales. The result is a non-
local and non-Gaussian functional of the interface con-
figuration. From this the usually postulated (local) Hel-
frich Hamiltonian can be deduced by a gradient
expansion, which, however, features divergent coeffi-
cients for all but strictly finite-range interactions. If one
expands, as is usually done, the Fourier transform of the
Helfrich Hamiltonian in powers of the transverse mo-
mentum ¢, one obtains an approximate wave-vector-
dependent interfacial tension y(g). However, the Gauss-
ian approximation to the nonlocal interface Hamiltonian
derived by Mecke and Dietrich (1999) leads to a form
for y(g) that is qualitatively different in the long capil-
lary wavelength limit and agrees better with experiments
on liquids with intermolecular dispersion forces (Mora et
al., 2003).

1. Long-range forces: The Hamaker constant

The van der Waals interaction w(r)<1/r° [cf. Eq. (16)]
includes all intermolecular dipole-dipole, dipole-induced
dipole, and induced dipole-induced dipole interactions.
Performing a volume integral over all molecules present
in the two half spaces bounding the film one finds a
corresponding decay II(/)=~A /6l (Israelachvili, 1992),
where the so-called Hamaker constant A gives the am-
plitude of the interaction. In the “repulsive” case, in
which the layer tends to thicken, we have A >0; note
that Israelachvili (1992) used a different sign convention
for A.

At distances larger than the microscopic ones, Eq.
(17) leads to an effective interaction energy
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A

V() = Py (21)
between the two surfaces bounding the wetting layer.
Note that this is a truly long-range interface potential,
and this is why van der Waals forces are considered to
be of long range in the context of wetting. Assuming
pairwise additivity of the interactions, Hamaker (1937)
showed that A can be directly related to the amplitudes
of the substrate-liquid and liquid-liquid interaction tails.
Below we report a more complete calculation of A (Dzy-
aloshinskii et al., 1961), although the numerical improve-
ment over the original result of Hamaker (1937) is small.
To understand the effect of both long- and short-
ranged interactions on the wetting behavior it is useful

to consider the relation (de Feijter, 1988)

Seq= f [()dl. (22)
The potential minimum at /;, essentially contains the
information about the short-ranged forces, i.e., the con-
tributions that remain when the interaction tails are cut
off.

Partial wetting corresponds to S.,<0; this prohibits
the formation of a wetting layer, regardless of the sign of
A. If §,4=0 and A>0, a wetting layer will form, and we
speak of complete wetting. An intermediate state may
occur under certain conditions if S, =0 (it is not exactly
zero but slightly negative, as discussed in Sec. 11.B.2) and
A <0: this intermediate wetting state is characterized by
a mesoscopic wetting film, and has been called frustrated
complete wetting (Indekeu, Ragil, Bonn, et al., 1999; In-
dekeu, Ragil, Broseta, et al., 1999). In this case, the in-
terface potential has two minima such as for a first-order
wetting transition [see Fig. 13(a)], but the second mini-
mum occurs at a finite rather than infinite wetting film
thickness.

The Hamaker constant is thus a key property for de-
termining the wetting behavior, and can be calculated
exactly (Dzyaloshinskii et al., 1961) in terms of the di-
electric properties of the three materials, which are char-
acterized by their frequency-dependent polarizability. In
addition, as explained below, the Hamaker constant is
also important in determining the spreading behavior.
For its calculation, one has to integrate the dipolar in-
teractions over all frequencies, and express them as an
effective interaction between the two surfaces bounding
the half spaces. A simple and usually good approxima-
tion (Israelachvili, 1992) is obtained by first considering
the contribution due to dipolar interactions, given by the
(zero frequency) dielectric constants of the materials:

3 (6 — &)(e — &)

A o= kT . 23
T AT (gt e)ete) )

Here 1 (solid) and 2 (vapor) denote the material in the
two half spaces, and 3 (liquid) is the intermediate mate-
rial. According to Eq. (23) |A,_| can never exceed
(3/4)kpT, but it is usually significantly smaller. As a re-
sult, unless strongly polar molecules such as water are
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involved, A,, can be neglected with respect to the
finite-frequency term that accounts for induced dipolar
interactions. The only case for which the static contribu-
tion (23) is important is when at least one of the mate-
rials has a high dielectric constant (e.g., water) and the
refractive index differences in the visible are small; one
pertinent example of both is the wetting of light hydro-
carbons on water (Ragil, Meunier, et al., 1996).

The main contribution to the integral comes from fre-
quencies corresponding to visible light, and conse-
quently A,-, is given by the refractive indices in the
visible:

3h Vuyv

- 16V/2(n% + n%)(n% + n%)

AV>0 =

(0~ ”

/ .
V(n? +nl) + \r/(ng +n3)

Here 4 is Planck’s constant and v, (=2 X 10'® Hz) is the
uv frequency for which the refractive indices of the ma-
terials become identical (close to unity). The Hamaker
constant is the sum of the two contributions given
above.

The zero-frequency or Keesom and/or Debye part of
the Hamaker constant preserves the 1//?> dependence of
V(I) in Eq. (21) for all distances; however, the dispersive
or London part A,. is subject to retardation, as inter-
actions due to changing dipoles only travel at the speed
of light. The typical frequency »,, corresponds to dis-
tances of 15 nm; for larger distances the 1//> behavior
crosses over to a 1/P decay. However, in general the
correction from retardation is hardly detectable in ex-
periment (Sabisky and Anderson, 1973).

It also follows from Eq. (24) that, for a symmetrical
situation (two identical materials separated by a third
and different material), the net effect of the van der
Waals forces is always an effective attraction between
the two interfaces (A <0). Thus if only van der Waals
interactions are important, two colloid particles are at-
tracted to each other and colloids invariably flocculate.
In a wetting problem the situation is different as in gen-
eral three different materials are involved. In this case, it
follows from Egs. (23) and (24) that depending on the
dielectric properties of the three media A can have ei-
ther sign.

For the typical case that A ., dominates, the sign of A
is given by the sign of the refractive index difference
between the liquid and the solid, since the refractive in-
dex of the vapor will generally be close to unity. If the
liquid has a refractive index between that of the solid
and the vapor (which is usually the case), it follows that
A >0 and the formation of a liquid wetting layer is fa-
vored: there is an effective repulsion between the inter-
faces. If (and only if) in addition the equilibrium spread-
ing coefficient is zero, complete wetting will result.

For thick equilibrium wetting films, the van der Waals
interactions and a possible gravitational penalty for
forming a wetting layer above its bulk reservoir have to
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be taken into account. This leads to (Deryaguin, 1940;
de Gennes, 1981; Evans and Marini Bettolo Marconi,
1985)

A 1/3
[= (—) , (25)
6mApgH

where H is the height of the wetting layer above its bulk
phase and Ap is the mass density difference between the
wetting layer and the phase on which it rests. Away from
T,., explicit calculation gives A/6m~0.5kgT and thus /
~100 A, in general agreement with experiments on bi-
nary liquid systems (Moldover and Cahn, 1980; Find-
enegg and Loring, 1984; Kayser ef al., 1986; Schmidt and
Moldover, 1986; Law, 1991; Bonn et al., 1992). For low-
temperature systems Sabisky and Anderson (1973) con-
firmed that /o« H~3 as predicted by Eq. (25), where H is
the height above the reservoir. More generally H can be
identified as a chemical potential shift away from coex-
istence: AuxgH, giving

Lo [ Al 15, (26)

When a substrate is brought into contact with a nonsat-
urated vapor, Au=kgT In(P/Pg,) and the liquid wetting
layer thickness diverges as coexistence is approached
(Krim et al., 1984).

Closer to T, the bulk correlation length can become
of the order of the film thickness. A recent experimental
study (Fenistein et al., 2002) of the binary liquid mixture
cyclohexane-methanol has shown that, upon approach
to the bulk critical temperature, the film thickness di-

verges as ¢# with an apparent effective critical exponent
£=0.23+0.06.

2. Short-range forces: The phenomenological Cahn-Landau
theory of wetting

The classical theory of Cahn (1977), combined with a
Landau expansion, is an explicit way to calculate the
spreading coefficient. In addition it does quite well in
predicting generic wetting behavior, in spite of the fact
that the van der Waals tails of the intermolecular forces
are not included. For a detailed discussion of Cahn-
Landau theory, see, e.g., Bonn and Ross (2001). It can be
used to predict first-order and short-range critical wet-
ting transitions, and can be adapted when the tails of the
van der Waals forces control the wetting behavior, as is
observed for long-range critical wetting (Indekeu, Ragi,
Bonn, et al., 1999).

Cahn (1977) considered the surface free energy func-
tional in a squared-gradient approximation, with the ad-
dition of a surface term in order to account for the in-
teractions with the wall:

Fy=®(m,) + f [(H4)(dmldz)* + o(m)]dz,  (27)

0
where o is the bulk free energy density, m(z) is the order
parameter profile as a function of the distance z from

the wall, and m,=m(0) is its value at the substrate. For a
typical adsorbed fluid m is proportional to the density
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FIG. 12. (Color online) The wetting phase diagram calculated
by Nakanishi and Fisher (1982), where t=(T-T.)/ T, is the re-
duced temperature, s, is the surface field, and 4 is the bulk
field. The wetting line W (which is a parabola in the mean field
approximation) has the critical temperature T, at its apex. At
le there is a tricritical point which separates first-order from
second-order wetting transitions. The surface of prewetting
transitions is bounded by a line of critical points Cllm, called
the ?ritical prewetting line, which merges into the wetting line
at T, .

minus the critical density, p—p.. The term in the integral
is the classical van der Waals form for a liquid-vapor
interface. It leads to an interface whose density profile is
a hyperbolic tangent, and whose thickness is that of the
bulk correlation length & (Rowlinson and Widom, 1982).
Cahn included a solid surface by adding the contact en-
ergy ®(my) to Eq. (27) which depends only on my. It is
usually expanded to second order (Nakanishi and Fisher,
1982),

D(m,) = - hym - gm}/2, (28)

where the parameters /; and g are referred to as the
short-range surface field and the surface enhancement,
respectively. The field /; describes the preference of the
substrate for either the liquid or the vapor, and is a mea-
sure of the difference between the substrate-liquid and
substrate-vapor surface tensions (Ross, Bonn, and Meu-
nier, 2001); consequently if /; >0, the liquid is preferred
at the wall, whereas for /#; <0 the vapor is preferred.
The surface enhancement g allows for the missing inter-
actions due to the fact that a particle near a wall has a
smaller number of like neighbors than a particle in bulk.
It is usually negative (Bonn and Ross, 2001).

The phase diagram that follows from Cahn-Landau
theory is illustrated in Fig. 12. We focus first on the
plane h=0, which corresponds to the coexistence be-
tween liquid and vapor, e.g., a drop sitting on a sub-
strate. In fact, h=(u—pg)/ kT measures the distance in
bulk chemical potential from two-phase coexistence.
The remaining axes are the reduced temperature t=(T
—T,)/T. and the surface field ;. In agreement with
Cahn’s expectation, upon increasing the temperature to-
ward T, one always leaves the hatched area bounded by
the so-called wetting line, and a wetting transition oc-
curs. If Ay is large, the transition is of first order. How-



752 Bonn et al.: Wetting and spreading

ever, as one crosses the tricritical point at 7%, the transi-
tion becomes second order or critical.

One interesting prediction of the Cahn-Landau theory
[see also Ebner and Saam (1977)] is that a first-order
wetting transition at coexistence should persist in re-
gions of the phase diagram off of coexistence & #0. As
shown in Fig. 12, this prewetting transition is an exten-
sion of the wetting transition in the one-phase region of
the bulk phase diagram. It manifests itself by the forma-
tion of a thick (but not macroscopic) liquid film on the
substrate at pressures below the saturated vapor pres-
sure.

As one moves away from the wetting line, the line of
prewetting transitions ends in a surface critical point,
called the prewetting critical point. Upon approach of
the surface tricritical point le, the prewetting line
shrinks progressively away; for critical wetting there is
no prewetting line (cf. Fig. 12). As one approaches coex-
istence for T>T,, the wetting temperature, one ob-
serves complete wetting, characterized by a wetting film
whose thickness diverges. These transitions, including
the prewetting line and its critical point, have been ob-
served experimentally. Thus, although phenomenologi-
cal and without direct link to the intermolecular interac-
tions, the Cahn-Landau theory is an excellent starting
point for understanding wetting transitions, and is often
used as a tool in engineering applications to predict wet-
ting behavior (Carey ef al., 1978).

However, de Gennes (1983), Ebner and Saam (1987),
and others have shown that, generically, van der Waals
forces eliminate the possibility of critical wetting. A con-
cise discussion has been given by Indekeu, Ragil, Bonn,
et al. (1999). Below we indicate how this can be recon-
ciled with experiment (see Sec. I1.B.2). When van der
Waals forces oppose wetting, a first-order thin-thick
transition may still persist, but a macroscopic wetting
layer cannot form. Instead, at the first-order transition, a
mesoscopic film forms (typically 50-100 A in experi-
ments) (Ragil, Meunier, et al., 1996; Shahidzadeh et al.,
1998; Bertrand, Bonn, Broseta, et al., 2002). Remarkably,
in this frustrated complete wetting state a droplet placed
on a substrate displays a tiny but finite contact angle and
coexists with a mesoscopic film.

B. Real systems: Three scenarios for wetting transitions

Much of the progress in the study of wetting transi-
tions over the past decade has been experimental, using
two key systems: low-temperature liquid-vapor systems
and room-temperature binary liquid systems. The two
have provided almost identical results—highlighting the
robustness of the phenomena of wetting transitions over
orders of magnitude of temperature and interaction
strengths.

For solid-liquid systems, work on the low-temperature
systems was motivated by the prediction (Cheng et al.,
1991) that liquid helium would not wet surfaces of the
heavier alkali metals at very low temperatures, and
therefore, according to the Cahn argument (see Sec.
II.C.1 below), that wetting transitions should be ob-

Rev. Mod. Phys., Vol. 81, No. 2, April-June 2009

V(l) (arb. units)

(a) I (a.u.)
~ I
2
'c
|
£\
S [ \TT,
\
N\
\-
0

(b) I (a.u.)

FIG. 13. (Color online) Schematic effective interface potential
for a first-order wetting transition (a) and for a (short-range)
critical wetting transition (b).

served in these systems. This prediction, and the subse-
quent experimental verification of the partial wetting of
helium on cesium (Nacher and Dupont-Roc, 1991) at
low temperatures initiated a large amount of wetting re-
search with quantum liquids on weak-binding alkali-
metal substrates; for recent reviews, see Cheng et al
(1993), Bruch et al. (1997), and Bonn and Ross (2001).

This increased activity resulted, among other things,
in the first experimental verification (Rutledge and
Taborek, 1992) theoretically predicted prewetting line
(Cahn, 1977; Ebner and Saam, 1977). An advantage of
the low-temperature systems is the simplicity of the in-
teraction potentials, so that detailed comparisons with
DFT (Cheng et al., 1993) are possible. The main disad-
vantage is the roughness and chemical inhomogeneity of
the alkali substrates, leading to pinning of the contact
line, and to poor reproducibility (Klier et al., 1995; Rol-
ley and Guthmann, 1997; Ross et al., 1998) and rather
large uncertainties for instance in the measured contact
angles. The effects of disorder will be discussed in detail
in Sec. IV.

A schematic interface potential V(/) for a first-order
(discontinuous) transition and for a second-order (con-
tinuous or critical) transition is shown in Fig. 13. In gen-
eral, complete wetting is more likely to occur at higher
temperatures. For a first-order wetting transition, this
corresponds to a discontinuous jump from a thin film
(partial wetting) to an infinitely thick film (complete wet-
ting): for low T the absolute minimum in V(J) is the thin
film, for high T it is the infinitely thick film. At the first-
order wetting temperature, the free energy of the two
minima is equal. For a continuous transition, there is
only one minimum, and this minimum shifts continu-
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ously to an infinitely thick film upon reaching the critical
wetting temperature.

1. First-order and critical wetting

A simple argument, due to Cahn (1977), uses Young’s
equation to argue that a wetting transition should always
occur as the bulk critical point is approached by letting
T—T,.. Indeed, for the majority of systems studied to
date a wetting transition is encountered upon increasing
the temperature towards the critical point, and tempera-
ture is the most used control parameter to study wetting
transitions. A demonstration of this principle of critical-
point wetting is the transition from partial to complete
wetting of the interface between the upper and lower
phases by the middle phase microemulsion, when ap-
proaching either the upper or the lower critical end
point in H,0O-octane-CsE, (CsE, is diethylene glycol-
pentylalcohol) liquid mixtures (Kahlweit et al., 1993).

Note that the Cahn argument foresees only one kind
of transition: a first-order wetting transition, in which
the wetting layer appears on a substrate, or at an inter-
face, in a discontinuous fashion, again in line with the
majority of experimental observations. However, a care-
ful analysis reveals that the Cahn argument actually
breaks down for T— T, (Pandit et al., 1982; Sullivan and
Telo da Gama, 1986; Indekeu 1991; Bonn and Ross,
2001), hence the argument cannot be used too close to
the bulk critical point. Experimentally, the wetting tran-
sition actually turns second order (continuous) close to
the bulk critical point, as predicted by the Cahn-Landau
theory.

Two (independent) critical exponents characterize the
wetting transition. First, the manner in which cos 6,4 ap-
proaches 1 at the wetting temperature defines the sur-
face specific heat exponent «;, through (Dietrich, 1988;
Schick, 1990)

(1 -cos O.q) = (T, — T)> %, (29)

For a,=1, the first derivative of 7yg, with respect to the
temperature is discontinuous at T, (cos fq=1 for T
=T,) and so the wetting transition is of first order. For
a,<1, the first derivative is continuous at 7, the tran-
sition is a continuous or critical wetting transition.

Second, the divergence of the layer thickness / is de-
scribed by

lo (T, — T)Ps. (30)

Note that B,<0.

Because of the difficulties of working with solid sur-
faces, the measurements of these critical exponents were
almost all done by investigating the wetting of liquids on
liquid “substrates.” Studying the evolution of drops of
methanol at the liquid-vapor interface of different al-
kanes, Ross et al. (1999) showed that, if the wetting hap-
pens far from the critical point, it is the usual first-order
transition (see Fig. 14) characterized by a discontinuous
jump in the film thickness from a microscopic value to a
(gravitationally limited) thickness of about 100 A (see
Fig. 15). If, on the other hand, the wetting transition

Rev. Mod. Phys., Vol. 81, No. 2, April-June 2009

0.98 wet

tricritical
0.96

o 0 point
E, P
=
0.94 . i
partially
wet
0.92 J
0.9 :
0 0.5 1 1.5 2 2.5

FIG. 14. (Color online) Surface phase diagram measured by
Ross, Bonn, Posazhennikova, et al. (2001) for the wetting of
alkanes and mixtures of alkanes of different (effective) chain
lengths, corresponding to different differences Ay between sur-
face tensions of the pure alkanes and pure methanol.

happens very close to T, a completely continuous and
reversible critical wetting transition is observed (Figs. 14
and 15). For the latter, the divergence of the layer thick-
ness was found to be logarithmic, in agreement with
mean-field (MF) and renormalization group (RG) pre-
dictions for short-ranged forces, and implying B
=0(log).

In addition, the measurement of the contact angle
close to T, (Moldover and Cahn, 1980; Ross et al., 1999)
yields a surface critical exponent a,=1.0+0.2 compatible
with a first-order wetting transition (Fig. 16). For the
continuous transition close to 7. the fit yields «;
=-0.6+0.6, indicating critical wetting (Fig. 16). The
value of this critical exponent disagrees with that pre-
dicted by RG studies, an issue discussed below.

For the methanol-alkane systems, by increasing the
chain length n of the alkanes, one effectively increases
the preference of the substrate (the vapor plays the role
of substrate here) for the methanol-rich phase. Thus for

—_
o
o

o

Film Thickness (A)

—_
o

0.8 0.85 0.9 0.95 1

FIG. 15. The continuous divergence of the wetting layer thick-
ness observed for the wetting of methanol on nonane (Cy),
compared to its behavior on undecane (Cy;) for which the tran-
sition is discontinuous (first order).
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FIG. 16. Singular part of the surface free energy, as deter-
mined directly from contact angle measurements, giving the
surface specific heat exponent ay. The wetting of methanol on
nonane (Cy) is continuous, and so the slope of the surface free
energy vanishes in a continuous fashion. For undecane (Cyy),
the transition is discontinuous (first order), and a discontinuity
in slope is indeed apparent.

small n<8, a drying transition is observed upon raising
the temperature. For longer chains, one first crosses
over to a critical wetting transition for n=9, and then to
a first-order wetting transition. Different (effective)
chain lengths correspond to different values of the “sur-
face field,” which is proportional to the difference in
surface tension of the pure alkane and pure methanol.
The wetting phase diagram shown in Fig. 14 thus corre-
sponds with (a part of) the predicted global one (Fig. 12).
Critical wetting is confined to a relatively small region
near the critical point: 0.97<T,,/T.<1, in good agree-
ment with the generic phase diagram for systems with
short-ranged forces, calculated in Cahn-Landau theory.

2. Long-range critical wetting

So far the effect on wetting scenarios of long-range
van der Waals forces has not been considered. In addi-
tion to first-order and critical wetting, there is a third
way in which a wetting transition can take place, which
is governed by the long-ranged forces. Bertrand, Bonn,
Broseta, Dobbs, et al. (2002); Rafai, Bonn, Bertrand, et
al. (2004); Ragil, Meunier, et al. (1996); Shahidzadeh er
al. (1998) demonstrated a completely continuous transi-
tion between a relatively thin and a thick wetting film of
liquid alkanes on water (in contact with their common
vapor). This transition is associated with long-ranged
forces disfavoring wetting at low temperatures, but fa-
voring wetting at high 7. For low T, A <0; upon increas-
ing the temperature, one reaches a first-order Cahn-like
transition, but since A<<0 at the transition, the usual
wetting transition to a macroscopically thick film cannot
take place. Instead, after the first-order transition, the
system is still in a partial wetting state termed frustrated
complete wetting, characterized by a mesoscopic film
that is neither microscopically thin nor macroscopically
thick. As shown in Fig. 17, upon further increase in 7,
the film thickness diverges in a continuous fashion,
which is associated with A —0; the Hamaker constant
changes sign from disfavoring wetting to favoring wet-
ting.
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FIG. 17. (Color online) Sequence of two wetting transitions for
the wetting of hexane on (salt) water, salinity 1.5 mole/l1 NaCl.
From Shahidzadeh et al., 1998.

Figure 18 shows the only available measurement of
the singular part of the surface free energy 1-cos 6, for
the same system. The change in slope at a finite but very
small contact angle (about 0.25°) observed around 292 K
is the signature of a discontinuity in the first derivative
of the free energy, i.e., a first-order transition, in good
agreement with the transition temperature of 294.5 K
found for the film thickness. On increasing the tempera-
ture further, Rafai, Bonn, Bertrand, et al. (2004) ob-
served that the contact angle vanishes in a continuous
and, moreover, rather smooth fashion, signaling the criti-
cal wetting transition. Although rather noisy, a least-
squares fit to the data in Fig. 18 gives 2—a,=1.9+0.4 [cf.
Eq. (29)], demonstrating the continuous nature of the
transition. Note that this is to be compared with the
value 2-a,=3, expected for nonretarded van der Waals
forces, as can be deduced by integrating the disjoining
pressure from the equilibrium layer thickness €., to €
=0, The discrepancy is possibly due to the difference
between the apparent value and the asymptotic value of
the critical exponent (Weiss et al., 2007).

To describe this transition, a higher-order term must
be added to the long-ranged part of the interaction po-
tential, since A goes to zero (Dietrich and Schick, 1985):

107 l
280 285 290 295 300 305 310 315
Temperature (K)

FIG. 18. Singular part of the surface free energy, 1-cos 64 vs
temperature, for hexane on brine (2.5M). The filled circles are
obtained upon increasing the temperature, and the open
circles upon decreasing 7+ clearly a hysteresis around the first-
order transition is observed. The open symbols likely corre-
spond to the metastable extension (undercooling) of the frus-
trated complete wetting state. From Rafai, Bonn, Bertrand,
et al., 2004.
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FIG. 19. Film thickness / of the mesoscopically thick film of
liquid pentane on water as a function of temperature. This film
is present in the frustrated complete wetting state between the
first-order and the continuous transition, observed for pentane
on water. The circles represent ellipsometry data of Ragil,
Meunier, et al. (1996), while the solid curve is the result of a
calculation based on Lifshitz theory (Dzyaloshinskii et al.,
1961; Weiss et al., 2007). With this approach, the film thickness
is obtained from the amplitudes of the two leading terms of the
long-range interactions between adsorbate and substrate. This
type of calculation requires only the macroscopic dielectric
properties (static permittivities and refractive indices) of the
isolated media (Bertrand et al., 2001; Weiss and Indekeu,
2003).

A B
2> P’

where B> 0. Physically, B is due to the fact that the film
on the substrate is denser at the liquid/substrate inter-
face than in bulk (Saam and Shenoy, 1995; Shenoy and
Saam, 1995). For alkanes on water, the order of magni-
tude of B is given by the Hamaker constant of the al-
kane interacting with itself through vacuum, multiplied
by a typical molecular size a=5 A, B=0.5kgTa
~107° I m, in reasonable agreement with the value
found in experiment (Ragil, Meunier, et al., 1996). The
free energy (31) has a minimum for

Il=-187"B/A = 1/(T,, - T), (32)

so that in the experiments a film of this thickness sur-
rounds a droplet; with A/67=0.1kzT away from T,
this leads to /=50 A, in qualitative agreement with the
experiments. The continuous divergence of the wetting
film happens as the Hamaker constant, the only force
that prevents wetting, goes to zero linearly at the wet-
ting temperature (Dietrich and Schick, 1985; Ragil,
Meunier, et al., 1996); this defines the critical exponent
of the layer thickness B,=—1. This prediction for the di-
vergence was verified in experiment by Ragil, Meunier,
et al. (1996), who found B,=-0.99+0.05, although subse-
quent experiments indicated a somewhat smaller value.
Figure 19 shows excellent agreement between the mea-
sured and computed layer thicknesses using the full Lif-
shitz theory (Dzyaloshinskii et al., 1961) for the critical
wetting transition of pentane on water.

By carefully tuning experimental parameters, one can
achieve a system in which A changes sign at the first-
order wetting transition (Rafai, Bonn, Bertrand, et al.,

V(l) = (31)
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FIG. 20. Generic wetting phase diagram: alkane chain length
vs glucose concentration. Filled symbols show the first-order
transition (dashed line). Open symbols represent the continu-
ous transition (solid line). The two transition lines produce
three phase regions: regular partial wetting (PW), complete
wetting (CW), and frustrated complete wetting (FCW). The
critical end point (CEP) is the crossover between first order
and critical wetting.

2004). This leads to a crossover between the sequence of
two wetting transitions described in this section and the
ordinary first-order wetting transition of Sec. II.B.1.
Rafai, Bonn, Bertrand, et al. (2004) provide evidence for
the existence of a critical end point, where one crosses
over from one scenario to the other, observed in a mix-
ture of pentane and hexane, deposited on an aqueous
solution of glucose. The generic wetting phase diagram
obtained in these experiments is shown in Fig. 20.

In the frustrated complete wetting state characterized
by the presence of the mesoscopic film, the surface free
energy is very close to that for complete wetting (Ber-
trand, Bonn, Broseta, Dobbs, et al., 2002). The differ-
ence can be estimated from the work performed against
the disjoining pressure between 50 A and an infinite
film. Equation (22) then gives S¢q=-10"° N-m™!, much
smaller than a typical surface tension. This means that
the equilibrium spreading coefficient is only slightly dif-
ferent from zero: it is negative since the free energy of
the system with an infinitely thick film is slightly higher
than that of the frustrated complete wetting state.

The new state of frustrated complete wetting is differ-
ent from what has previously been called pseudopartial
wetting (Brochard-Wyart et al., 1991), also characterized
by A <0. While frustrated complete wetting is a particu-
lar case of partial wetting (allowing for a macroscopic
drop having a finite contact angle), it can be distin-
guished from regular partial wetting by a first-order
transition between two different partial wetting states.
One corresponds to a minimum resulting from short-
range forces; the second minimum (32) is due to the tails
of the long-range forces and leads to a much thicker
film. In both partial wetting states the equilibrium
spreading coefficient is negative, and consequently a
knowledge of the sign of A and S is not sufficient to
distinguish them.

What are the implications of the wetting forces on the
spreading? For most practical purposes spreading ex-
periments consider the situation S.,=0 and A>0,
thereby implicitly assuming that a nonwetting situation
always corresponds to S., <0 and A <0. However, as the
studies on wetting transitions reveal, there is no funda-
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mental reason why this should necessarily be the case.
The frustrated complete wetting state, for instance, cor-
responds to S.,~0 and A <0; the spreading behavior in
this wetting state would be interesting to study since the
presence of the mesoscopic film would get rid of the
singularity at the contact line, and provide us with a
small-scale cutoff that is tractable. Perhaps even more
interestingly, the calculation of the Hamaker constant
shows that there is no fundamental reason why one
could not have a situation with §;>0 and A <0. From
the above considerations, it follows that it is sufficient to
find a substance that has a lower surface tension than
the critical surface tension of the substrate (see Sec.
I.B.1), and a higher refractive index (see Sec. II.A.1). In
practice, refractive indices of liquids are generally lower
than those of solids; however, exceptions do exist. If
such a system could be found, this might help identify
the elusive short-wavelength cutoff in spreading theory,
and assess the importance of the precursor film, etc.

C. Fluctuation effects and short-range critical wetting

The short-range critical wetting (SRCW) transition in
three dimensions (d=3) has received much theoretical
attention, because the critical behavior may include ef-
fects beyond mean-field (MF) theory (Brézin et al.,
1983a, 1983b; Lipowsky et al., 1983; Fisher and Huse,
1985; Halpin-Healy and Brézin, 1987; Dietrich, 1988;
Parry, 1996; Boulter, 1997; Parry et al., 2004).

Fluctuations may be neglected if the (bulk) dimension
d is above an upper critical dimension d* (Hohenberg
and Halperin, 1977). A typical interfacial height fluctua-
tion has an energy of order kz7, and a size parallel to
the wall of the order of the correlation length &, with
& (T,,—T)™". In MF theory » =1 (Sullivan and Telo da
Gama, 1986; Dietrich, 1988; Schick, 1990). This results in
an entropic fluctuation contribution to the surface free
energy,

Aygy o kgT/EY o (T, — T)\ @, (33)

Since ;=0 in MF theory, for d>3 the critical part (29)
of yg, dominates over Eq. (33), giving d*=3 (Lipowsky,
1984). Incidentally, for thermal fluctuations the gradient-
squared interfacial bending energy scales like the en-
tropic repulsion energy, corroborating d*=3. For d=<3,
the hyperscaling ansatz links «a, to v, through

2—Ct’xz(d—1)7/”. (34)

Within MF (Cahn-Landau) theory one can also calcu-
late the effective interface potential of a film, to estimate
both the film thickness / and its fluctuations. Owing to
the exponential decay of the density profile, in the limit
of large [/, V(/) can be expanded as (Brézin et al., 1983a,
1983b; Schick, 1990)

V() =ae "+ be et - (395)

where ¢ is the bulk correlation length. The amplitudes
a,b,... can be calculated. Depending on whether Eq.
(35) has a single minimum or two minima, the wetting
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transition is discontinuous or continuous, in agreement
with Nakanishi and Fisher (1982). For critical wetting,
only two terms need to be retained, and minimizing Eq.
(35) with respect to / leads to an equilibrium film thick-
ness, for a—07,

[ = &In(2b/|al). (36)

Close to T,,, axT-T,, leading to a logarithmic diver-
gence of the film thickness. Thus within MF theory B,
=0(log); cf. Eq. (30).

In the experimentally relevant case d=3, fluctuations
must be included. For a long time there was no system-
atic analysis based on the full Landau-Ginzburg-Wilson
(LGW) Hamiltonian, which is a functional akin to Eq.
(27) but where the fluctuating order parameter is the full
three-dimensional m(x,y,z) (Lipowsky and Fisher, 1987,
Parry, 1996); instead, RG analyses (Brézin et al., 1983a,
1983b; Lipowsky et al., 1983) started from the phenom-
enological capillary wave model (Dietrich, 1988; Schick,
1990)

F,= f ddlr,<%/(Vl)2+ V(l)), (37)

using the effective potential (35). The critical behavior of
Eq. (37) is controlled by the so-called wetting parameter,
kgT

= , 38
@ 477)/2 (38)

which depends on the wetting transition temperature.
Near the bulk critical point both y and & become singu-
lar, and w approaches a finite universal value (Moldover,
1985) of w.~0.8 (Parry, 1996). The critical exponent y
depends explicitly on @ and hence on temperature, and
is calculated according to (Fisher and Huse, 1985)

=12 - Jw)?, (39)

in the most relevant case of 1/2 <w<2. The layer thick-
ness diverges logarithmically in this regime, so B,
=0(log) independently of w. Furthermore, hyperscaling
is found to hold. For w=w, this leads to the prediction
a,=-5.4 for critical wetting close to T, implying a strong
departure from the MF value «,=0.

The results of the RG analysis have been confirmed
by a number of groups (Dietrich, 1988), and are, more-
over, supported by direct simulations of the capillary
wave model (37) (Gompper and Kroll, 1988a, 1988b).
However, there appears to be strong disagreement both
with Monte Carlo simulations of an Ising model (Binder
et al., 1986, 1989; Binder and Landau, 1988), and with an
experiment (Ross et al., 1999) using a two-fluid system.
The results of simulation and experiment are consistent
with MF predictions. The experiment, discussed in Sec.
II.C.1, provides a comparison of both first- and second-
order transitions by varying the chain length of alkanes
(Trejo et al, 1988): for methanol on nonane (Cy) T,
~(.99T. (second order), for methanol on undecane (C;;)
T,,~0.90T. (first order). Data for the contact angles are
shown in Fig. 16. For undecane (C;), the best fit to the
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data yields a,=1.0+0.2 compatible with a first-order
wetting transition. For Cy, the fit yields «;=-0.6+0.6,
indicating a critical wetting transition, but consistent
with @™"=0, and inconsistent with «X%=-5.4.

The discrepancy between RG predictions, on the one
hand, and the mean-field results of simulations and ex-
periment, on the other hand, has provoked much debate
and has been discussed by Dietrich (1988) and Parry
(1996). In particular, the possibility that Eq. (37) does
not adequately describe fluctuations near the wall and
the interface contained in the full Hamiltonian has been
analyzed by Fisher and Jin (1992) and Parry (1996).
Fisher and Jin derived a refinement of Eq. (37) in which
the interfacial tension 7y is replaced by a position-
dependent stiffness (/) and discovered a stiffness insta-
bility mechanism through which the SRCW transition is
driven first order for physical values of w= w,. Ten years
of controversy followed, since now the very existence of
critical wetting was in dispute.

Major relief was brought to the theoretical forum by
the necessary development of a more general nonlocal
interfacial Hamiltonian for short-range wetting in d=3
by Parry and co-workers (Parry ef al., 2004, 2006), which
has been discussed in the context of the history of wet-
ting transitions by Henderson (2006). The new theory
shows that when reducing the LGW functional to an
interfacial Hamiltonian one must be careful to preserve
the nonlocal character of the binding potential func-
tional W[/, ], which for a planar wall, (r;) =const and a
planar interface /(r;) =const, reduces to the interface po-
tential V(I) times the area. The binding potential func-
tional is given by

WLy = —aQl + b, Q2 + by + -+, (40)

where a, by, and b, are geometry-independent coeffi-
cients and the functionals )/ [/, /] are multiple integrals
over bulk Ornstein-Zernike correlation functions con-
necting m points on the wall to # points in the interface.
A diagrammatic expansion is obtained which provides a
picture, for d=3, in which the interaction is mediated by
straight tubelike fluctuations connecting interface and
wall, as found also in Ising model simulations, rather
than by long-wavelength capillary wave fluctuations as
in the wall-interface collision picture.

Interestingly, despite the fact that there is no explicit
position-dependent stiffness in the nonlocal model, the
Fisher-Jin mechanism is recovered perturbatively in the
limit of a nearly planar interface (i.e., small |VI|). How-
ever, the nonlocal theory allows the limits of validity of
the stiffness instability mechanism to be recognized, and
it turns out that the SRCW transition is not driven first
order, but rather is salvaged by nonperturbative effects
arising in the RG flow equations.

Moreover, while the nonlocal theory confirms the
asymptotic validity of all results of the simplest
capillary-wave model, there are no significant deviations
from mean-field-like behavior for surface quantities, un-
til the wetting layer is rather thick and the wall area is
very large. This agrees with Monte Carlo simulations
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and is compatible with the reported experiments.

The experimental systems (Ross et al., 1999) bring the
added complication that long-ranged interactions are
present, and thus SRCW should not be possible, at least
not asymptotically (Ebner and Saam, 1987; Indekeu,
Ragil, Bonn, et al., 1999). That is, if we naively suppose
that the interactions are additive, the van der Waals
forces add a term (21) to the effective interface poten-
tial, with A>0 for van der Waals forces favoring wet-
ting. Because of its slow algebraic decay, the tail of Eq.
(21) dominates the interaction potential (35) for large /
so that there is always a local minimum of the surface
free energy at macroscopic layer thickness. For 7<T,,
this minimum is separated from the minimum given by
the Cahn theory by a maximum, and consequently any
wetting transition is necessarily of first order.

Why nevertheless a SRCW transition is observed in a
system with van der Waals interactions is not completely
clear. Ross and co-workers (Ross et al., 1999; Ross,
Bonn, and Meunier, 2001) showed that it is likely that
the entropic repulsion due to the surface fluctuations
(Helfrich, 1973; Bertrand et al., 2001) dominates the van
der Waals interactions for all layer thicknesses attained
in the experiment; therefore the transition is effectively
a SRCW transition within the experimental window. Al-
though this is plausible, it is hard to demonstrate firmly
since the key problem is the estimation of the effective
interactions due to the fluctuations.

D. Hot topics

Necessarily a small selection has to be made among
various current hot topics. Among those that we do not
discuss here, such as wetting by liquid crystals and other
complex fluids, surface melting, wetting in porous me-
dia, etc., there are two that we wanted to cover and for
which we provide at least some key references. The first
is the theoretical and experimental study of the critical
Casimir effect and its interplay with wetting (Krech and
Dietrich, 1991; Krech, 1994; Garcia and Chan, 1999,
2002; Kardar and Golestanian, 1999; Balibar and Ishig-
uro, 2005; Fukuto et al., 2005; Rafai et al., 2007; Hertlein
et al., 2008). The second is the statistical mechanics of
the three-phase contact line and its line tension, espe-
cially near wetting transitions, of which only some ingre-
dients are reviewed here. The reader can find a discus-
sion and complete bibliography in the work of
Schimmele et al. (2007).

1. Wetting in colloid-polymer mixtures

The phase behavior of colloid-polymer mixtures is a
rapidly developing field [see Poon (2002); Brader et al.
(2003); Tuinier et al. (2003) for recent reviews], based on
a simple idea: when (hard-sphere) colloids and (ideal)
nonadsorbing polymers are brought together in a com-
mon solvent, the number of conformational degrees of
freedom of the polymers will be hindered by the pres-
ence of the colloids: there is an entropy cost for adding
colloids to a solution of polymers (Asakura and Oosawa,
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1954, 1958; Vrij, 1976; Joanny et al., 1979). This entropy
cost competes with the entropy of mixing and, when
dominant, leads to the remarkable effect of demixing
into a phase rich in colloids and a phase rich in polymers
(Lekkerkerker et al., 1992). This demixing is (at least in
theory) completely entropic in origin, and leads to a
phase diagram with a critical point, analogous to what is
found for usual gas-liquid systems.

The depletion of polymer between neighboring colloi-
dal particles induces an effective attraction between
them when their separation is less than the polymer “di-
ameter.” This purely entropy-driven attraction is de-
scribed by the so-called depletion potential which can be
calculated employing DFT (Gotzelmann et al, 1998,
1999; Roth et al., 2000) or virial expansion (Mao et al.,
1995). Depletion forces in bulk or in the vicinity of pla-
nar walls have also been investigated with simulations of
molecular dynamics (Biben et al, 1996), Monte Carlo
(Dickman et al., 1997) or “direct” type (Dijkstra et al.,
1999). Recently, the effect of polymer polydispersity on
the range and depth of the depletion potential between
two plates was calculated (Yang et al., 2007).

To a good approximation, the colloid-colloid forces
we focus on here are short ranged. Indeed, due to re-
fractive index matching (for the relevant frequency
range) and static dielectric constant matching of colloid
and solvent, the dynamic (dispersion) and static contri-
butions to the van der Waals forces are practically ab-
sent (Israelachvili, 1992). Thus all adsorbate-adsorbate
and adsorbate-substrate interactions at the level of the
colloidal particles are of finite range (of the order of the
colloid radius augmented with the effective polymer ra-
dius). This circumstance renders a physical description
in terms of the Ising model in d=3 adequate for the
system at hand.

In analogy with liquid-vapor systems, a (modified)
Cahn argument should also apply for colloid-polymer
mixtures and, upon approach to the critical point, a wet-
ting transition should occur. Indeed, model calculations
(Dijkstra and van Roij, 2002; Brader et al., 2003; Wessels
et al., 2004) show that a layer of the heavier colloid-rich
(liquid) phase intrudes between the polymer-rich (gas)
phase and the wall at a certain distance from the critical
point. Experimentally, Aarts et al. (2003) and Wijting et
al. (2003a, 2003b) found the colloid phase to be favored
by the wall. Contact angles and wetting behavior have
been explored by Aarts (2005), Aarts and Lekkerkerker
(2004), and Hennequin et al. (2008) using confocal mi-
croscopy to determine the interfacial profile. Figure 21
shows such an interfacial profile including a wetting
layer (Aarts and Lekkerkerker, 2004), which is visible
against the wall since the colloids are fluorescent. Here,
however, the wetting layer is surprisingly thick and it is
unclear whether the system is fully equilibrated. Subse-
quent experiments, allowing a long time for equilibrium
to be achieved (Hennequin et al., 2008), have shown that
indeed very thick films can form, typically 3 wm at 1 mm
above the bulk phase (see Fig. 22). This is two orders of
magnitude thicker than typical wetting films of simple
liquids or in binary liquid systems, and suggests there-
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(a)

FIG. 21. (Color online) Wetting of a wall by a colloid-polymer
mixture. (a) Phase-separated mixture of fluorescently labeled
polymethylmethacrylate (PMMA) colloids and polystyrene
polymer in decalin taken under uv light. (b) A blowup of the
encircled region of (a) by means of laser scanning confocal
microscopy (dimensions 350 X 350 um?). The interfacial profile
is accurately described by the balance between the Laplace
and hydrostatic pressures. However, the wetting layer is unex-
pectedly thick in this picture (Aarts and Lekkerkerker, 2004;
Aarts, 2005).

fore that a different force stabilizes the wetting layer.

The entropic repulsion between a fluctuating interface
and a wall can provide a supplementary repulsive force
that can stabilize a wetting film, with a range of the or-
der of the roughness &, of the fluctuating interface.
Since the interfacial tension between the colloidal liquid
and gas phases is ultralow, the rms roughness of the in-
terface can become on the order of 1 um, and is conse-
quently similar to the wetting film thickness €. However,
the prediction &, o€, valid in general in the thermal fluc-
tuation regime(s) (Fisher and Huse, 1985), is modified in
an interesting way in the case of short-range complete
wetting in d=3.
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FIG. 22. (Color online) Interface width as a function of the
wetting layer thickness. The dashed line is & =0.29 um ¢,
while §2L:0.23 pm € is the theoretical prediction obtained for
the wetting parameter w=0.8 using the independently mea-
sured surface tension (Hennequin et al., 2008).
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Identifying the interface displacement fluctuation
about its average position ¢ with the roughness &, the
equipartition theorem leads to the relation (Helfrich,
1973, 1978; Helfrich and Servuss, 1984)

kpT
&= —23 In(¢/R,), (41)
mYy

which depends on a microscopic cutoff scale R, the col-
loid radius, and a mesoscopic scale &. The parallel cor-
relation length & is now limited by the typical distance
between wall-interface collisions. Clearly, the thermal
reference length scale for our problem is VkgT/y.

On the other hand, renormalization group theory for
short-range complete wetting transitions in d=3 has pre-
dicted that & and ¢ are related through (Fisher and
Huse, 1985)

tlE~ 2+ w)n(g/g for0<w<2, (42)

where ¢ is the bulk correlation length in the colloidal
liquid phase and w is the wetting parameter, which takes
a value of about 0.8 for the Ising model in d=3, near
bulk criticality.

Combining Egs. (41) and (42) we obtain

& =[(w/m"I2 + 0)}\Nkg Ty (43)

and hence RG theory predicts a peculiar dependence,
& =2 The exponent as well as the amplitude have
been tested experimentally, as outlined below.

A first observation of (quasilinear) increase of the in-
terfacial width with film thickness was made in a phase-
separated binary mixture of random copolymers (Kerle
et al., 1996). The data were compared with three-
dimensional (3D) Ising model simulations which showed
a clear square-root dependence of w on € (Kerle et al.,
1996). In the experimental system the possible presence
of long-range (van der Waals) forces, for which a loga-
rithmic dependence of w on € is predicted, along with
surface tension effects imposed by the confining sur-
faces, was invoked to explain the differences between
the observations and the pure square-root dependence
predicted for short-range forces (Kerle et al, 1999).
Monte Carlo simulations with van der Waals wall poten-
tials confirm that the capillary-wave broadening of the
interface is reduced, but a simple logarithmic depen-
dence was not sufficient for describing the data quanti-
tatively (Werner et al., 1999).

Hennequin ef al. (2008) have shown by a simultaneous
measurement of the film thickness and the surface
roughness that the interface excursions are indeed inhib-
ited in a finite wetting film, and Fig. 22 demonstrates
that their dependence is in good agreement with Eq.
(43). This appears to be a unique case in which thermal
fluctuation effects on wetting are observable in the pla-
nar geometry in d=3. This is perhaps not so surprising
given that direct visual observation of thermal capillary
waves on the free interface is possible in this system
(Aarts, Schmidt, et al., 2004).

Furthermore, equilibrating the fluctuation repulsion
resulting from the confinement of the interface fluctua-
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tions to the gravitational energy cost of having the wet-
ting fluid at a certain height above its bulk phase leads to
a calculated wetting film thickness of 2 um, at a height
of 1 mm above the bulk phase, in fair agreement with
the experimentally measured value of 3 um. Residual
differences are likely to be due to a still incomplete
equilibration, or electrostatic effects due to charges on
the colloids that have not been taken into account (Hen-
nequin et al., 2008).

These first observations of the wetting behavior in ul-
tralow interfacial tension systems pose a number of chal-
lenging problems concerning the order of the possible
wetting transition, the (fluctuation) interactions stabiliz-
ing the wetting layers, and consequently the critical ex-
ponents that are associated with the transition. In prac-
tice colloid-polymer systems are hardly ideal, and much
of the current research is focusing on describing the non-
ideality in order to account for their behavior (see Likos
2001; Fuchs and Schweizer, 2002; Poon, 2002; Tuinier et
al., 2003). This also affects the surface behavior, as
shown by Aarts, Dullens, et al. (2004). An interesting
result is that the common Asakura-Oosawa approxima-
tion modeling the polymer coils as hard spheres turns
out to fail completely for small colloidal particles (small
enough for the polymer chains to be able to wrap
around them), as was shown using field-theoretic meth-
ods by Hanke et al. (1999). Furthermore, measurements
and calculations have shown that wall-colloid depletion
forces contain repulsive and attractive parts which are
not purely entropic but governed by dispersion forces
(Bechinger et al., 1999).

As a precursor to the next two hot topics we draw
attention to an accurate DFT study of depletion poten-
tials between a hard-sphere colloid and a geometrically
structured substrate in the form of a wedge or an edge
(Bryk, Roth, Schoen, ef al., 2003). This geometry leads to
an enhanced attraction (wedge) or to a repulsion (edge)
of the colloidal particle.

2. Wetting on structured surfaces

Surface structure can change wetting properties in an
important way. If the surface structure is not too small
(above 100 nm, say), macroscopic laws can still be ap-
plied locally and in the bulk, and surface and line con-
tributions can be resolved as separate entities. If, on the
other hand, structures are on the nanoscale, the fine de-
tails of the spatial variation of intermolecular forces and
the effects of thermal fluctuations such as interfacial
capillary waves become important. For a review, see
Dietrich et al. (2005). For example, three-phase contact
lines can cross microchannel boundaries, but such events
lose sharpness and thus meaning for nanochannels or
nanostrips. We first consider surfaces patterned on the
micrometer scale.

One way of changing surface properties is by micro-
texturing; see Quéré (2005) for a recent review. Studies
undertaken so far have focused on two main ways to
alter the surfaces: patterned surfaces, for which the wet-
ting properties vary spatially in a controlled way, and
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FIG. 23. Superhydrophobicity by surface texture. Left: Patterned surface. Right: Water droplet posed on the patterned surface.
Superhydrophobic behavior results from the fact that due to the patterning the droplet is mainly in contact with air (Bouamirene,

2002).

structured surfaces, for which the geometry of the sur-
face is controlled but its chemical structure is the same
everywhere. For rough or patterned surfaces, minimiza-
tion of the free energy leads to an equilibrium effective
contact angle 6y, that accounts for the extra area of
the drop that is in contact with the solid (Wenzel,
1936; Borgs et al., 1995; Swain and Lipowsky 1998;
De Coninck et al., 2002):

COS Oy =7 COS Oeq. (44)

Here r is the ratio of the real to the projected area cov-
ered by the drop. Note that roughness (r>1) reinforces
the wetting properties of the smooth substrate, in agree-
ment with experiments (Shibuichi et al., 1996; Bico et al.,
2001). If 64> m/2, By becomes even larger, in the oppo-
site case it decreases. On the other hand, if only chemi-
cal heterogeneity is present such that the spreading co-
efficient varies locally, the contact angle is given by the
average value of the spreading coefficient as given by
the Cassie-Baxter equation (13).

The Cassie-Baxter or Wenzl models can be used only
if the size of the drop is much larger than that of the
surface texture so that the average contact angle of the
drop depends on the average properties of the substrate.
As discussed in Sec. I.D, this condition is not sufficient
since heterogeneous substrates usually display contact
angle hysteresis. As a result, measured angles depend on
the history of the system, and do not agree necessarily
with the Cassie-Baxter or Wenzl angles, which are based
on the energy minimum [see, for instance, Gao and Mc-
Carthy (2006a)]. However, these models can provide
useful insight into the properties of structured surfaces,
especially when the hysteresis is small.

The combined effects of roughness and heterogeneity
can lead to superhydrophobicity: as shown in Fig. 23, a
water droplet attains a contact angle of almost 180°
(Onda et al., 1996; Bico et al., 1999; Quéré, 2005). Supe-
rhydrophobicity arises when air is trapped between pro-
trusions that are present on the surface, the so-called
“fakir” effect in which the droplet reposes on the ex-
tremities of the protrusions. The droplet then feels an
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effective spreading coefficient of —2v, corresponding to
perfect drying, on the surface fraction 1—-f in between
the posts. Application of Eq. (13) then gives

€oS Ocp = €08 Ogq — 1 + f, (45)

where 6., is the contact angle on the material of the
posts. If f goes to zero, - can get close to 180°, as
shown in Fig. 23.

Superhydrophobicity therefore demands very few hy-
drophobic protrusions. This can be achieved (Quéré,
2005), for instance, by depositing particles (Nakajami et
al., 2000), by photolithography (Fig. 23), or by chemi-
cally growing carbon nanotubes onto the surfaces (Na-
kajami et al., 2000). The latter two methods usually need
to be followed by a chemical treatment enhancing the
hydrophobicity of the protrusions; otherwise, the liquid
imbibes the space between them. A second condition for
the stability of the fakir state is that the protrusions
should be sufficiently dense and high so that the menis-
cus between two protrusions does not touch the surface
on which they lie; for a discussion of the stability, see
Bartolo et al. (2006). Interestingly, it has recently been
reported (Gao and McCarthy, 2006b) that the contact
angle hysteresis can be reduced by the existence of a
second (smaller) length scale, such as a surface rough-
ness of the texture on the material that causes the tex-
turing of the surface.

Superhydrophobic surfaces show remarkable proper-
ties: droplets of water bounce off them, and gently de-
posited droplets rest on the surface like pearls and roll
off. The water-repellent properties of these surfaces
make them ideally suited for a large number of applica-
tions (Blossey, 2003), ranging from self-cleaning surfaces
through water-repellent clothing and shoes to highly lu-
bricated flows of water through superhydrophobic (mi-
cro)channels (Cottin-Bizonne et al., 2003).

The study of patterned (but not superhydrophobic)
surfaces revealed the occurrence of morphological
(de)wetting transitions. Depending on the pattern im-
printed on the substrate, the wetting phase usually
chooses to minimize its energy by taking different
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shapes: droplets, channels, or films. The morphological
transitions between those different states have been
studied (Lenz and Lipowsky, 1998; Gau et al., 1999; Li-
powsky, 2001; Brinkmann and Lipowsky, 2002; See-
mann, Brinkmann, et al., 2005). From a theoretical point
of view, however, a theoretical description of these phe-
nomena is difficult, due to the contact angle hysteresis
that is inherent in the use of patterned substrates
(Kusumaatmaja and Yeomans, 2007). Because of the
large energy barriers, it is not evident that the systems
will actually be able to minimize their free energy
(Ishino et al., 2004).

The wetting morphologies display an important scale
dependence when zooming in from the microregime to
the nanoregime (Lipowsky et al., 2000). Furthermore,
wetting phenomena in which the wetting phase is con-
fined in a slab between two parallel chemically pat-
terned planes involve bridges, channels, and sequences
of morphological transitions (Swain and Lipowsky,
2000). Soft matter (liquids, membranes, vesicles) under-
going shape transitions has been reviewed from a unified
perspective by Lipowski and co-workers (Lipowsky,
Brinkmann, Dimova, Franke, et al., 2005; Lipowsky,
Brinkmann, Dimova, Haluska, et al., 2005).

Experimentally, noncontact mode atomic force mi-
croscopy (AFM) permits us to image static liquid struc-
tures condensed from a vapor onto chemical nanopat-
terns, with a lateral resolution better than 10 nm. With
this technique Checco et al. (2006) studied wetting of
ethanol and octane on a geometry composed of alternat-
ing wettable and nonwettable nanostripes. Morphologi-
cal wetting transitions could thus be investigated at the
nanoscale (for octane) by delicately adjusting the tem-
perature, through which the amount of condensed liquid
can be controlled. More precise determinations of the
three-phase contact line tension are also possible with
this approach. Understanding the stability of such con-
tact lines of sessile ridges and drops has recently been
refined (Mechkov et al., 2007).

As reviewed by Dietrich (1999), static wetting proper-
ties can be captured using an effective interface poten-
tial derived from DFT. This applies to the vicinity of
three-phase contact lines, to wetting on curved surfaces
(for which spheres or cylinders are the paradigms), on
chemical steps, and in wedge-shaped geometry. The so-
called nonlocal theory, featuring a nonlocal integral
equation for the interface profile, was compared with
the (usual) local approximation, obtained after a gradi-
ent expansion. Although at first the differences between
the interface profiles computed from local and nonlocal
theories were reported to be important (Koch et al,
1995; Getta and Dietrich, 1998), improved computations
showed that the deviations had been greatly overesti-
mated (Bauer and Dietrich, 1999a; Dietrich, 1999). Con-
sequently, the widely used local interface displacement
model is not only qualitatively trustworthy but, provided
the profile curvature is sufficiently small, is also quanti-
tatively reliable for predicting transition zone structure,
line tension, and morphological phase transitions (Bauer
and Dietrich, 1999b, 2000; Bauer et al., 1999).
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A thorough review of wetting on curved surfaces was
provided by Bieker and Dietrich (1998). Phenomeno-
logical models supplemented with a fully microscopic
treatment, based on DFT with all forces properly taken
long-ranged, were shown to be appropriate tools for de-
scribing many experimentally relevant systems. Remark-
ably, the essential step in our understanding of wetting
in complex geometries with curved surfaces consists of
scrutinizing the wetting behavior on (or in) single
spheres or cylinders. The often subtle curvature depen-
dences of surface tensions have continued to attract in-
terest. Combining analytical expressions, exact statistical
mechanical sum rules, and DFT have proven powerful
to obtain coherent results. Two illustrations of this are
hard-sphere fluids at hard-spherical and cylindrical walls
(Bryk, Roth, Mecke, et al., 2003) and van der Waals flu-
ids confined in a hard-spherical cavity (Stewart and
Evans, 2005). The complication of orientational ordering
near geometrically structured substrates has been inves-
tigated using DFT for colloidal hard rods (Harnau et al.,
2004). Sprenger et al. (2005) addressed the different
complication of being near bulk criticality, by studying
critical adsorption of binary liquid mixtures at chemical
steps or stripes.

Studies of complete wetting of geometrically struc-
tured substrates, based on an effective interface Hamil-
tonian derived from microscopic DFT, have revealed
that as long as one is not too close to saturation, the
filling of a cavity does not depend on whether it stands
alone or is part of an array (Tasinkevych and Dietrich,
2006, 2007). For small undersaturation, however, the
wetting layer thickness is determined by the array as a
whole. Experimental x-ray scattering studies of the fill-
ing by simple hydrocarbon liquids of an array of nano-
cavities patterned on silicon (Gang et al., 2005) suggest
that finite-size effects significantly shift the measured ad-
sorption exponent from the value that it would have for
infinitely deep cavities towards the value for a planar
substrate. However, a reanalysis of the data by Ta-
sinkevych and Dietrich (2006, 2007) indicates that the
results are actually closer to the deep-cavity predictions.
Thus to understand the (early) filling regime of a sub-
strate with pits and grooves, adsorption in individual
wedges and cones has to be considered first. As the next
section will attempt to convey, this also sheds new light
on the fundamental problem of fluctuation effects on
wetting transitions.

3. Wedge filling transitions

If a solid wedge is subjected to adsorption from a gas,
a liquid phase may form abruptly by capillary condensa-
tion provided the wedge opening angle is small. For
large wedge angles, a continuous increase of the wetting
film is expected when the pressure is increased, as is
generally observed for planar substrates in the complete
wetting regime. The basic question of the competition
between continuous filling and capillary condensation
has been addressed successfully by considering a sub-
strate wedge geometry which interpolates between a
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planar substrate and a capillary slit (Rascén and Parry,
2000b). In this model the substrate height varies as a
power law |x|?, where x runs perpendicular to the wedge.
For y=1 the familiar linear wedge is obtained, for which
a preliminary results were obtained prior to 2000 by
Pomeau (1986), Cheng and Cole (1990), Hauge (1992),
and Napiérkowski ef al. (1992). Hauge observed that the
wetting transition in a wedge is shifted downward in
temperature to the point where the contact angle equals
the tilt angle. He then discussed the continuous (or first-
order) character of the transition away from bulk two-
phase coexistence (or at coexistence) using macroscopic
arguments. Since this work, wedge wetting has become
interesting, not only as a tool to study wetting on struc-
tured surfaces, but also as a problem in itself. Before
going into individual results, we stress the correspon-
dence between interface statistical mechanics and
geometry that governs wedge filling, as elucidated by
Henderson (2004a, 2004b). This has provided a set of
exact sum rules linking fluid structure and surface free
energy, of direct relevance to computer simulations and
significant to the filling transitions discussed here.

If we focus for a moment on realistic systems with van
der Waals forces, Rascén and Parry (2000a, 2000b) es-
tablished that the approach to complete wetting in a
wedge is characterized by novel critical exponents which
are geometry dependent for y>1/2, while for y<1/2
wedge filling is controlled by the singularities pertaining
to complete wetting on a planar substrate. Interestingly,
in the geometry-dominated regime, which includes the
usual linear wedge, the critical exponents are universal
with respect to the exponent associated with the range
of the intermolecular forces. Several of these predictions
have been verified experimentally. Bruschi and co-
workers (Bruschi et al, 2001, 2002; Bruschi, Carlin,
Parry, et al., 2003) measured the adsorption of mainly
liquid Ar (but also Kr) on an array of linear wedges and
observed the theoretically predicted crossover in the
critical exponent of the excess adsorbed mass from pla-
nar to geometry-dominated behavior. In addition, it was
checked that geometrical disorder in the wedge array
spoils the crossover and leads to an effective exponent
closer to but still quite different from that of planar
rough (including self-affine) geometry (Bruschi, Carlin,
and Mistura, 2003).

This work was extended to Ar adsorption measure-
ments on arrays of nonlinear cusps and semicircular
channels, corresponding to y=~1/2 and =3.3, respec-
tively (Bruschi et al., 2006). For the nonlinear cusps the
observed crossover is distinctly different from that in a
linear wedge and the exponent agrees with the predic-
tion of Parry et al. For the convex channels a very steep
increase in the excess mass is observed close to satura-
tion, qualitatively consistent with the predicted coales-
cence of two menisci on both sides of the channel into
one meniscus, predicted for y>2 (Rascén and Parry,
2000b).

We now move from the complete wetting regime to
the transition from partial to complete wetting itself,
first considered quantitatively by Rejmer et al. (1999) for
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the linear wedge. Using an effective interface model,
they mapped out a phase diagram of continuous and
discontinuous filling transitions, together with their
“prefilling” extensions off coexistence. This approach
constituted a compromise between a prohibitively diffi-
cult full microscopic treatment and the earlier macro-
scopic theory, which only yields a qualitative result. It
permits us to discuss mean-field results, and how these
can be affected by fluctuation effects important in re-
duced dimensionality. In addition, the thermodynamic
behavior of the line tension and the shape of the menis-
cus were accessible through this method.

A refinement of the work by Rejmer et al. (1999) was
proposed by Parry et al. (2000), who found that continu-
ous filling transitions at 7T=Ty are possible in linear
wedges not only when the planar substrate displays criti-
cal wetting, but also when it shows a first-order wetting
transition, at T=T,,> T. This significantly increases the
experimental opportunities for observing critical filling.
Moreover, interfacial fluctuation effects at critical filling
(in d=3) are predicted to be surprisingly strong and re-
markably universal (Parry et al., 2000). They give rise to
more dramatic effects than the subtle short-range critical
wetting (SRCW) singularities discussed in Sec. II.C. For
example, B,=0(log) can shift to B;=1/4 for forces of suf-
ficiently short range. Moreover, in a linear wedge in d
=3 the interface displacement fluctuation is predicted to
obey the wuniversal power-law divergence ¢, «(Ty
—~T)7"4, independent of the range of the intermolecular
forces.

Another breakthrough was achieved when it was re-
alized that the singularities associated with critical filling
transitions can mimic those belonging to the strong fluc-
tuation regime of planar critical wetting (Parry, Wood,
and Rascon, 2001). For instance, in the case of a cone
geometry in d=3, the filling height and interface rough-
ness show the same singularities as those of SRCW in
d=3 and for large wetting parameter w>2. A similar
correspondence was proposed (Parry, Wood, and Ras-
c6n, 2001) and supported by transfer matrix calculations
(Parry, Wood, Carlon, et al., 2001) in d=2. This corre-
spondence, in d=2, leading to universal critical expo-
nents and scaling functions that depend only on the in-
terface roughness (or “wandering”) exponent ¢, was
found to emanate from a deeper symmetry, called wedge
covariance (Parry et al., 2002). For example, the follow-
ing covariance relation was found between the d=2 ex-
cess wedge (or corner) free energy f,, and the strong-
fluctuation regime critical wetting d=2 line (or point)
tension 7

fulba) =(6) - (0- ), (46)

with 6 the thermodynamic contact angle and « the geo-
metrical tilt angle. Such d=2 covariance relations are
valid near filling (/— «) and hold not only for shallow
but also for acute wedges and orientation-dependent in-
terfacial tension (Abraham, Parry, et al., 2002).

A partial answer to the possible extension of wedge
covariance to d=3 was provided by Greenall et al. (2004)
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who showed that the d=2 covariance relations have ana-
logs at the mean-field level that apply to higher-
dimensional systems. Furthermore, two types of con-
tinuous wedge filling transitions in d=3 were identified:
critical and tricritical (Romero-Enrique and Parry, 2005).

While covariance of wedge filling and fluctuation-
dominated planar critical wetting in d=3 is restricted to
the mean-field regime, a new general covariance for
complete filling in wedge and cone geometries was dem-
onstrated by Rascon and Parry (2005) at the level of the
interfacial heights at the geometrical midpoints. Inter-
estingly, this symmetry identifies both leading and sub-
leading critical exponents and amplitudes, which are ac-
cessible experimentally.

Another step in uncovering hidden symmetries was
the finding that complete wetting at an apex (inverted
wedge) mimics precisely planar critical wetting, the apex
angle playing the role of the contact angle (Parry ef al.,
2003). This naturally adds geometrical ways of studying
critical wetting singularities experimentally. In fact, Ar
adsorption was already investigated on arrays of wedges
and apexes (Bruschi et al., 2001).

The verification of wedge filling theories involves not
only experiments, but also exactly solved models and
high-precision computer simulations. Exact solutions in
the d=2 Ising model with a corner have established the
existence and location of the filling transition, both on
the square (Abraham and Maciolek, 2002) and on the
triangular lattice (Abraham et al., 2003). Monte Carlo
simulations (MCSs) of corner wetting in the d=2 Ising
model (Albano et al., 2003) strongly support the detailed
theoretical predictions. For d=3 extensive MCSs were
carried out in the wedge geometry by Milchev et al.
(2003a, 2003b) to test the predictions of Parry ef al. and
to clarify finite-size effects on wedge filling in a double-
wedge pore geometry, with opposing surface fields on
opposite wedges. Unlike the situation for SRCW in d
=3 on planar substrates, for which simulations could not
detect the rather subtle effects of thermal fluctuations,
the simulations for the wedge geometry now confirm the
critical exponent values predicted for short-range forces.
Moreover, the MCSs reveal that critical wedge filling un-
derlies a new universality class of transitions in a double
wedge, characterized by strong fluctuations and aniso-
tropic scaling, and with bulk critical exponents a=3/4,
B=0 (order parameter discontinuity), and 7y=5/4
(Milchev et al., 2003a). This unusual critical behavior is
related to the strong fluctuation effects of filling of a
single wedge. These findings are compared, by Miiller
and Binder (2005), with the phase behavior of thin films
bounded by parallel planar walls with opposing surface
fields, which is controlled by planar wetting phenomena.
In sum, the wedge geometry turns out to be a more
promising arena for observing the strong fluctuation re-
gime of critical wetting than the standard planar one.

4. Incomplete wetting by crystalline phases
Generically, a solid film wets a solid substrate only

incompletely due to elastic effects. The lattice parameter
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in the wetting film usually suffers from a mismatch with
that of the substrate. In the first few adsorbed layers
various defects may alleviate most of the induced
stresses, but after that the lattice parameter of the film
relaxes slowly towards the lattice parameter of the wet-
ting phase in bulk. The elastic free energy cost of this
weakly strained film contributes a negative (attractive)
term to the interface potential V(/) which decays as
slowly as 1//. Thus a long-range force comes into play
which inhibits complete wetting. Gittes and Schick
(1984) and Huse (1984) pioneered the theoretical under-
standing of this effect and offered a qualitative explana-
tion of various experimental results.

More recently, it has been realized that in many sys-
tems of experimental relevance, surface roughness is yet
another and much more important factor in preventing
complete wetting by crystalline layers (Esztermann and
Lowen, 2005; Sohaili et al., 2005). Even for a weak sur-
face modulation with a wavelength large compared to
interatomic distances, the adsorbed film thickness is
strongly reduced as compared to the already limited
thickness predicted by the Huse-Gittes-Schick theory.
Surface roughness contributes a term proportional to
to V(I), which is even stronger than the effect of driving
the wetting phase unstable in bulk, i.e., away from bulk
two-phase coexistence, which would be achieved by a
contribution linear in /. The theory, including surface
roughness, was able to describe quantitatively the ad-
sorption data for H, on Au (Esztermann et al., 2002).

It would seem that purely strain-induced incomplete
wetting cannot be observed in real systems, because per-
fectly flat substrates exist only in theory. However, ex-
periments on a binary alloy (CuAu) close to a bulk
order-disorder transition have revealed incomplete wet-
ting by the ordered phase, which in this case consists of
a layered Cu/Au structure (Schweika et al., 2004). In this
case the substrate is a gas phase and the surface of the
solid is microscopically smooth and clean for the bulk
disordered phase, and rough for the bulk ordered phase.
Assuming that the surface remains flat when the wetting
film of the ordered phase develops, the observed incom-
plete wetting must be due to strain effects alone.

Elastic effects are not the only considerations when
discussing factors that influence wetting or nonwetting
of solids by solids. The question of critical-point wetting
for solids has been addressed from various angles by
Cahn (2000). One intriguing conclusion of this work is
that interfaces between macroscopic phases with lattices
that are not fully coherent must show a nonzero contact
angle with the sample surface.

5. Electrowetting

The spreading of a drop is determined by the equilib-
rium contact angle, which is set by intermolecular forces.
However, the drop can be made to spread by the appli-
cation of an electric field (Lippmann, 1875). Some appli-
cations of this effect, called electrowetting, in microflu-
idics or optics have been discussed by Quilliet and Berge
(2001) and Mugele et al. (2005). A review, including
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FIG. 24. The apparent contact angle as a function of the root
mean squared amplitude of the applied voltage (ac field) for a
drop of oil. The filled squares are for increasing field (advanc-
ing contact line), the open circles for decreasing field (receding

contact line). The solid line is the theoretical curve (48). From
Mugele and Baret, 2005.

many applications, has been given by Mugele and Baret
(2005).

Typically, one considers a conducting liquid on an in-
sulating substrate of thickness d, having a dielectric con-
stant €. A potential difference U, is applied between
the liquid and a conducting layer below the dielectric, so
the system forms a capacitor whose electric energy is
proportional to the surface covered by the drop. If one
approximates the electric energy by that of a parallel
capacitor, the total energy becomes

E = ¥Sarop — TR*(y €08 Oy + €0, U%/2vd), (47)

where Sy, is the surface area of the drop. For finite Uy,
it thus becomes advantages for R to increase, i.e., the
drop spreads. It is popular to write the term in paren-
theses as (Quilliet and Berge, 2001)

COS ) = COS Bq + €0, U%2vd, (48)

in which case the energy (47) formally looks like that of
a drop with an effective contact angle 6. However, on a
sufficiently small scale the contact angle remains 6,
which follows from considering the diverging surface
charge o at the edge of the drop, which is that of a
conducting wedge (Jackson, 1975). From the surface
force balance yk—o02/2¢€y=—p, it follows that the curva-
ture « only has an integrable singularity at the edge, the
boundary condition for the slope thus remains un-
changed (Mugele and Buehrle, 2007; Fontelos and Kin-
delan, 2008).

If the insulator thickness d is very small, the electric
field away from the edges becomes uniform, and electric
forces are small. The surface shape thus becomes a
spherical cap, which meets the solid surface at an appar-
ent angle 6, given by Eq. (48). The transition from 6, to
60, is concentrated in an inner region of size d near the
contact line (Bienia ef al., 2006). Typical measurements
of (6, are shown in Fig. 24, and compare well with ex-
perimental data up to a critical voltage. Note that most
experiments are performed with ac voltage, to avoid
charge accumulation at the solid-liquid interface. Fur-
thermore, ion adsorption gives rise to a small shift of the
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maximum contact angle away from zero applied voltage,
to the potential of zero charge (Seyrat and Hayes, 2001).
The saturation of the angle is not yet understood
(Quilliet and Berge, 2001; Mugele and Baret, 2005). An
explanation that has as yet not been pursued is the pos-
sibility that the approximation of a spherical cap away
from the contact line is no longer a good approximation
(Fontelos and Kindeldn, 2008), and nonaxisymmetric
shapes are energetically favorable with respect to axi-
symmetric shapes.

High electric fields are also accompanied by an insta-
bility of the contact line (Quilliet and Berge, 2001;
Mugele et al., 2005), which leads to the expulsion of
small droplets. A qualitative explanation consists in the
observation that the charge density becomes very large
near the contact line (Mugele et al., 2005). Thus in anal-
ogy with the instability of small charged drops (Duft et
al., 2003), Coulomb repulsion may become too strong to
be overcome by surface tension forces.

In closing, we draw attention to a combination of wet-
ting of structured substrates and high electric fields. Ar-
scott et al. (2006) studied theoretically and experimen-
tally the spontaneous filling of a microfluidic capillary
slot for the purpose of designing more controlled minia-
turization of electrospray ionization sources, to be used
in mass spectroscopy of large biomolecules.

III. DYNAMICS

We organize the description of contact line dynamics
according to the microscopic, intermediate, and outer
regions introduced above, beginning with advancing
contact lines. In Sec. III.A we describe the intermediate
region, characterized by a balance of viscous and surface
tension forces. Using drop spreading as an example, in
Sec. III.B we then show how it can be matched to an
outer region, where other forces come into play. In the
light of this hydrodynamic description, we review the
experimental situation in Sec. III.C, treating perfectly
and partially wetting fluids separately. In the former
case, the macroscopic drop is usually preceded by a me-
soscopic precursor film, which greatly simplifies the hy-
drodynamic description. To describe the effect of the
contact line itself, we use two different approaches: in
Sec. IIL.D, the effect of the contact line is captured
through the dissipation it generates. Alternatively, one
can attempt to match to the contact line by including
some microscopic parameters, as described in Sec. IIL.E.
Finally, in Sec. IILLF we describe findings based on a
truly microscopic description using molecular dynamics.

In Sec. III.G we show that the maximum speed at
which a receding contact lines can move is limited by a
hydrodynamic mechanism. Receding fronts also come
into play for the dewetting dynamics of a liquid film; see
Sec. III.H. In Sec. IIL.I and IIL.J.1 the contact line is no
longer considered straight, and is subject to linear and
nonlinear instabilities. The remaining hot topics are
complex fluids and evaporation. Useful reviews of the
hydrodynamics of moving contact lines have been given
by Ramé (2002) and Voinov (2002).
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FIG. 25. Parabolic flow in a wedge near an advancing contact
angle. The substrate moves with speed U to the right.

A. Contact line region

Most of the analytical descriptions to be reported be-
low rely on a number of simplifying assumptions:

(i) The capillary number is small, Ca=<0.1.

(ii) Inertial effects can be neglected, meaning that the
viscous length scale €,=77?/py is larger than other
length scales relevant for the contact line motion.

(iii) The surfaces are perfect (no heterogeneity), so
there is no contact angle hysteresis.

Not much is known if (i) or (ii) are violated; depar-
tures from (iii) is the subject of the next section. We
proceed by first solving the coupled interface-viscous
flow problem at distances from the contact line where
microscopic effects are negligible. This solution then has
to be matched to the small-scale behavior near the con-
tact line. Almost all of our analysis is going to be con-
cerned with the two-dimensional flow problem where
the contact line moves perpendicular to itself. This car-
ries over to situations where the contact line is not too
strongly curved (Rio et al., 2005; Snoeijer et al., 2005),
such that the curvature perpendicular to the contact line
always remains much larger.

The calculation becomes much more transparent if we
limit ourselves to the so-called lubrication approxima-
tion, characterized by the assumption that the flow pro-
file is nearly parabolic; see Fig. 25. The parabolic ap-
proximation is valid in the presence of only a single
fluid, for small contact angles, and assuming that the
forces driving the flow do not change too quickly. Near
the contact line, the dominant driving force is capillarity,
and the rate of change of curvature is proportional to
the capillary number (7). Thus in a systematic expansion
in Ca'’® (Benney, 1966; Oron et al., 1997; Snoeijer, 2006),
and moving with the speed U of the contact line such
that the profile is stationary, one obtains to leading order

3Ca/h*=-h". (49)

This equation represents a balance of viscous (left) and
capillary forces (right), where a prime denotes differen-
tiation with respect to x. The crucial simplification of Eq.
(49) lies in the fact that the velocity field has been elimi-
nated, and everything is expressed through the interface
shape Ah(x) alone. Note that, as expected, viscous forces
diverge as the contact line is approached (h—0), so
body forces such as gravity [which adds a constant to Eq.
(49)], or any imposed shear, will not affect the solution
near the contact line. Equation (49) is scale invariant,
solutions being of the form
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h(x)=LH(x/L), (50)

where L is as yet unspecified. A characteristic length L
must be set by microscopic effects like slip, long-ranged
forces, or a diffuse interface. We adopt the sign conven-
tion that Ca is positive if the contact line is advancing,
which is the case we are now focusing on. Changing the
sign in Eq. (49) (receding contact line) has important
consequences, which will be elaborated later.

Two of the boundary conditions necessary to find a
solution of Eq. (49) come from specifying the values of &
and of the slope 4’ near the contact line. The missing
third condition can be derived from the requirement
that the local solution must match onto the macroscopic
behavior of the solution away from the contact line. This
outer solution A, (x) will depend on the precise geom-
etry of the problem and the forcing the liquid is sub-
jected to. However, if the typical scale of the outer solu-
tion and the microscopic scale L are well separated, the
intermediate solution, which connects the contact line
with the outer solution, becomes universal, namely, for
the solution (50) to be compatible with the outer solu-
tion, the curvatures of the two solutions must agree at
some small distance Ax away from the contact line:
hy(Ax)=H"(Ax/L)/L. But in the limit of very small L
this means that H"()=0, which together with the
boundary conditions at the contact line uniquely fixes a
solution.

The behavior of the solution characterized by a van-
ishing slope at infinity was given by Voinov (1976). For
sufficiently large arguments x/L, relevant to the match-
ing to the macroscopic problem, this asymptotic solution
of Eq. (49) is

h'3(x)= 6, +9Caln(x/L). (51)

Equation (51), or some variation of it, is usually referred
to as the Cox-Voinov law. As discussed in Sec. I.C.2, the
microscopic properties of the contact line are repre-
sented by a microscopic contact angle 6,,, and the corre-
sponding length scale L. Both parameters need to be
determined by matching to an appropriate microscopic
model of the contact line, to which we return below.
Three points should be noted:

(i) The slope varies logarithmically with the distance
from the contact line. Thus it is impossible to as-
sign a unique dynamical contact angle to a moving
contact line moving at a given speed.

(i) The local profile (51) depends only very weakly on
the microscopic parameter L. It is much more im-
portant to find estimates for the microscopic angle

0,

(iii) The speed dependence in the Cox-Voinov law fol-
lows from the fact that Ca can be eliminated from
Eq. (49) by the transformation i — Ca'3h. It is
thus not a perturbative result for small Ca.

The equivalent of Eq. (51), but without resorting to
the assumption of small slopes, was also given by Voinov
(1976). The same result is found from a generalized form
of the lubrication equation (49), valid for arbitrary
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slopes (Snoeijer, 2006). A further extension to two fluids
with viscosity ratio M=7,,/n was derived by Cox
(1986), which reads

g(6(x),M) — g(6,,,M) = Caln(x/L), (52)

where tan(6(x))=h'(x). In the absence of an outer, dy-
namically active fluid, g(#,0) reduces to g(#6), defined by

¥ x — sin x cos x
g(6) = f T (53)
0 2sinx

which cannot be integrated in elementary terms. The
advantage of Eqgs. (52) and (53) is its validity for arbi-
trary slopes. However, the difference between g and
/9 remains smaller than 1% if 6<3#/4, or 135°, so
Eq. (51) is a very good approximation even for moder-
ately large angles.

Having found the interface profile (51) for intermedi-
ate scales, we now have to understand its relation to the
microscopic physics at the contact line, on one the hand,
and to the macroscopic hydrodynamics away from the
contact line, on the other hand. We first turn to the lat-
ter, and show how Eq. (51) serves as the effective bound-
ary condition for the macroscopic hydrodynamic prob-
lem. Since the slope is varying with the distance from the
contact line, this is not a straightforward boundary con-
dition that could be applied at a point. This feature mir-
rors, of course, the difficulty of measuring a dynamic
contact angle by simply recording the slope near the
contact line.

B. Matching to a macroscopic flow

To explain the hydrodynamic treatment of a moving
contact line, we describe how Eq. (51) is matched to the
surface of a small spreading drop, a problem already
considered qualitatively in Sec. I.C on the basis of en-
ergy conservation. This hydrodynamic calculation per-
mits one to compute the constant B in Tanner’s law (10)
in terms of microscopic parameters of the contact line.
Effectively, we have to compute how the apparent con-

tact angle 6,,= Hap(R,L,Gm) depends on the contact line

speed R, so using Eq. (9) one obtains an equation of
motion for the drop radius.

Many researchers (de Gennes, 1985) simply identify
0,p With the slope (51) near the contact line, but evalu-
ated at a length scale characterizing the outer problem,
such as the drop radius R. This is obviously only ap-
proximate, since the logarithmic dependence of Eq. (51)
is incompatible with the outer solution (8). However, we
now show that the correct matching equation is

03 = 0, + 9Rn/yIn(Rc/L), (54)

which is almost the result of the naive “patching” proce-
dure, but with a constant ¢ which depends on the outer
solution.

To set up the problem, we begin with the dynamical
lubrication equation for a film 4(x,f) moving over a two-
dimensional substrate (Oron et al., 1997):
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3nohlot=V-[m(h)V p], (55)
where
m(h) = h® + 3\h? (56)

is called the mobility and X\ is the Navier slip length
(Navier, 1827; Lauga et al., 2008). If long-ranged forces
as well as gravity are neglected for the moment, the
pressure in the film is

p=— yAh. (57)

For =0 and in the frame of reference of the contact
line, one spatial integration yields the stationary equa-
tion (49). Progress on rigorous mathematical existence
theorems for Eq. (55) has been summarized by Griin
(2004) and Becker and Griin (2005). Curiously, it re-
mains an open problem to show rigorously that the con-
tact line cannot move if m(h) vanishes like A3 at the
contact line position, while this is obvious from the Huh-
Scriven argument (Huh and Scriven, 1971).

To perform the matching between Eq. (51) and the
static (outer) drop shape (8), speed dependent terms
have to be added to the outer solution to make it match
to the logarithmic dependence (51). To this end one
solves Eq. (55) for a radially symmetric profile with no-
slip boundary conditions A=0, since any microscopic
scale is effectively zero on the scale of the outer solu-
tion. In accordance with Eq. (12), the solution of Eg.
(55) will have a logarithmic singularity corresponding
to Eq. (51) as one approaches the contact line. The
spherical cap (8) is the solution /y(r) in the limit of zero
speed, to which a contribution at the linear order in

Ca=R7/y has to be added:
hou(r,1) = ho(r) + Cahy(r) + O(Ca?). (58)

The static profile 4, depends on time implicitly through
its dependence on the drop radius R, cf. Eq. (8). The
curvature of h is negative, while A{(r) is positive; the
point r where both curvatures become comparable leads
to the estimate 3CaR/ 6, for the size of the intermediate
region, shown in Fig. 8. The static profile A implicitly
depends on time through its dependence on the drop
radius R, cf. (8). To compare Eq. (58) to the local solu-
tion (51), the slope A/, has to be raised to the third
power. Namely, from Eq. (51) we then know that
(Al (P =[h{(r)+3Calh{(r)]*h{(r) has the logarithmic
singularity —9Ca In(R-r) as r— R. Note that by compar-
ing the third power of the slope, the logarithmic coeffi-
cient contains a known universal constant, making a
consistent matching possible. Comparing the prefactors

and using 6,,=—h(r) and Eq. (54), one arrives directly at
In(Rc) = im[h*(r)h|(r)/3] + In(R - 7). (59)
r—R

Inserting the expansion (58) into Eq. (55), one finds
after one integration
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3 " oh
= )f %sds = (h{+hi/r)’, (60)
rnotr) Jo

subject to the boundary conditions

R
hi(0)=0, h(R)=0, f rhy(r)dr=0. (61)
0

The boundary conditions come from the requirement
that the drop is symmetric around r=0, and that /& van-
ishes at the contact line r=R. The final condition fixes
the volume at V. Having found 4; from Egs. (60) and
(61), it is straightforward to find c=1/2¢? from Eq. (59),
where e=2.718 281.... For bigger drops, gravity must
also be taken into account, and s, becomes more com-
plicated. As a result, some integrals have to be calcu-
lated numerically (Hocking, 1983).

In the case of a perfectly wetting fluid, 6,,=0 and the
drop will continue to spread forever. Thus Eq. (54) be-
comes, using Eq. (9) for the apparent contact angle,

4v \3 R
(—3> :9171n< : ) (62)
TR v \2e°L

which must be integrated to deduce the time depen-
dence of R. If logarithmic dependencies are ignored and
the logarithm is approximated by a constant, one finds

that R°Ro C, and hence Ro 1"/, in agreement with Eq.
(10). Essentially the same result, using a different set of
approximations, was obtained by Voinov (1976, 2000Db).
Note that L is the only specific feature of the contact
line which appears in Eq. (62), entering only logarithmi-
cally. This explains the robustness of Tanner’s law. Be-
low we calculate L explicitly for the case of a precursor
film.

Similar calculations have been done (Voinov, 1976,
2000b; Hocking, 1992, 1994) for spreading drops, two-
dimensional drops (Hocking, 1981; Lacey, 1982), and
capillary tubes (Voinov, 1976, 1995, 2000a; Hocking,
1977; Kafka and Dussan, 1979). Indeed, many dynamic
contact angle measurements (Hoffman, 1975; Fermigier
and Jenffer, 1991) have been performed by pushing fluid
through a capillary tube of radius R, and measuring the
radius of curvature R of the resulting meniscus. The ap-
parent contact angle is then given geometrically as
cos(f,,)=R./R. By matching the static meniscus to Eq.
(51), one obtains (Voinov, 1976, 2000a), in complete
analogy to the above calculation,

03y = 0y, + Caln(0.16R/6,,L). (63)

Cox (1986) studied the same matching as that de-
scribed above without reference to a specific geometry,
to give the general structure of the expression for the
apparent contact angle. Some of the earlier calculations
(Hocking, 1977; Dussan, 1979; Kafka and Dussan, 1979)
did not recognize the need for an intermediate region
(51), and obtained results valid only for small interface
deformations: 6,,~ 6,,. Voinov (2000a, 2000b) gave vari-
ous inverse relations, which permit one to calculate the
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microscopic parameters from the apparent contact
angle, defined unequivocally by the macroscopic inter-
face shape.

The results and ideas underlying the intermediate re-
gion (52) and (53) as well as its matching to the outer
problem have been carefully tested in a series of experi-
ments (Marsh et al., 1993; Chen et al., 1995, 1997, 2004),
dipping a solid cylinder into a fluid at various angles of
inclination a. A solution combining Egs. (52) and (53)
and the outer meniscus was fitted to experiment treating
either L or the apparent contact angle as a free param-
eter. As shown in Fig. 26, agreement with theoretical
interface profiles is excellent for different angles a and
small capillary number. The same is true for the entire
flow profile (Chen et al., 1997). Small Ca asymptotics,
however, starts to fail for Ca=0.1 (Chen et al., 1995).
Chen et al. (2004) tracked the emergence of the interme-
diate region (52) as the ratio between inner (contact line)
scales and the outer scale becomes more disparate. This
is achieved by preparing the substrate with liquid films
of different thicknesses, which effectively provide the in-
ner length scale L.

1. Numerical simulations

The asymptotic matching described above is possible
by analytical means only in the simplest of cases, essen-
tially when the outer solution is described by a static
equilibrium. In general, the outer part of the solution is
itself a complicated problem and can only be solved by
numerical simulation. In principle, one can attempt to
resolve the full problem down to a microscopic neigh-
borhood of the contact line at considerable numerical
cost. This has been done using a variety of methods (Re-
nardy et al., 2001; Spelt, 2005), but only for unrealisti-
cally large slip lengths. Fully resolved calculations will
require strong refinement in the neighborhood of the
contact line. More fundamentally still, microscopic fea-
tures of the contact line such as the microscopic contact
angle are beyond a continuum description.

There has been a considerable activity trying to ac-
count for microscopic features near the contact line. In
particular, diffuse interface models, discussed in detail in
Sec. III.E.2, describe contact line motion without the
introduction of any slip. Such models have been imple-
mented in a variety of ways (Jacqmin, 2000; Qian et al.,
2003; Briant et al., 2004), and allow one to investigate
the effect of surface thermodynamics on contact line
motion (Qian et al., 2006). Lattice-Boltzmann models
(Briant et al., 2004; Benzi et al., 2006) describe two
phases using a simlified dynamics on a mesoscopic scale.
Their main advantage lies in their flexibility, so they are
implemented easily even in complex geometries
(Biferale et al., 2007; Kusumaatmaja and Yeomans,
2007).

On the other hand, microscopic features can also be
incorporated into a contact line model, which needs to
be matched to the macroscopic flow. We briefly describe
the principles of such a matching; a review of numerical
work has been given by Rame (2002). Following Soma-
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FIG. 26. The dependence of the interface slope on the distance from the contact line (Marsh et al., 1993). The solid curve is based
on Egs. (52) and (53) with L treated as an adjustable parameter (Dussan et al., 1991). Also plotted in the lower two frames are
deviations A6 from theory, the solid curve showing a running average over 5 um.

linga and Bose (2000), we illustrate the numerical mod-
eling of contact line flow in Fig. 27. The shaded region
around the contact line is cut out from the flow to avoid
the contact line singularity. Its size €;, corresponds to the
resolution of the computational grid. Since ¢;, is much
larger than the microscopic scale, the stress field is
smooth at the edges of the shaded region. On the other
hand, ¢;, should be small enough for the local contact
line solution to be valid, which can be tested by changing
Cin-

The local solution (51) or its fully two-dimensional
counterpart (52) give the interface angle 6,(¢;,) at the
edge of the computational domain. Of course, this local
solution is also associated with a velocity field, which
supplies the boundary conditions at the edge of the
shaded region. Away from the contact line, this velocity
field is consistent with the no-slip boundary conditions
on the solid surface. Hence standard boundary condi-

macroscopic fluid impose boundary

region conditions here

no slip =

inner mode]

=

FIG. 27. Schematic of the procedure for continuum modeling.
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tions can be applied everywhere, without encountering
any singularities.

Earlier numerical work has tested the consistency of
various slip models (Bazhlekov and Chesters, 1996; Fin-
low et al., 1996) by resolving the flow field down to the
microscopic scale. Somalinga and Bose (2000) adopted
the procedure described above, and compared the re-
sults to numerical simulations which resolve the micro-
scopic scale. The agreement is very good for capillary
numbers Ca<0.1, but deteriorates for larger capillary
numbers, which is consistent with experimental observa-
tion (Chen et al., 1995).

Many more problems require further study in this
area. If the contact angle is receding, a local solution of
the type (51) can only be applied at very small capillary
number. As shown by Eggers (2004a), there is in general
no unique local solution, but rather a one-parameter
family of solutions. Which solution is selected is deter-
mined only by matching to the outer flow problem (Eg-
gers, 2005b; Pismen and Thiele, 2006). Finally, no estab-
lished description of the contact line flow exists for low-
viscosity fluids, for which inertia is expected to enter the
description (Cox, 1998).

C. Experiment

We now review experimental tests of the hydrody-
namic description given above. The difficulty with Eq.
(54) or (63) is that no accurate information on 6,, is
available. The best theoretical understanding exists for
the case of 6,4=0, and in particular for positive Ha-
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FIG. 28. Apparent dynamic contact angles of perfectly wetting
fluids measured in a capillary (Hoffman, 1975) and for a plung-
ing plate (Strom et al., 1990b). Each symbol corresponds to a
different fluid and/or substrate. The solid line is Egs. (52) and
(53) with 6,,=0 and x/L=10%

maker constant A>0. As explained below, in that case
the contact line is preceeded by a thin fluid precursor
film, to which the profile has to match, which fixes 6,
=0 in Eq. (51) or (52) and (53). Thus we first turn to the
particular case 6.4=0.

1. Zero equilibrium contact angle

There exists a wealth of experimental data supporting
the capillary dependence of Eq. (51) or (52) and (53) for
6,,=0. Typical configurations are fluid displacement in a
capillary tube (Hansen and Toong, 1971; Hoffman, 1975;
Fermigier and Jenffer, 1988, 1991), between parallel
glass plates (Shen and Ruth, 1998), or drops spreading
on a surface (Tanner, 1979; Chen, 1988; Chen and Wada,
1989; Kavehpour et al., 2003). Researchers have also
considered flow on cylinders (Inverarity, 1969a, 1969b;
Seebergh and Berg, 1992; Marsh et al., 1993; Chen et al.,
1995; Petrov et al., 2003a, 2003b), plates (Gutoff and
Kendrick, 1982; Strom et al., 1990a, 1990b), or tapes
(Burley and Kennedy, 1976a, 1976b, 1978; Gutoff and
Kendrick, 1982; Prevost et al., 1999) plunging into a
fluid. The data have earlier been reviewed by Kistler
(1993).

The cleanest test of theory is possible if measured ap-
parent contact angles are compared directly to Eq. (54)
or (63), or entire profiles are recorded (Marsh et al.,
1993; Kavehpour et al., 2003). In most cases, however,
experiments simply report the value of a dynamic angle
recorded at some scale x on the order of the optical
resolution of the experiment (=1/10 mm). Figure 28
shows data from two different experimental setups and
for a variety of different fluids and substrates in the per-
fectly wetting case. The solid line is the theoretical pre-
diction (52) with only one adjustable parameter, set to
In(x/L)=In(10% to give the best fit. In particular, there is
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FIG. 29. Schematic of a moving contact line for §;>0, A>0.
Ahead of the apparent contact line one finds a precursor
“foot” driven by van der Waals forces.

ample support for universality near the contact line,
namely, that the contact line behavior is independent
(apart from small logarithmic corrections) of the particu-
lar system and of the flow geometry.

To understand the remarkable universality of per-
fectly wetting fluids, one has to appreciate the existence
of a precursor film (Quincke, 1877; Hardy, 1919). By a
precursor film we will always understand the dynamical
film structure that precedes a spreading drop, to be dis-
tinguished from films that exist in equilibrium. Such a
film exists even if the fluid is nonvolatile “dry spreading”
(Cazabat et al., 1997), so that the film was established by
flow from the main droplet. This feature was confirmed
using ellipsometry (Bascom et al, 1964; Beaglehole,
1989), interference patterns (Bascom et al., 1964), polar-
ized reflection microscopy (Aussere et al., 1986), and
phase-modulated interference microscopy (Kavehpour
et al., 2003).

Away from the liquid drop, the thickness of the pre-
cursor film is typically just a single molecular layer, but it
has long been suspected from theoretical arguments
(Voinov, 1977; Hervet and de Gennes, 1984; Joanny and
de Gennes, 1984a) that there is a small region around
the drop where the film is thicker, making it amenable to
a hydrodynamic treatment. The reason is that for A>0
the long-ranged part of the disjoining pressure (17) tends
to thicken the film. Using p=—vyh"-II(h)=-yh"
—~A/6mh?, the analog of Eq. (49) becomes

3Ca/h® = - h" + 3a’h' |h*, (64)
with the microscopic length scale
a=\Al6my, (65)

which is typically 1 A.

In equilibrium, and subject to the constraint of fixed
volume, van der Waals forces produce a thin fluid film of
thickness (de Gennes, 1985)

€ =a\3y/2S;, (66)

as determined from Eq. (20). In a dynamical situation,
depicted in Fig. 29, the advancing macroscopic front has
to be treated together with the precursor film. An analy-
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sis of the thin-film equations (64) reveals (Hervet and de
Gennes, 1984) the physically intuitive result that the pre-
cursor film ends when the profile reaches the thickness
set by Eq. (66). Thus a particularly simple limit is that of
vanishing ¢ (infinite spreading coefficient), for which the
precursor film formally extends to infinity.

The precursor film, whose thickness is 10—100 nm
(Kavehpour et al., 2003), means a conceptual simplifica-
tion as it removes the singularity at the macroscopic con-
tact line. A solution to Eq. (64), which matches onto the
thin precursor film, has the similarity form

h(x) = (a/Ca'") d,qwl (Ca)*"x/a]. (67)

The similarity function ¢.qw depends on the variable &
=a~'Ca®?x, and satisfies the equation

3 raw == Baw + 3iaw! braw- (68)

Equation (68) has to be solved subject to the
asymptotic boundary condition ¢,gw=-1/§ as E— -,
which corresponds to the precursor film. By solving Eq.
(68) numerically, the length scale L in Eq. (51) is found
to be (Hervet and de Gennes, 1984; Eggers and Stone,
2004)

L =0.69a/Ca®3. (69)

Note that L can become mesoscopic if Ca is small. For
example, in the drop spreading experiment of Fig. 6, R
~1 mm and Ca=~4Xx 107>, giving L ~120 nm if one uses
a=2 A (Valignat et al., 1993). If one inserts Eq. (69) into
Eq. (62), one obtains the ultimate spreading law for a
small drop in the presence of a precursor film. Compar-
ing to Eq. (10) we find B=In[R/(2¢?L)] and thus BV
=1.19, in good agreement with the experimental value of
B10=1.186; cf. Sec. 1.C. Of course, we recover the result
that the spreading rate does not depend on the spread-
ing coefficient §;. As stressed before, this is consistent
with energy conservation, since all the excess energy is
dissipated in the film. We demonstrate this result explic-
itly in the section on contact line dissipation.

From the condition that the precursor film ends where
it reaches the thickness (66), one finds that its total
length L, decreases with speed (Voinov, 1977; de
Gennes, 1985) as

L,=a(S/y)*Ca™". (70)

Thus, even for Ca=107, L, is typically just 100 um
(Kavehpour et al, 2003), so most experimental tech-
niques lack the lateral resolution to observe the precur-
sor film directly. Detailed measurements of L, were per-
formed by Kavehpour ez al. (2003) with much improved
lateral resolution, finding remarkable agreement with
Eq. (70). The vertical resolution, however, was not suffi-
cient to confirm the predicted inverse falloff of the film
thickness with distance from the contact line. Earlier ex-
perimental work is also not conclusive: Beaglehole
(1989) found the precursor film thickness to fall off too
rapidly, Léger et al. (1988) observed the theoretically
predicted profile, but find inconsistencies in the ampli-
tude.
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Most of the existing experimental work [see Cazabat
et al. (1997)] is on the monomolecular diffuse film that
precedes the mesoscopic film described above. Its radius
advances as #2 (Heslot, Cazabat, et al., 1989); Cazabat et
al., 1997; Abraham, Cuerno, et al., 2002), but may also
be subdiffusive for polymeric liquids (Albrecht and
Leiderer, 1992). Various theoretical models for the dif-
fusive motion of molecules have been proposed (Ala-
Nissila et al., 1996; Burlatsky et al., 1996; Hjelt et al.,
1998; Abraham, Cuerno, et al, 2002; Popescu and
Dietrich, 2004), which reproduce the diffusive spreading
law (Abraham, Cuerno, et al., 2002), and produce pro-
files in agreement with experimental data (Ala-Nissila et
al., 1996; Hjelt et al., 1998).

Another important variant of single layer spreading is
terraced spreading (Heslot, Fraysse, et al., 1989). In this
case the monolayer joins the drop in a sequence of steps,
the radius of each of which grow like a square root in
time (de Gennes and Cazabat, 1990). However, the
problem with continuum models such as that of de
Gennes and Cazabat (1990) is that its applicability to
layers of single molecules is suspect (Cazabat et al.,
1997). Instead, there are a number of microscopic simu-
lations using solid-on-solid (SOS) models (De Coninck et
al., 1993) or molecular dynamics (MD) simulations with
effective Lennard-Jones potentials between polymer
molecules (Bekink er al, 1996) which show terracing,
with the expected scaling behavior.

Thus the variety of different precursor film behaviors
is enormous. It is, however, unlikely that precursor
structure has an important impact on the spreading of
the macroscopic droplet, since it simply implies a differ-
ent route to the burning of excess energy; see Sec. I11.D.
A counterexample has been, however, proposed by
Webb et al. (2003), based on MD simulations of Pb on
Cu. The reason is that the film alloys with the substrate,
slowing it down so much that the spreading is controlled
by the slow spreading of the precursor.

2. Finite equilibrium contact angle

In the absence of a mesoscopic precursor film it is
much harder to calculate the parameters L and 6,, ap-
pearing in Eq. (51) based on first principles. Owing to
Huh and Scriven’s paradox, there is no self-contained
hydrodynamic description, but microscopic effects need
to be included near the contact line, of which Table I
gives a brief overview. Since L appears only logarithmi-
cally, for practical purposes it suffices to recognize that it
is a microscopic length, of the order of a nanometer. It is
much more difficult to estimate 6,,, which out of equilib-
rium will in general not be equal to 6.

Nevertheless, as discussed in the next section, if vis-
cous dissipation is large compared to local dissipation at
the contact line, the departure of the interface angle
from 64 is mostly due to viscous bending, and one can
put 6,,~ 6.4 in Eq. (51). This assumption is confirmed in
Fig. 30, which shows data analogous to Fig. 28, setting
x/L=10% Apart from some experimental scatter, the
data are well described by Eq. (52), which is remarkable
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FIG. 30. Apparent dynamic contact angle data from Hoffman
(1975) and Strom et al. (1990b) for partially wetting fluids. The
value of g(6.q)/In(x/L), with x/ L= 104, is added to the abscissa
to make the theoretical curve the same as in Fig. 28. Each
symbol corresponds to a different experiment, the equilibrium
contact angle is taken from experiment. Those data sets from
Strom et al. (1990b) that showed evident contact angle hyster-
esis were not included.

in view of the fact that there is essentially no adjustable
parameter. However, the same type of description no
longer works if the viscosity is small, as experimentally
demonstrated (Petrov et al., 2003a, 2003b). This may in
part be due to inertia, but more crucially the assumption
0~ Oq only works if viscous dissipation dominates,
which will no longer be the case for small viscosity.

The results for the extreme case of liquid helium be-
ing dragged across a cesium substrate at very low tem-
peratures show that viscous bending becomes altogether
negligible (Prevost et al., 1999). Rather, as shown in Fig.
31, there is an exponential dependence of the contact
line speed on the force necessary to move the interface.
This suggests that the contact line motion can be de-
scribed by a thermally activated process (Blake and
Haynes, 1969), which takes place close to the contact
line. The slopes shown in Fig. 31 scale as 1/7, as ex-
pected for thermal activation. By considering the total
dissipation in a suitable region around the contact line,
we are able to unify both the viscous and the thermally
activated contributions to the contact line motion, as
outlined in Sec. IIL.D.

D. Contact line dissipation and microscopic contact angles

1. Free energy balance

No continuum theory of the immediate neighborhood
of a contact line will be able to capture molecular pro-
cesses responsible for contact line motion. Instead, to
compute the parameters 6, and L that appear in Eq.
(51), hydrodynamics has to be combined with a micro-

Rev. Mod. Phys., Vol. 81, No. 2, April-June 2009

Velocity ( um/s)

0 0.002 0.004 0.006 0.008
fly

FIG. 31. Contact line velocity plotted as function of the ap-
plied force per unit length for various temperatures (Prevost et
al., 1999). Solid lines are exponential fits to the experimental
data.

scopic description, which may cover a variety of differ-
ent features, such as fluid slip, diffusiveness of the inter-
face, or evaporation of one fluid into the surrounding
gas. Even for one particular effect, this is a demanding
proposition, but made even more difficult by the possi-
bility of several effects working in parallel. By consider-
ing the total energy dissipated in a macroscopic contact
line region, and equating it to the energy pumped into
the system (Voinov, 1976; de Gennes, 1985; Brochard-
Wyart and de Gennes, 1992), it is possible to disentangle
some of the disparate mechanisms at work. Namely, en-
ergy is additive, so there is a unique prescription for
combining different effects by adding the contribution to
the energy dissipation they produce.

To compute the rate of energy input W, consider the
macroscopic angle 6,(x)=tan"'[h’(x)] at some distance x
from the contact line. Upon some shift in the contact
angle position dx, the work done on the system is

oW = [fcl +ph(x)]5x, fcl = ')’(COS aeq — COos 0d)7 (71)

where f; is the force per unit length on the contact line
and ph(x) is the work of the pressure forces on the fluid
cross section at x.' In a steady state, the change in free
energy F per unit length of the system (we are consid-
ering a situation of constant temperature) must be zero:

0=F=W-TS, and we obtain
(fu+ph)U=W=TS. (72)

Here TS corresponds to all dissipative processes occur-
ring in the wedge of fluid up to x, including the contact

'We are grateful to Laurent Limat for pointing out the con-
tribution of the pressure forces.
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line itself. First, the viscous dissipation in the fluid is
(Landau and Lifshitz, 1984)

. au; ;)\ "1
TS:QJ <i+—u1) dxdyz?)Uznf —dx,  (73)
2)y\ox;  ox; Lh

where the integral is over the volume of fluid from some
microscopic cutoff scale L up to a hypothetical bound-
ary at x. It is easily confirmed that the energy flux across
the fluid boundary of V is small compared to Eq. (73).
The approximation on the right-hand side of Eq. (73) is
based on the lubrication approximation, assuming a
parabolic velocity profile. Using the corresponding ap-
proximations tan~'(h’)~h' and p~—yh", we find

X

Uyh'® - 6;,— 2h"h) = 6 nU* f %dx +2W,,(U)U.
L

(74)

All additional dissipative processes which occur near the
contact line, below some microscopic scale L, have been
subsumed into a rate of dissipation W, ,(U)U per unit
length of contact line.

To solve Eq. (74) for the profile A(x), it is most conve-
nient to differentiate once (Eggers, 2004b), from which
one recovers Eq. (51) exactly. The crucial advance, how-
ever, is that we are able to associate the microscopic
contact angle 6,, with the total dissipation W,,U that
takes place below the microscopic scale L. As a result,
0,, becomes speed dependent:

6(U) = 6+ 2W,(U)1, (75)

as remarked by Voinov (1976). The equation for the
macroscopic slope away from the contact line is

h'3(x) = [6 + 2W,,(U)/yP? + (9nUly)In(x/L), (76)

restoring the definition of the capillary number. For suf-
ficiently large viscosities, one expects the second, viscous
contribution to dominate over any speed dependence of
W

Note that a constant W,, =W/ U, as implied by Eq. (15)
for a contact line with hysteresis, simply leads to a shift
in the angle measured at vanishing speed. This means
that for an advancing contact line, combining Egs. (76)
and (15) in the small-angle approximation, the angle 6,
is to be replaced by 6, in the Cox-Voinov law (51) (and
correspondingly by 6, for a receding contact line). This
generalization of the Cox-Voinov law has been con-
firmed by Le Grand et al. (2005) with experiments on
sliding drops. In Sec. IV we will give estimates of the
contact line dissipation in terms of defect properties.

2. Sources of dissipation

Blake and Haynes (1969) developed a theory of con-
tact line motion, based on activated processes (Eyring,
1941). This theory is often referred to as molecular ki-
netic theory, although it is found to hold for activation
events on scales much larger than the molecular scale, as
we see below. Following Brochard-Wyart and de
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FIG. 32. Schematic of the theory by Blake and Haynes (1969),
associating contact line motion with the hopping of molecules
between the potential wells provided by the substrate.

Gennes (1992) and de Gennes et al. (2003), we estimate
W,, as associated with molecular jump processes, so 6,
can be computed from Eq. (75).

The idea, as shown in Fig. 32, is that for the contact
line to move under a force f at the contact line, indi-
vidual molecules jump over a corrugations of wave-
length €; and potential depth V. The same ideas apply if
potential wells are in fact somewhat above the molecu-
lar scale, linked, for example, to mesoscopic pinning
sites or roughness of the surface (Prevost ef al., 1999). In
equilibrium, backward and forward jumps are equally
likely and balance each other out. The applied force per
molecule f,€; deforms the potential landscape to make

i
forward steps more likely:

1 2 1% 0
-=— exp(— —)sinh(fl—]), (77)
T TO kBT szT

so 7is the average time for a forward step, where 7, is a
microscopic time for a single “attempt.”

Since the contact line speed is U=¢;/ 7, and using Eq.
(71) we thus obtain

_—VIkgT
B 2(5]6

U i h( 7 )) (78)
= - sin 2k, T COSeq — €OSy) |,

which gives the exponential dependence of Fig. 31, for
sufficiently large forcing fcl€]-2/ kgT>1. The relationship
(78) between speed and 6, is the main result of molecu-
lar kinetic theory. Since both f; and kgT are known ex-
perimentally, the fits of Fig. 31 determine the activation
length €;. For the helium on cesium system under study,
€;=10 nm is found, which is significantly larger than any

atomic distance. Since W, ,U=f,U we obtain from Eq.
(75) that

(79)

2¢;

2k T
& =6 + 52 arcsinh{

UTQEV/kBT
m eq .
bad

The combination of Egs. (51) and (79) represents the
most general prediction for the dynamic contact angle of
a partially wetting fluid, taking into account both hydro-
dynamic and molecular effects. It was first proposed by
Petrov and Petrov (1992). Any microscopic speed €,/
will be quite high, much greater than a typical contact
line speed of mm/s. Hence the speed dependence de-
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scribed by Eq. (79) would be negligible if it were not for
the exponential factor. Pomeau (2000) proposed that V'
be estimated as the heat of evaporation per molecule,
which would lead to e"*57 = py; / p,,=10°, significantly
enhancing the speed dependence of the microscopic
contact angle. However, these are order-of-magnitude
estimates, so effectively one has to treat e"*s77)/¢; as an
adjustable parameter, fitting macroscopic measurements
of the interface slope to Eq. (74), to infer the micro-
scopic angle 6,,.

This approach has been followed by Petrov et al.
(2003a, 2003b), to obtain V and ¢; for a range of low-
viscosity alcohols on an amorphous substrate. Remark-
ably, the length ¢; is found to be of the order of 5 nm, in
qualitative agreement with the activation length ex-
tracted from Fig. 31. This result once again points to a
process limiting the contact line speed that takes place
on scales much larger than a molecular length. It has
been suggested by Prevost et al. (1999) that ¢; is to be
identified with the density of pinning sites, at least for
the systems mentioned above. As we discuss in Sec.
IV.D, this observation points to a new interpretation of
the potential V in terms of the contact angle hysteresis
of the system.

3. Precursor films

If the fluid is perfectly wetting, we have seen that van
der Waals forces lead to the formation of a precursor
film in front of the contact line. The initial spreading
coefficient §; is now positive, and the work per unit
length done on the contact line is ULS;+y(1—cos 6,)].
The free energy balance (74) becomes

1

,, hdx, (80)
where the integration starts at the tip of the precursor
film, rather than at the position of the macroscopic con-
tact line x=0.

It was shown by Hervet and de Gennes (1984) that the
integral in Eq. (80) can be split into two parts: one from
the tip of the precursor film ~L,, to the macroscopic con-
tact line at x=0, and one covering the bulk fluid from 0
to x. The crucial observation is that the viscous dissipa-
tion in the film exactly cancels the “extra” work US,, to
make Eq. (80) consistent with Eq. (51), where 6,,=0. In
particular, this means it is very difficult to accelerate the
spreading of liquids. The only known way to achieve
that is by adding “superspreaders,” which we discuss in
Sec. II1.J.2.

US; + Uyh'?*(x) = 69U? f

-L

E. Matching to the contact line

The free energy arguments of the previous section
give a good phenomenological description, yet the de-
pendence on microscopic parameters is never explicit
unless a detailed matching to the contact line is per-
formed. The necessary framework for such a matching is
one in which the fluid flow equations are coupled to the
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thermodynamics of the liquid-vapor (liquid-liquid in the
case of two-fluid systems) and solid-liquid interface, en-
suring a consistent description of both statics and dy-
namics. A recent article (Qian et al., 2006) summarizes
such efforts, which are built on the Cahn model; cf. Sec.
I1.A.2. As part of such a thermodynamic description, the
interface has finite thickness, introducing another length
scale into the problem, which can take over the role of
the slip length if the interface is sufficiently diffuse.
However, we begin by reviewing the literature on inter-
faces of zero thickness, only taking into account fluid-
wall interactions.

1. Sharp interface

In the simplest case, the contact line singularity is
regularized by a slip length (Hocking, 1983, 1992; Eggers
2004a), using the Navier-Stokes equation throughout. In
many cases involving the flow between two solids (Is-
raelachvili, 1986; Cottin-Bizonne et al., 2005) this gives a
good description of experimental data, adjusting A\ to
~1 nm for wetting fluids. A generalization of Eq. (56) is
m(h)=h>+3\>"%h'*« (Eggers, 2004a), with a=1 the clas-
sical Navier condition. Now Eq. (55) can be solved up to
the contact line, imposing a microscopic angle /'(0)
=#6,,. Using an expansion in the capillary number (Hock-
ing, 1983; Eggers, 2004b) one finds

L =3\eb,, + O(Ca\), (81)

where only the O(Ca) correction depends on «. For 6,
— 0 the expansion breaks down (Cox, 1986), indicating a
new type of asymptotics in that limit.

Using a similarity solution in the spirit of Eq. (67) to
solve Eq. (55) with the slip law (56), for 6,,=0 the length
L depends on Ca like a power law (Hocking, 1992; Eg-
gers and Stone, 2004):

L =0.54\Ca 17, (82)

Interestingly, the power in Eq. (82) is different from the
power Ca~?3 observed for a precursor film [cf. Eq. (69)].
Thus Eq. (82) could be the correct description for a sys-
tem with A <0 and S,>0, in which case there is no me-
soscopic precursor film. Recent MD simulations of a
propane film spreading on gold (Moseler, 2007), as well
as DPD models (Hoogerbrugge and Koelman, 1992), but
with the long-ranged interaction truncated, are indeed
consistent with Eq. (82). Marsh et al. (1993) found the
speed dependence of L experimentally by fitting the
macroscopic profile shape to Eq. (51). The result seems
to favor Eq. (69) over (82) (Eggers and Stone, 2004), as
A>0 for the system under study. Another important
consideration is one of time scales (Moseler, 2007), since
on the nanoscale there is not necessarily enough time for
a mesoscopic precursor film to develop. Thus if one con-
siders the impregnation of a nanoscale pore (Henrich et
al., 2008), the correct description might be closer to Eq.
(82).

To build in the equilibrium properties of the fluid
more systematically, one can take the disjoining pressure
into account; cf. Eq. (17). The first such calculation was
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performed by de Gennes et al. (1990), but only including
the long-ranged part of II(4), giving L=a/ 26§q. Assum-
ing that the minimum /4* of the interface potential pro-
duces a thin equilibrium film even in the partially wet-
ting case (Seemann et al., 2001b; Becker et al., 2003), the
contact line singularity is formally avoided since £>0
everywhere. Of course, A* is a molecular thickness at
best, so hydrodynamics is not strictly applicable. As
shown by Pismen and Pomeau (2004) and Eggers
(2005a), the calculation gives L=4h*/ef,, for a 1/ h* re-
pulsive potential; the prefactor depends only weakly on
the form of the repulsion (Pismen and Eggers, 2008).

2. Diffuse interface

Considerable work has recently been devoted to dif-
fuse interface models, either in the guise of the Cahn-
Landau model for partially miscible fluids (Seppecher
1996; Chen et al., 2000; Jacqmin, 2000; Qian et al., 2003,
2006; Briant and Yeomans, 2004) or the van der Waals
model for a liquid-vapor interface (Pismen and Pomeau,
2000; Pomeau, 2002; Briant et al., 2004) We focus on the
variational formulation of Qian et al. (2006), who com-
bined the fluid equations, including slip, with the Cahn-
Landau free energy (27) and (28) including wall interac-
tions. The order parameter profile m is now of course
allowed to vary in three dimensions, hence F; is to be
integrated parallel to the wall. In addition, m obeys a
convection-diffusion equation

om/dt+u-Vm=MAm, (83)

where M is a mobility coefficient. A similar equation
appears for order-parameter relaxation at the wall, with
I' the corresponding surface mobility.

In this description, the Navier slip law is generalized

to
ustie du  L(my) dmg
Z___ & T

A dz n  ox’

(84)

where x is a direction parallel to the wall and
L(m) = (¢*2)amldz + oD/ dm. (85)

The last term on the right hand side of Eq. (84) is the
uncompensated Young stress, representing the tangen-
tial stress the fluid-fluid interface exerts on the fluid. In
equilibrium, its integral across the interface must give
zero. Qian et al. (2003, 2006) found, and confirmed by
numerical simulations, that the uncompensated Young
stress is in fact the dominant contribution to fluid slip
near the contact line.

We now consider the limit of small interfacial thick-
ness, such that the interface is centered closely around a
plane that makes an angle 6,, with the solid. Then the
integral over the uncompensated Young stress is pre-
cisely the contact line force f; cf. Eq. (71). Neglecting
the viscous contribution in Eq. (84) relative to the
sharply peaked interfacial contribution, one obtains an
expression for the slip velocity which, integrated over
the interface, gives the contact line speed U. In terms of
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the description of Sec. II1.D.1, this amounts to a dissipa-
tion W,,=énU/\ in Eq. (75), where ¢ is the thickness of
the interface, or

0, = Oy + 26Cal/\. (86)

Curiously, the dynamic contact angle is controlled by the
capillary speed, with a functional form that is quite dif-
ferent from that produced by viscous bending.

Thus the bottom line of the analysis of the sharp in-
terface limit is that the classical description in terms of a
Navier slip condition, which leads to Eq. (81), is in fact
valid. That is, the capillary forces on the right-hand side
of Eq. (84) are highly concentrated inside the interface,
and the classical Navier law remains outside the interfa-
cial region. The effect of the force balance inside the
interfacial region leads to the speed dependence of the
microscopic contact angle (86). Ren and E (2007) fo-
cused on this effective model in the limit of zero inter-
facial thickness, and confirmed its validity by extensive
comparisons to MD simulations (see below).

In the opposite limit of a very diffuse interface, the
contact line can move by virtue of order parameter dif-
fusion or evaporation and condensation alone (Chen
et al., 2000; Pomeau, 2002; Briant et al., 2004), even if
there is no slip. In the case of a fluid-vapor interface,
evaporation and condensation is the relevant mecha-
nism (Briant et al., 2004). Intuitively, the fluid evaporates
in response to the interface trying to relax back to its
equilibrium shape, which in turn is driven out of equilib-
rium by the singular flow. The fluid then condenses in
front of the contact line, making it move. In the case a
liquid-liquid interface, on the other hand, order param-
eter diffusion is more relevant. This process sets an ef-
fective length scale, which in the case of a fluid-fluid
system was estimated using two simultaneous balances
(Briant and Yeomans, 2004): first a force balance across
the interface, and second the equality of convection and
diffusion in Eq. (83). The result is

Laige=[npME/(Am)* ], (87)

where Am is the jump of the order parameter across the
interface. This relation was tested by comparison with a
lattice Boltzmann model (Briant and Yeomans, 2004),
for which the interface can be made very diffuse. The
diffusive length L4 is expected to assume the role of L
in the contact angle law (51), but a consistent calculation
of L as well as of 6,, still needs to be performed in the
diffuse limit.

A slightly different approach was taken by Pismen
and Pomeau (2000). Starting from diffuse interface
theory, an effective equation for a sharp interface is de-
rived within the lubrication approximation, but with a
disjoining pressure that differs from the conventional
version in that it remains finite in the limit 2=0. The
existence of a minimum in [I(%) guarantees that the
solid is covered by a thin film, which cuts off the viscous
singularity.

Although the results on diffuse interface models rep-
resent a significant conceptional advance, one has to
keep in mind the extreme simplicity of the system, char-
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acterized, for example, by perfect solid surfaces. In real-
ity, there is always some contact angle hysteresis in the
system, which we discuses in the next section. In addi-
tion, no long-ranged forces have been included in the
analysis. This avoids more nonlocal interactions in the
interface region, as well as a more complex precursor
film structure. Any application to real systems will likely
involve a more complex interplay of different physical
effects. Nevertheless, in view of nanoscale applications
of contact lines (Gogotsi et al, 2001; Iwamoto and
Tanaka, 2002), the interest in a quantitative description
of the immediate neighborhood of the contact line will
undoubtedly become more pronounced.

Note that the influence of fluctuations on contact line
motion has been neglected completely in the analyses of
diffuse interface models. The success of mean-field de-
scriptions under defined conditions indicates that the ne-
glect of fluctuations is perhaps a reasonable assumption,
in particular if the interface is sharp. As a result, capil-
lary forces are very strong and highly concentrated, re-
ducing the relative importance of fluctuations. However,
under certain geometrical constraints on the geometry
of the initial drop, a recent study (Davidovitch et al.,
2005) based on a stochastic thin film equation (see also
Moseler and Landman, 2000; Mecke and Rauscher,
2005) predicts enhanced spreading in the presence of
noise. Namely, in close analogy to a result found previ-
ously for the breakup of a nanoscale jet (Moseler and
Landman, 2000; Eggers, 2002), the spreading exponent
for a two-dimensional ridge can change from n=1/7 (cf.
Table II) to n=1/4. Similar enhancement has been
found for dewetting of thin films (Griin et al., 2006), dis-
cussed below; cf. Sec. III.H.

F. Molecular dynamics

Computer simulations of fluids consisting of indi-
vidual molecules with more or less realistic interactions
between them are an extremely promising avenue to un-
derstand microscopic features of fluid flow. A typical
molecular dynamics (MD) study of a Couette flow is
shown in Fig. 33, where molecules are treated as point
particles, with Lennard-Jones interactions (short-range
repulsive and long-range attractive) between them
(Allen and Tildesley, 1987). Molecular interactions are
typically cut off at two to three times the interaction
distance, hence the effect of long-ranged forces is not
captured by most of the present simulations.

By tuning the interaction parameters between the
molecules, particular wetting properties of the fluids can
be chosen (Cho et al., 2004). One particular focus of such
studies has been the slip condition near solid walls (Ko-
plik et al., 1989; Thompson and Troian, 1997; Cho et al.,
2004). Contact lines have been studied by simulating the
Couette flow between two sheared walls (Thompson and
Robbins, 1989; Qian et al., 2003, 2004; Ren and E, 2007),
or spreading drops (Ruijter et al., 1999; Hadjiconstanti-
nou, 2003). The fluid-wall interactions are modeled by
Lennard-Jones interactions as well. No attempt has yet
been made to model a specific fluid-fluid-solid or fluid-
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FIG. 33. (Color online) MD simulation of a Couette flow with
a moving contact line. The dots are the instantaneous molecu-
lar positions of the two fluids, projected on the x-z plane. The
black (gray) circles denote the wall molecules. The upper panel
shows the symmetric case, Héq:90°; the lower the asymmetric
case, ng=64°- From Qian et al., 2003.

gas-solid system, with view to a direct comparison with
experiment.

Existing MD simulations of moving contact lines con-
firm the main theoretical ideas behind the continuum
description of moving contact lines (Thompson and
Robbins, 1989; Qian et al., 2003; Ren and E, 2007), in
particular, if the interface is described by a Cahn-
Landau model (Qian ef al., 2006). The impressive agree-
ment that is achievable is shown in Fig. 34, which com-
pares the interface as found from averaging MD data to
the results of the Cahn-Landau model. The same degree
of agreement is found for the averaged velocity profile.
Slip of the velocity is concentrated almost exclusively
inside the interface region, in agreement with earlier ob-
servations (Thompson and Robbins, 1989). The angle 6,
at which the (averaged) interface intersects with the wall

Fezo0

xla

FIG. 34. Comparison of the MD (symbols) and continuum
(lines) interface profiles for the symmetric and asymmetric po-
tentials shown in Fig. 33. The MD results were obtained by
averaging over at least 10° atomic time scales, the continuum
calculation is based on the diffuse interface theory, with pa-
rameters determined from the MD simulation. From Qian et
al., 2006.
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is seen to deviate slightly from the equilibrium angles,
included in Fig. 34.

The small departures of 6,, from 6., found in Fig. 34
agree well with the continuum modeling, and the corre-
sponding analytical result (86). Similar tests were per-
formed by Ren and E (2007), but for conditions under
which the departure 6,,— 6., is much larger. Results are
once more consistent with Eq. (86). If driven even
harder into the nonlinear regime (Ren and E, 2007), re-
sults are consistent with the functional from of Eq. (79),
predicted by molecular kinetic theory. In addition, the
intermediate region of the profile, where viscous bend-
ing becomes important, was included in the analysis as
well. The results compare well with Eq. (52) for the vis-
cosity ratio M =1, appropriate for the simulation by Ren
and E (2007).

It is evident that MD simulations are not well suited
to study macroscopic systems, the most recent simula-
tions of contact line flow comprising about 10° particles
(Ren and E, 2007). On the other hand, a hypothetical
MD simulation of a bulk material would not contribute
much additional information: the relative size of fluctua-
tions will be quite small. The moving contact line is thus
an ideal problem for hybrid numerical schemes
(O’Connell and Thompson, 1995; Hadjiconstantinou and
Patera, 1997; Hadjiconstantinou, 1999a, 1999b), in which
a small region around the contact line is treated by an
atomistic method, the remaining fluid domain is de-
scribed by the Navier-Stokes equation. Information be-
tween the two domains is exchanged through an overlap
region. Hadjiconstantinou (1999a, 1999b) showed the
method to work for contact line flows, albeit in systems
which are still quite small.

G. Receding contact line

We have been careful to point out that the asymptotic
solution (51) applies only to an advancing contact line,
which is easily seen from the expression itself. That is, a
receding contact line corresponds to Ca<0, hence Eq.
(51) does not make sense for x/L — oo, since h'(x) be-
comes negative for In(x/L)=-¢,/9Ca. This means that
h would eventually become negative, and a completely
different description of receding contact lines is neces-
sary. The properties of the interface profile for Ca<0
are best inferred from an exact solution (Duffy and Wil-
son, 1997) of the thin-film equation (49), expressed in
terms of Airy functions (Abramowitz and Stegun, 1968).
In the spirit of Sec. IIL.E, this solution must be matched
to the contact line (Eggers, 2005b).

In the case of an advancing contact line, the solution is
determined uniquely by the condition that the curvature
must vanish at infinity for it to match to an outer solu-
tion. Instead, all solutions of Eq. (49) with Ca<0 (reced-
ing contact line) have strictly positive curvature at infin-
ity. For large x/L one finds (Eggers, 2005b)
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FIG. 35. A plate withdrawn from a bath of nonwetting liquid
at speed Up;, which forms a contact line at height zy. The
capillary numbers based on the plate speed Uy, are Cay=9.7
X107 (A), Cap=102x107° (M), Cay=10.7x107 (0), Cay
=112%x1073 (@), and Ca,=11.5X 10’g (O). These values are
all above the critical capillary number Ca,,, so the contact line
moves up very slowly, and each curve is traced out in a time-
dependent fashion for each experiment. The full line is found
from the thin-film equations (55) and (56), including gravity.
From Delon et al., 2008.

(3|Ca|)l/322/3Air (Sl)
amAl(Sl)

h'(x) = kX + O(L/x), (88)

where

_ (3[Ca))*” exp(- 6,,/9|Ca))

>0 89
2P AR (s L (89)

0

is the curvature at infinity. The free constant s; needs to
be found from matching to the meniscus away from the
contact line (Eggers, 2005b). It is clear from Eq. (88) that
it does not make sense to speak of a dynamic contact
angle h'(x), since the slope is varying linearly with x,
except at very small capillary numbers, for which there
exists a region In(x/ L)S—&fn/9Ca, over which A'(x) is
still described by Eq. (51).

With increasing contact line speed, the curvature «,
becomes so large that it becomes impossible to match to
an outer solution, leading to a maximum speed Ca,, at
which the contact line can move relative to a plate (Eg-
gers, 2004a, 2005b). Experimentally, this is seen, for ex-
ample, by withdrawing a plate from a bath of liquid that
does not wet the plate; cf. Fig. 35. Above a maximum
speed of Ca;, no more stationary solutions exist, so the
contact line must move up the plate and a macroscopic
film is deposited. Strictly speaking, the data shown in
Fig. 35 were taken from a nonstationary experiment.
However, the collapse for different speeds demonstrates
that the contact line moves quasistatically, and effec-
tively represents the stationary solution.
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Away from the contact line, the profile is that of a
static meniscus, whose apparent contact angle 6,, can be
determined from the capillary rise x, according to
Laplace’s classical solution (de Laplace, 1805; Landau
and Lifshitz, 1984). As shown in Fig. 35, the transition
toward a film occurs very close to the maximum capil-
lary rise xd:\s‘iﬁc, for which 6,, goes to zero. This is in
agreement with previous experimental work on fibers
(Sedev and Petrov, 1991), and confirms the classical phe-
nomenological argument by Deryaguin and Levi (1964).
It contradicts the approach by de Gennes (1986) dis-
cussed later. Note that the critical capillary number for a
receding contact line is quite small, while stable advanc-
ing contact lines can persist to Ca=50 (Simpkins and
Kuck, 2003) (pushing a solid into a liquid bath). This
once more highlights the fundamental difference be-
tween advancing and receding contact lines.

To calculate the meniscus profile quantitatively, the
“outer” meniscus solution must be matched to the con-
tact line solution (88), which is not possible above a
maximum speed Ca,,, as first noticed by Voinov (2000a)
and confirmed numerically by Hocking (2001). The only
way to avoid this transition is to cause the contact line to
incline, discussed in Sec. II1.J.1. The outer solution, ex-
trapolated to the position of the contact line, has the
form

Bu(X) = Oy + V2(1 = 0,,/2)(x — x)/ €, + O((x = x)?),
(90)

whose functional form must agree with Eq. (88) for
matching to be possible. From this condition the free
constants s; and 6,, can be determined. As shown by
Eggers (2005b), 6,, goes to zero at a critical capillary
number

6’ 3Ca,,) "¢, -1
Ca, = | 1In ( : o) =] , 91)
9 213 7] Ai(s,00 PLN2

above which no more solution exists (matching becomes
impossible), in agreement with experiment (Sedev and
Petrov, 1991, 1992).

As shown in Fig. 35, the experimental values of Ca,,
are in good agreement with the theoretical prediction
(full line). The prediction Cag qu of Eq. (91) also
agrees with earlier experiments (Quéré, 1991) for a wide
range of contact angles, although the prefactor is
smaller. This might be due to the considerable contact
angle hysteresis present for the materials used by Quéré
(1991), pointing to surface roughness. This will tend to
reduce the critical capillary number (Golestanian and
Raphaél, 2001b, 2003). In addition, any speed depen-
dence of the microscopic contact angle, neglected in the
present description, will effectively lower 6,, and thus
lead to a smaller critical capillary number.

The critical capillary number according to de Gennes
(1986) has a structure similar to Eq. (91), but predicts a
“first order” transition at a finite value of 6,,, in dis-
agreement with experiment; cf. Fig. 35. This discrepancy
can be traced back to an erroneous speed-angle relation-
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ship used by de Gennes (1986), which only agrees with
Eq. (51) to first order (Eggers, 2004b). As seen from
both experimental and theoretical data in Fig. 35, the
bifurcation is rather of a saddle-node type (Drazin,
1992). At a speed Ca* below Ca,,, a new type of solution
is predicted and found experimentally (Snoeijer et al.,
2006), which consists of a leading capillary ridge, that
can climb arbitrarily high up the plate. In fact, if experi-
ments were conducted by slowly increasing the capillary
number from below Ca* (Snoeijer et al., 2006), the solu-
tion was always found to jump to the ridge solution. The
reason for this discontinuous transition observed by
Snoeijer et al. (2006) is unknown and warrants further
study. Snoeijer et al. (2008) investigated the relation of
the ridge solution to a new type of film covering the
plate, which is distinct from the classical Landau-Levich-
Derjaguin film (Landau and Levich, 1942; Deryaguin,
1943).

H. Dewetting

In many recent experiments and applications a uni-
form liquid layer is placed on a solid that it does not wet
(Seemann et al., 2001b; Seemann, Herminghaus, Neto, et
al., 2005). For a review of multilayer dewetting as well as
dewetting of structured surfaces, see Geoghegan and
Krausch (2003). As a consequence of the nonwetting
properties, the film may destabilize to expose “dry”
patches, unless it is sufficiently thick to be stabilized by
gravity (de Gennes et al., 2003). In many practical cases
the system is perturbed by the presence of surface het-
erogeneities or dust particles, which form the initial
nucleus for a hole: heterogeneous nucleation. If the
nucleation is driven by thermal noise, one speaks of ho-
mogeneous nucleation. In both cases the system is sepa-
rated from its true equilibrium state by an energy bar-
rier: the opening of a small hole costs more energy than
is gained by thinning the film.

If the film is sufficiently thin (2—-10 nm) for long-range
forces to be important, the system can become linearly
unstable, so the growth of thermal fluctuations leads to
spontaneous destabilization. This scenario has been
called spinodal dewetting, in analogy to the spontaneous
decomposition of incompatible bulk phases (Mitlin,
1993).

To investigate the stability of the film, we consider
small perturbations to a film of constant thickness /:

h(x,t) = hy+ ee' @ kX, (92)

Linearizing the thin-film equation (55) in € and using p
=—yAh—T1I(h), one obtains the dispersion relation (Vrij,
1966; Ruckenstein and Jain, 1974)

w=— (h3yB3 k(K> + Ky/7y), (93)

where Ky=V"(hg) is the curvature of the effective inter-
face potential. From Eq. (93) one finds the optimal or
“spinodal” wavelength \,, corresponding to the fastest
growing mode (Sharma, 1993):
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FIG. 36. Dewetting patterns as observed with the AFM. The
height scale ranges from black (0 nm) to white (20 nm). (a)
Spinodal dewetting, (b) homogeneous (thermal) nucleation,
and (c) heterogeneous nucleation. From Seemann et al., 2001a.

N\ =2mV-2v/K,. (94)

Thus if K,<0, long-wavelength perturbations are un-
stable, in complete analogy with the Plateau-Rayleigh
instability of fluid jets (Eggers, 1997). Given a random
disturbance, one will thus observe the most unstable
spinodal wavelength (94).

Thus in systems with long-range forces (21) the film is
unstable if A <0, and stable for A > 0. In the former case
the wavelength scales like )\SOCh%, as found experimen-
tally (Bischof et al., 1996; Seemann et al., 2001a). In ad-
dition, in situ AFM scans (Seemann et al., 2001b) con-
firm the exponential growth (92) of the amplitude of the
surface undulation. If, on the other hand, A >0 one ob-
serves nucleation (Brochard-Wyart and Daillant, 1990;
Seemann et al., 2001b), where the position of holes is
randomly (Poisson) distributed (Jacobs et al., 1998). Fig-
ure 36 shows the main mechanisms of instability.

Combining information from measuring the instability
of a thin film with contact angle data, one obtains a sen-
sitive tool to measure surface potentials (Seemann et al.,
2001a), as shown in Fig. 37. For example, by coating a Si
substrate with a layer of silicone oxide, a fluid layer of
polystyrene (PS) is linearly stable at large distances, but
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very thin layers are unstable. This is because the
Hamaker constant of silicone against PS is positive
(ASi: 13X 10719 J), while ASiO is negative (ASiO
=-22%1072"J). The boundary between the spinodal
and the metastable regime is determined by K(h)=0,
as shown in Fig. 37, and leading to a phase diagram
confirmed by experiment (Seemann et al., 2001b).

Work concerning both the initial instability and the
subsequent dynamics has been reviewed by Thiele
(2003). More recently, attention has focused on the non-
linear dynamics that follows the initial growth of pertur-
bations described above. Becker et al. (2003) compared
numerical simulations of Eq. (55) to experimental dew-
etting patterns. To describe the surface potential, inde-
pendently determined experimental parameters were
used as described above. The temporal evolution was
followed by taking temporal series of AFM scans of PS
films beading off a SiO surface. For both cases of spin-
odal dewetting and nucleation, good qualitative agree-
ment between theory and simulation was found, but
dewetting proceeds faster than predicted by theory. This
mismatch in the time scales is corrected if the effect of
noise is taken into account in the thin-film equations
(Griin et al., 20006).

Analytical studies have focused on the growth of indi-
vidual holes in the nucleation regime (de Gennes et al.,
2003), whose radius increases linearly in time (Redon et
al., 1991). The excess fluid collects in a rim, whose size is
set by mass conservation. If the fluid is very viscous (as is
the case for most polymer films), the dominant retarding
mechanism is viscous dissipation near the contact line.
By balancing this with the free energy gained, one finds
(de Gennes et al., 2003) Ca,,, éeq for the capillary num-
ber based on the speed of retraction, where the constant
can vary logarithmically based on the geometry of the
rim. This is of course analogous to Eq. (91) for the maxi-
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FIG. 37. (Color online) Reconstructed surface potentials V() for PS films on a silicone wafer coated with a layer of SiO of varying
thickness dgjo. The fits are to the curve V(h)=c;/h®+Agio/127h’>+(Agi— Agio)/127(h+dg0)?, with experimentally determined
Hamaker constants. For the particular kind of wafer used, the strength of the short-range interaction is ¢;=5.1X 10777 J m®. The
arrow marks the thickness 4* of the microscopic film left behind after dewetting. From Seemann et al., 2001a.
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FIG. 38. (Color online) The driven spreading of a thin film on
a horizontal substrate. A small sinusoidal perturbation of
wavelength A=1.4 mm is imposed optically, which grows into a
sequence of fingers of the same wavelength. By applying per-
turbations of different wave numbers in a series of experi-
ments, the dispersion relation for the instability is measured
and compared with linear stability theory (with no adjustable
parameters in the stability analysis). From Garnier ef al., 2003.

mum speed of retraction of a contact line.

Recent papers have addressed the effect of non-
Newtonian and visco-elastic behavior (Saulnier et al.,
2002b; Rauscher et al., 2005; Vilmin and Raphaél, 2005;
Miinch et al., 2006; Vilmin et al., 2006), for example, on
the growth velocity of holes. In addition, polymer films
can also exhibit strong slip (de Gennes et al., 2003;
Fetzer et al., 2005; Miinch et al., 2006). As a result, the
speed of the dewetting front can decrease significantly
(Damman et al., 2003). Much work has also been de-
voted to the shape of the profile near the dewetting
front (Herminghaus et al., 2002; Saulnier et al., 2002a;
Fetzer et al., 2005; Miinch et al., 2005; Rauscher et al.,
2005), and in particular the question whether the film
thickness decreases monotonically from the rim or
whether there are oscillations. One challenge lies in the
fact that most coatings are made up of polymers, and
thus exhibit non-Newtonian fluid properties, no longer
described by Eq. (55). Instead, a shear-dependent viscos-
ity (Saulnier et al., 2002a) or viscoelasticity (Herming-
haus et al., 2002) may explain the observed behavior.
However, experiments by Fetzer et al. (2005) showed a
disappearance of oscillations for fixed fluid properties,
but increasing slip length. Thus it appears that a differ-
ence in boundary conditions alone, but staying within
the Newtonian realm, is sufficient to explain the ob-
served morphological transitions.

I. Linear instabilities of driven contact lines

An example of the linear instability of a driven con-
tact line is shown in Fig. 38 (left), where the contact line
is driven by Marangoni forces, originating from a tem-
perature gradient. A small initial perturbation of a given
wavelength is imposed, which eventually grows into fin-
gers. Similar instabilities are observed experimentally
for contact lines driven by body forces [gravitationally
(Huppert, 1982a; Silve and Dussan, 1985; de Bruyn,
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1992; Jerret and de Bruyn, 1992) or centrifugally (Melo
et al., 1989; Fraysse and Homsy, 1994)], surface forces
[Marangoni effects induced by either temperature
(Cazabat et al., 1991) or surface tension (Troian, Wu,
et al., 1989) gradients], or combinations thereof (Ber-
tozzi et al., 1998; Kataoka and Troian, 1998). The gravity
and Marangoni-driven cases have been reviewed by
Kondic (2003) and Grigoriev (2005), respectively. If the
ridge is very narrow, either a varicose or at higher incli-
nation angles a zigzag instability may be observed
(Thiele and Knobloch, 2003), effectively coupling the
motion of the front and back contact lines.

The crucial feature common to these flows is the de-
velopment of a capillary ridge near the contact line,
which occurs naturally in the presence of driving: the
driving forces supply an extra amount of fluid, which
accumulates behind the contact line. Instability occurs
if the ridge is sufficiently pronounced (Troian, Her-
bolzheimer, et al, 1989; Spaid and Homsy, 1996;
Kataoka and Troian, 1997), a peculiar exception being
the case of two competing driving mechanisms (Bertozzi
et al., 1998), for which even “fat” ridges are stable. En-
ergy is supplied to the instability by the increased gravi-
tational pull of thickened ridge regions (or increased
Marangoni forcing in the case of the surface instability).
The more massive thick regions are pulled forward, en-
hancing the effect and causing a finger to grow. If the
wavelength in the spanwise direction is too small, too
much surface is created in the spanwise direction, which
provides a lower cutoff for the disturbance wavelength.

To outline the theoretical analysis it is simplest to con-
sider flow down an incline at angle «, described by Eq.
(55) with p=—vyAh+pg(cos ah—sin ax). The direction
down the slope is measured by the coordinate x, y points
in the spanwise direction. The front of the falling film
forms a traveling wave with envelope Hy(x/€—ct)
=h(x,t)/Hy, where ¢=Hy/(3Ca)'® (Troian, Herbolz-
heimer, et al., 1989) sets the characteristic size and H is
the thickness of the film. A linear analysis around H,
(Troian, Herbolzheimer, et al., 1989) yields A =14¢ for
the most unstable wavelength of the perturbation. To
leading order in the wave number ¢, one finds for the
largest eigenvalue wp,,, of the perturbation that

Wmax = quw HO()E)[HO()Z)Z - 1](,1)2 + 0(614), (95)
0

and similar results are available for Marangoni flow
(Grigoriev, 2003). This expression clearly shows that the
growth rate of a long-wavelength perturbation becomes
positive only if there is a sufficiently pronounced ridge
with Hy>1.

Comparisons of experimental base-state profiles with
theory show good agreement (Bertozzi et al., 1998; Gar-
nier et al., 2003; Sur et al., 2003), as do experimental
measurements of the most unstable wavelength for both
gravitational (Johnson et al, 1999) and Marangoni
driven (Kataoka and Troian, 1997) flow. However, as
shown in Fig. 38 (right), there is significant disagreement
between measurements of the actual growth rates as a
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(b)

FIG. 39. (Color online) A plate being withdrawn from a bath
of viscous liquid, with the contact line pinned at the edge of
the plate. (a) Below the rivulet transition the contact line forms
a corner. (b) Above the transition a rivulet comes out of the tip
of the corner, and eventually decays into droplets. From De-
lon, 2007.

function of wave number and theory (de Bruyn, 1992;
Garnier et al., 2003). In particular, there are cases where
theory predicts the front to be stable, while experimen-
tally an instability is observed (de Bruyn, 1992).
Bertozzi and Brenner (1997) proposed that the origin
of the discrepancies in the gravity-driven case is to be
found in the non-normality of the eigenvalue problem,
which permits a large amount of transient growth to oc-
cur. Thus in principle even a linearly stable mode can
become unstable owing to transient growth, if it has
grown large enough for nonlinear effects to kick in and
to support further growth. However, there is consider-
able theoretical disagreement about the importance of
transient growth for both gravity-driven (Bertozzi and
Brenner, 1997; Davis and Troian, 2003b) and surface-
tension-driven flow (Davis and Troian, 2003a). Grigoriev
(2005) revisited the controversy and found that results
obtained with different models generally agree for per-
turbations applied behind the contact line. To realize the
strong growth found by Bertozzi and Brenner (1997),
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perturbations must be applied to the precursor film in
front of the driven contact line.

As mentioned above, a substantial capillary ridge can
be consistent with a stable contact line if two competing
forcings are of a similar magnitude (Bertozzi et al.,
1998). In this case the moving front acquires a special
“undercompressive” shock structure, associated with a
nonmonotonic flux function, which has been analyzed by
Bertozzi et al. (1999). This new type of base solution is
much more stable against transversal perturbations than
the conventional ridge, created by a single driving force.

The nonlinear growth of fingers has been investigated
computationally by Kondic and Bertozzi (1999), Eres et
al. (2000), and Thiele ef al. (2002). Using a weakly non-
linear analysis, Kalliadasis (2000) showed that the evolu-
tion of fingers is controlled by a Kuramoto-Sivashinsky-
type equation. Kondic and Bertozzi (1999) reexamined
the question of transient growth, showing that small
precursor-film perturbations can amplify. Eres et al
(2000) followed the growth of fingers far beyond the lin-
ear regime [cf. Fig. 38(c)], and good agreement with ex-
periment (Cazabat et al., 1992) is found.

Considerable effort has also been devoted to the
spreading and instability of surfactant-laden films and
droplets (Borgas and Grotberg, 1988; Troian, Her-
bolzheimer et al., 1989; Jensen and Grotberg, 1992; Ma-
tar and Troian, 1999; Cachile, Schneemilch, et al., 2002;
Warner et al., 2004), which can lead to film rupture, fin-
gering instabilities, and fractal boundaries. A detailed
analysis of the linear and nonlinear stability of a
surfactant-laden drop (Warner et al., 2004) concluded
that the modification of the base profile by the surfac-
tant has to be taken into account. However, in view of
the complexity of the problem, a quantitative compari-
son with experiment does not seem to be on the horizon.

J. Hot topics

1. Corners and air pockets

For many practical applications such as coating, it is
important to understand the maximum speed at which a
plate withdrawn or plunging into a liquid is covered ex-
clusively by one phase. In Sec III.H we calculated a criti-
cal speed (91) above which a straight receding contact
line can no longer be maintained. As shown in Fig. 39,
however, a different scenario is possible if, for example,
the contact line is pinned at the edge of the plate: in
both the receding (Blake and Ruschak, 1979; Podgorski
et al., 2001) and the advancing (Burley and Kennedy,
1978; Blake and Ruschak, 1979) case, the contact line
can incline relative to its direction of motion at a well-
defined angle; contact lines inclined in opposite direc-
tions meet at a sharp corner with an opening half angle
¢. If the system is sufficiently wide, the contact line as-
sumes an irregular sawtooth shape (Blake and Ruschak,
1979).

The inclination permits the contact line to remain
stable at higher speeds, since the speed U, normal to the
contact line is decreased according to U,=sin ¢U.
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FIG. 40. Drops of silicone oil running down planes at increas-
ing inclination. As the velocity increases, a corner first forms,
which becomes unstable to the ejection of drops at even higher
speeds. From Podgorski et al., 2001.

Above yet another critical speed Uy, the corner ejects a
rivulet [cf. Fig. 39(b)], so the plate can no longer be dry
above U,;,. An analogous sequence of transitions is ob-
served for a drop running down an inclined plane; cf.
Fig. 40. Qualitatively similar structures have been re-
ported in the simulations by Thiele et al. (2002) and
Schwartz et al. (2005). The formation of rivulets is re-
markably similar to air entrainment from free-surface
cusps (Lorenceau et al., 2003, 2004), tip streaming of air
bubbles (Taylor, 1934; de Bruijn, 1993), electric jets from
Taylor cones (de la Mora and Loscertales, 1994), and
selective withdrawal (Cohen et al, 2001; Courrech du
Pont and Eggers, 2006). However, alternative mecha-
nisms are possible, as air pockets can also nucleate at a
distance away from the tip (Burley and Kennedy, 1978).

Stone et al. (2002), Limat and Stone (2003), and Snoe-
ijer et al. (2005) found that the triangular shape of a
receding contact line is described by a similarity solu-
tion,

h(x,y) = Ca'*xH(y/x), (96)

of Egs. (55) and (57) with A=0, where x is measured in
the streamwise direction. However, Huh and Scriven’s
paradox implies that Eq. (96) breaks down at the contact
line; it has to be matched to a contact line solution which
includes the slip. Recently, such a matching was per-
formed (Snoeijer et al., 2007) making the additional sim-
plifying assumption of small ¢, which is valid close to the
transition toward a rivulet. In this limit the profile in the
transverse direction is approximately parabolic, and by
averaging over cross sections an effective one-
dimensional description is obtained, with x the indepen-
dent variable. The Cox-Voinov relationship (51) is used
in the direction normal to the contact line. This is valid
even in the receding case, since the normal speed re-
mains significantly below the critical value Ca,, (Eggers,
2005b; Snoeijer et al., 2007).

Using e=1/+vIn(L,/\) =0.3 as a small parameter, one
obtains the following relationship between the speed
and the opening angle:
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FIG. 41. (Color online) The normalized speed C of the drop as
function of the normalized opening angle ®. Symbols repre-
sent rescaled experimental data for silicone oils with viscosities
10, 104, and 1040 cP. Data were rescaled using the receding
static contact angle 6,.

Ca=26},¢/[35+18(¢/e)], (97)

shown as the solid line in Fig. 41. The most important
feature is that there exists a maximum speed Ca,;, above
which no corner solution can exist:

Cayy, = €62y/3V70. (98)

Above this speed, rivulets are formed. A simple argu-
ment showed (Snoeijer et al., 2007) that only the branch
to the right of the maximum is physical. The experimen-
tal data collapse under the rescaling suggested by theory.
The measured speeds are about 30% too high for a
given angle, which is acceptable given that the
asymptotic parameter € is not very small. Note that Eq.
(97) is different from the relationship suggested origi-
nally by Blake and Ruschak (1979) [tested experimen-
tally by Blake and Ruschak (1979) and Petrov and Sedev
(1985)], based on the assumption that the speed normal
to the contact line be constant. However, a constant nor-
mal velocity is recovered from Eq. (97) for large ¢/e.

For Ca>Ca,,, the equation describing the contact
line shape has to be solved with a boundary condition
corresponding to a rivulet of constant width (Snoeijer et
al., 2007). Curiously, it is found that the rivulet width
cannot be fixed by local parameters alone, but some ex-
ternal length scale is needed. In the case of the running
drop treated experimentally by Snoeijer et al. (2007) (cf.
Fig. 40), this length is the drop size. Good agreement
with experimental measurements of the rivulet width
was found, except very close to Ca,;,, where the width is
expected to go to zero. A possible reason is that near the
transition drops are ejected almost directly from the tip,
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FIG. 42. The splash produced by a sphere impacting on water
is caused by the contact line of the solid-air-water interface
becoming unstable, so a sheet of water detaches from the solid.
On the left, no instability occurs for a static contact angle of
0cq=15°, while for 6,4=100° (right) a splash is produced. From
Duez et al., 2007.

while theory does not consider the secondary “pearling”
instability of the rivulet.

A similar sequence of instabilities occurs if a liquid is
advancing over a solid, but at much higher speed. Thus
there is a maximum speed U for the motion of a
straight contact line, and a maximum speed U'%) at which
a corner can move without ejecting a rivulet. However,
these transitions are much less understood. Proposals to
increase critical speeds are the subject of many patents
(Jochem and van der Ligt, 1987; Deneka et al., 1988).
However, in the absence of an understanding of the
forced wetting process, efforts to increase critical speeds
at present proceed on a trial-and-error basis. Reviews of
the stability problem from an applied point of view have
been given by Blake (1993), Kistler (1993), and Blake
and Ruschak (1997).

Experimentally, U corresponds to 0,,=180° (Inver-
arity, 1969a, 1969b; Burley and Kennedy, 1976a, 1976b)
or 0,,=160° (Blake and Ruschak, 1979; Simpkins and
Kuck, 2003). The former condition was used by Duez et
al. (2007) to predict the critical impact speed at which
splashing occurs when a sphere impacts on a deep pool
of water. This criterion leads to a much smaller critical
speed if the wetting angle is already large; see Fig. 42. If
the fluid is more viscous, there exists an analogy to the
disappearance (Eggers, 2001; Lorenceau et al, 2003,
2004) of cusp solutions (Joseph et al, 1991; Jeong and
Moffatt, 1992) on free surfaces, driven by lubrication
pressure inside the cusp. Indeed, Jacqmin (2002) added
air pressure to a contact line solution appropriate for
0q=180° (Mahadevan and Pomeau, 1999; Benney and
Timson, 1980) to argue that the solvability of gas in the
fluid increases critical speeds. Experimentally, unusually
high coating speeds have been observed using highly
solvable gases (Deneka et al., 1988), or by pressurizing
the container (Simpkins and Kuck, 2003).

2. Spreading of complex fluids: Polymers and surfactants

Efficient spreading is critical to most painting, coating,
and solution delivery applications, Drop spreading can
be improved by adding a surface-active agent to the lig-
uid. However, little fundamental work has been devoted
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FIG. 43. Photograph of a spreading trisiloxane solution drop-
let at high surfactant concentration for which the radius in-
creases linearly in time; clearly the droplet is no longer a
spherical cap.

to understanding the influence of complex fluids on the
dynamics of spreading. The main conclusion of different
experiments using different types of complex fluids
(mainly surfactant and polymer solutions) is the perhaps
surprising robustness of Tanner’s law; most deviations
from it are very small, the only exception being “super-
spreading” surfactants discussed below.

For the important case of liquids on hydrophobic sur-
faces, one effect of surfactants is to lower vy sufficiently
to make the spreading coefficient positive; for this the
surfactant concentration must typically be above the
critical micellar concentration (cmc). If §;>0, the evolu-
tion of the radius can be fitted by Tanner’s law (10), but
the prefactor is typically 25% smaller than in a Newton-
ian reference system with the same viscosity and equi-
librium tension (Rafai et al., 2002); namely, when new
interface is created during the spreading, surfactant
needs to be transported to the interface in order to
lower the tension. As the creation of new area is faster
than the arrival of surfactant molecules to the interface,
this can decrease the dynamic spreading coefficient and
slow down the droplet spreading dynamics.

For one specific class of (trisiloxane) surfactants
around the cmc concentration, however, the spreading is
enhanced strongly in that the exponent n of the spread-
ing law Rocf" is increased [see Hill (1998) for a recent
review]. For the highest bulk concentrations, a linear
relation n=1 is obtained, a power one order of magni-
tude larger than that of Tanner’s law (Rafai et al., 2002).
This so-called superspreading suggests that the motor
driving the spreading is different; Fig. 43 shows a super-
spreading droplet that illustrates this point. Explanation
of this effect poses a challenge as both dynamic surface
tension effects and inertial forces can only slow down
the dynamics. Although Marangoni effects are generally
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believed to be the cause for superspreading, the mecha-
nism remains elusive, and merits further theoretical and
experimental attention.

A less obvious way to intervene in the spreading dy-
namics is to change the bulk rheology of the fluid; this is
mostly done using polymeric additives. The dynamics of
such non-Newtonian liquids is far less understood than
their Newtonian counterpart; the main challenge is that
the constitutive equation is in general nonlinear (Rosen-
blat and Davis, 1985). For a non-Newtonian bulk rheol-
ogy, most theoretical studies used simple constitutive
equations, focusing on shear-thinning behavior (Gor-
odtsov, 1990; King, 2001a, 2001b; Neogi and Ybarra,
2001; Betelu and Fonteols, 2003, 2004; Starov et al.,
2003; Rafai, Bonn, and Boudaoud, 2004): the viscosity
decreases with increasing velocity gradient in the fluid.
Since the velocity gradient becomes large near the cor-
ner of the droplet, the viscosity becomes small there:
shear thinning was proposed to suppress the singularity
at the contact line (Weidner and Schwartz, 1993, Carré
and Eustache, 1997, 2000; Ansini and Giacomelli, 2002;
Carré and Woehl, 2002; Rafai, Bonn, and Boudaoud,
2004).

Experimentally, the spreading of a shear-thinning fluid
is found to be slightly slower than that of a Newtonian
fluid: the power in the spreading law is found to be
slightly smaller than 0.1, and decreases with increasing
shear thinning (Rafai, Bonn, and Boudaoud, 2004). This
agrees with detailed calculations of the spreading of
power-law fluids, for which »=ay ¢, where 7 is the shear

rate. Estimating the latter as <R/ 0,pR, one finds
(Betelu and Fontelos, 2004; Rafai, Bonn and Boudaoud,
2004)

R = C(yt'=%1a)V/1073%), (99)

The first attempts to account for other non-Newtonian
properties concluded that normal stress effects were
unimportant (Rosenblat and Davis, 1985; Neogi and
Ybarra, 2001). However, more recently is was shown
that they do in fact matter, but that once more devia-
tions from Tanner’s law are small. The normal stress N;
is related to the shear rate via the first normal stress
coefficient W;: N;=W,3 (Larson, 1999). The normal
stresses act in a similar way as the capillary pressure in
driving the flow. Their contribution to the total pressure

gradient can be estimated as N;~ ¢;(R/h)?, with R the
contact line velocity and /4 the typical drop height. This
leads to a logarithmic correction to Tanner’s law (Rafai,
Bonn, and Boudaoud, 2004; Boudaoud, 2007):

R = Vyt/ ) M In(e/104) 11, (100)

For polymer solutions that exhibit normal stress ef-
fects but no shear thinning, fits to R(¢) indeed give
spreading exponents slightly smaller than 1/10, consis-
tent with a logarithmic correction (Rafai, Bonn, and
Boudaoud, 2004). Thus, in contrast to naive expectation,
both shear thinning and normal stress effects tend to
slow down the spreading of a drop. This can be under-
stood qualitatively as follows. Both effects accelerate the
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flow near the contact line, and both effects do so more
strongly as the shear rate is higher. Because the shear
rate increases upon approaching the contact line, the
parts closest to the corner will move faster, and the ap-
parent contact angle decreases. Since the spreading ve-
locity varies with the contact angle, the lowering of the
contact angle decreases the driving force for spreading,
and the contact line is slowed down, in agreement with
the experimental observations.

3. Evaporating drops

The seemingly simple problem of an evaporating
droplet has attracted a great deal of attention over the
past few years. The two situations that have been stud-
ied most are the “coffee drop” problem (Deegan et al.,
1997), in which a droplet is deposited on a rough sub-
strate to which its contact line remains fully anchored
during the evaporation, and droplets of completely wet-
ting liquids deposited on a perfectly smooth surface
(Cachile, Benichou, and Cazabat, 2002; Cachile, Beni-
chou, Poulard, and Cazabat, 2002; Poulard et al., 2003;
Shahidzadeh-Bonn et al., 2006). For the coffee stain
problem, the reason that a dried-out drop of coffee
leaves a circular mark on the table is that the evapora-
tion drives a capillary flow which transports material
from the center towards the edge, where it accumulates
(Deegan et al., 1997). This requires that the contact line
remains pinned during the whole drying process. Subse-
quent research revealed that this is only one of the many
patterns that may form during droplet drying. For very
volatile liquids, for instance, a deposit may even form at
the center of the drying drop (Hu and Larson, 2006) due
to convection effects within the drop (Ristenpart et al.,
2007). Depending on the solute, a wide variety of differ-
ent patterns may be obtained also (Deegan, 2000; Dee-
gan et al., 2000). Figure 44 shows an example of drying
water droplets with different salts that crystallize during
the drying; the crystals may choose to form either at the
contact line (NaCl) or within the precursor film
(Na,S0,), leading to very different deposits. Even peri-
odic patterns can be obtained, and much research has
been devoted recently to using drying droplets to obtain
periodic nanopatterning using molecules (van Hameren
et al., 2006; Maheshwari et al., 2008), carbon nanotubes
(Li et al., 2006), or colloids (Lin et al., 1999). It is not
always clear what the mechanisms of formation for the
different deposits are; for the periodic or quasiperiodic
deposits a stick-slip motion of the contact line was pro-
posed (Abkarian et al., 2004; Rio et al., 2006; Mahesh-
wari et al., 2008), but other mechanisms have also been
invoked. This therefore remains an area for future re-
search.

A theoretical understanding of evaporating drops is
complicated by the fact that the form of the droplet dur-
ing the evaporation is a priori unknown, and by the large
number of physical effects to be taken into account. For
instance, evaporation results in a decrease of the tem-
perature within the droplet, which leads both to a heat
flux from the substrate into the droplet and to Ma-
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FIG. 44. (Color online) Deposit from an evaporating droplet
of two different salt solutions, top, Na,SO,, bottom, NaCl.
This shows that the wetting properties of the salt crystals are
important for determining where crystals form. From Sha-
hidzadeh et al., 2008.

rangoni effects (flows driven by surface tension gradi-
ents) if the temperature within the droplet is not uni-
form (Davis, 1987; Sultan et al., 2004). More generally,
hydrodynamic flows within the droplet have to be taken
into account. The latter are responsible for the circular
deposit formation when the contact line remains an-
chored. The surface to volume ratio being larger near
the edge of the droplet, the evaporation leads to a flux
of liquid from the center towards the edge. This flux
brings along material that is deposited at the circular
edge (Deegan et al., 1997).

For the evaporation of a perfectly wetting liquid on a
perfectly flat surface (e.g., droplets of water or hexane
on mica), the effects of the anchoring of the contact line
are small. Interestingly, the nonequilibrium contact
angle 6,. of a completely wetting but evaporating drop-
let can be nonzero. The evaporation can even lead to the
dewetting of a liquid that completely wets the substrate
in equilibrium (Elbaum and Lipson, 1994). It is not clear
how to treat such a nonequilibrium situation, and the
calculation of the contact angle of evaporating drops is a
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subject of debate (Bourges-Monnier and Shanahan,
1995; Bonn and Meunier, 1997). When depositing a drop
which is perfectly wetting it first spreads on the surface.
However, since the droplet evaporates at the same time,
its radius starts to decrease shortly afterwards, to vanish
at a time ¢, (Deegan et al., 2000). Neglecting thermal and
Marangoni effects, it is known that the evaporation rate
is proportional to the perimeter of the droplet dV/dt
«-27R (Deegan et al., 1997). Assuming that 6, is con-
stant and using VoxR?hxR30,. it follows that R (¢
—19)'”? (Deegan et al., 2000).

The experimental values for different simple liquids
are indeed all close to an exponent of 1/2, in agreement
with this simple argument. The experimental values do,
however, deviate in a nontrivial way: the exponents
found are slightly smaller than 1/2, the reason for which
is still unclear (Cachile, Benichou, and Cazabat, 2002;
Cachile, Benichou, Poulard, and Cazabat, 2002; Poulard
et al., 2003). Even more intriguingly, the value reported
for water is 0.6 (Deegan, 2000; Shahidzadeh-Bonn et al.,
2006). Recent experiments (Shahidzadeh-Bonn et al.,
2006) suggest that the difference might be due to the fact
that the water vapor above the droplet is convected
away, because water vapor is lighter than air, contrary to
the vapor of all other liquids used in the experiments.
Because of the importance of the evaporation of water
droplets, for instance, for industrial cooling applications
and for the climate, this merits further investigation. Re-
cent theory suggests that no simple similarity solution
exist for the evaporating droplet problem, and so the
experiments probe effective exponents (Poulard et al.,
2005).

IV. DISORDERED SOLID SURFACES
A. How to model a real solid surface?

The two most common heterogeneities that cause the
contact angle hysteresis are chemical heterogeneities
and roughness. In the first case, the surface is entirely
characterized by the spreading coefficient S(x,y) which
now depends on the position (x,y) on the substrate, al-
lowing one to define a local value of the contact angle.
In the laboratory, systems with chemical disorder are of-
ten obtained by partially coating the surface of a highly
wettable substrate such as glass by a low surface energy
film, for instance a perfluorinated surfactant (Decker
and Garoff, 1997); see Johnson and Dettre (1993) for
further references.

In such experiments, the treatment changes both the
mean value of the wettability and the hysteresis of the
substrate. In most cases, the disorder is poorly charac-
terized since only the mean coverage of the substrate is
known. In particular, the typical length scale of the dis-
order (if any such length scale exists) is unknown. Pre-
sumably, a better characterization will be available in the
near future owing to the use of local microscopy tech-
niques. For instance, AFM imaging of the very weak
heterogeneities of silanized substrates has been used to
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successfully explain the shape of nanodroplets (Checco
et al., 2003).

To manufacture surfaces that are better characterized,
model surfaces can be produced using photolithographic
techniques. For example, the substrates used by Mouli-
net, Guthmann, and Rolley (2002, 2004), are made of
random patches of chromium on glass; cf. Fig 9. These
surfaces are, however, not perfectly flat since the chro-
mium defects deposited on the glass have a thickness of
the order of a few hundred angstroms. However, their
thickness is much smaller than their lateral size (a few
micrometers), so that the effects of the chemical hetero-
geneity should largely dominate those due to the rough-
ness. The use of such model substrates have permitted a
precise characterization of the contact line roughness, as
discussed below.

Independent of the origin and the length scale of the
chemical heterogeneities, one anticipates that in simple
cases the properties of the substrate can be described by
a few parameters, namely, the mean value of the spread-

ing coefficient S, the amplitude of the disorder AS

=\(S-S5)?, and a correlation length ¢ giving the charac-
teristic length scale of the disorder. If the substrate is
made of a surface with spreading coefficient S, which is
covered by well-defined defects with spreading coeffi-
cient S, the natural parameters are the defect size d and
the defect force (S;—Sy)d, as discussed in the next sec-
tion. The important point here is that, once the local
spreading coefficient S(x,y) is known for all positions on
the surface, the local force balance on the contact line
can easily be written down as a local version of Young’s
law, provided of course the surface is flat. From this
point of view, the second case of rough substrates is
much more difficult to handle. A phenomenological at-
tempt to understand how roughness affects wetting is
contained in Wenzel’s equation (44), discussed in Sec.
I1.D.2. This relation for rough surfaces is similar to the
Cassie-Baxter relation (13) for chemically heteroge-
neous substrates: it provides a prediction for the equilib-
rium state, which is usually out of reach, but does not
tell us anything about the hysteresis.

In order to understand how the roughness can lead to
hysteresis, we consider the simplest geometry: a surface
z(y) with grooves parallel to the contact line (assumed
along Oy). Application of Young’s law leads to a local
contact angle 6, between the liquid-vapor interface and
the substrate. However, on average, the contact angle 6
between the liquid-vapor interface and the average sur-
face is 6=6.q—dz/dx, where dz/dx is the local slope of
the interface. This equation shows that the substrate is
more or less wettable depending on the sign of dz/dx.

It was shown by Cox (1983) that, to first order in the
local slope, the roughness can be described in terms of a
local spreading coefficient. However, for a large ampli-
tude of the roughness, the situation is more complicated
and can lead to nonintuitive behavior of the contact
angle. For instance, it has been observed that the contact
angle hysteresis 6,— 6, can be a nonmonotonic function
of the roughness (Ramos et al., 2003); this was explained
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FIG. 45. A contact line pinned on a single defect.

by the existence of air bubbles trapped between the lig-
uid and the substrate. The encapsulation of air therefore
provides us with a completely different way of manipu-
lating the contact angle. It was shown that, by a clever
tuning of the surfaces, superhydrophobic surfaces with
contact angles close to 180° for water can be created by
trapping a significant amount of air between the liquid
and the substrate Bico er al. (2001).

In what follows, we discuss chemical and physical het-
erogeneities in the same manner. Since it is the simplest
case to understand theoretically, we restrict the discus-
sion to the situation in which the inhomogeneous wet-
ting properties of the substrate can be described by
S(x,y) or equivalently by a local equilibrium contact
angle 6, defined by S(x,y)=y(cos f.—1).

We focus on macroscopic or mesoscopic defects (d
>10 nm). This is necessary if we want to describe the
disorder of the substrate in terms of a local spreading
coefficient. This restriction also enables us to neglect the
thermal noise which is much smaller than the
“quenched” noise due to the disorder. This is easily
checked in experiments on patterned substrates, where
the motion of the contact line is deterministic: when re-
peating experiments on the same substrate, the line al-
ways remains pinned on the same defects and therefore
in the same configuration Prevost et al. (2002).

B. The single defect case

We first discuss the simplest situation of a single de-
fect which permits to understand how hysteresis arises
from the interplay of the defect pinning force and the
contact line elasticity. A natural extension is the case of
sufficiently dilute defects.

1. Pinning on a single defect

The pinning on a single defect has been discussed by
Joanny and de Gennes (1984a, 1984b). Consider a con-
tact line whose average direction is along the x axis; cf.
Fig. 45. Its distortion 7(x) with respect to its asymptotic
position y,, is due to a defect of characteristic size d
located at x=0, y=0. Because of the defect, the contact
line is submitted to a total extra capillary force:

Fﬁf[s(x, 7(x) + y) = Soldx, (101)

where § is the spreading coefficient of the bare sub-
strate, and 6,4 denotes the corresponding contact angle.
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FIG. 46. Receding meniscus pinned on a defect. The experi-
mental shape of the contact line (dots) is well fitted by Eq.
(103) with L=2.4 mm. From Nadkarni and Garoff, 1992.

The integral is dominated by the central region x~d: F,
depends mainly on the position y,, of the line in this
region, hence y,, has to be determined as a function of
Y. Note that the maximum value of F, is on the order of
Frax=d(S,;—S;), where S, is the spreading coefficient on
the defect.

The deformation of the meniscus induces an elastic
restoring force fj(x) per unit length, where to first order
in deformation,

v sin® Ocq 7(x")
(x—x')?

(we use a lower case f for a force per unit length and F
for an actual force). This expression underlines the non-
local character of the contact line elasticity, which results
in the distortion of the whole meniscus. Of course, a
small cutoff length scale (~d) is necessary to prevent the
singularity that occurs for x’ — x. The deformation of the
contact line extends up to a macroscopic cutoff length L,
which is usually taken to be the capillary length €, for
large enough drops.

It then follows that at equilibrium the response 7(x)
to the localized force F, is

Jalx) = dx’ (102)

77(x)=L

In(L/|x]).
ary sin’ Ocq n(L/))

(103)
The logarithmic shape of the meniscus was confirmed
experimentally; see Fig. 46 (Nadkarni and Garoff, 1992).
The maximum deformation #y,=y,;—. is reached for
x~d so that n,=7(d). Consequently, the contact line
behaves as a spring: F;=Kmn,,, with a spring constant
(the stiffness of the contact line) K= wysinzeeq/ In(L/d).

We are now in a position to determine y,; as a func-
tion of the position y, far from the defect, given the
pinning force F4(y,,) of the defect, which is determined
by its shape. The force balance

K(yp =) =Falym) (104)

is best understood by considering the graph shown in
Fig. 47. When the defect is very smooth, the equation
has only a single root and the shape of the contact line is
the same, not depending on whether the contact line is
advancing or receding. Such defects are called “weak” in
the language of random fields. For patterned substrates,
S(x,y) is discontinuous and the defects are strong
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FIG. 47. Distortion of the contact line at equilibrium for a
strong defect. Top: For a given y., there may be three equilib-
rium positions of the contact line, among which one (y,) is
unstable. Middle: For an advancing line far enough from the
defect, y);=y.. Bottom: When y.=y,, y) jumps forward; the
energy dissipated in the jump is the hatched area.

(“mesa” defects according to de Gennes). In this case,
Eq. (104) has three roots, and the system displays con-
tact angle hysteresis. In an advancing experiment, the
line is initially at y,,<0 and y., increases. The position
v of the center of the line is close to y., until y., reaches
a position y, where the center of the line jumps forward
over the defect. In a receding experiment, a backwards
jump occurs for a position y,<y,. Note that the maxi-
mum distortion y, measured in a receding experiment on
a wettable defect (S;=0) is

yyid = =5 Yoy 1 1q).
7 SIN° G
It follows that the maximum distortion is always at most
of the order of the defect size.
The energy W, dissipated in an advancing jump of the
contact line is shown as the hatched area in Fig. 47; a
similar construction can be made for the receding jump

which dissipates W,. For a strong defect, one finds

W, ~ W, ~[(S;— So)d*/y sin® f.

(105)

(106)

2. Dilute defects

Consider now a surface with a small but finite density
n of defects. Strictly speaking, defects can only be con-
sidered as independent if the distance 1/nd between two
defects along the line is larger than the capillary length
{. over which the contact line is distorted by an isolated
defect. This is not a stringent condition, however, the
result that we derive below for the amplitude of the hys-
teresis agrees empirically with experiment up to cover-
age X of the order of 0.03 (Ramos et al., 2003).

Far from the contact line, the liquid-vapor interface is
flat and shows an apparent contact angle, which is 6, for
a line advancing at a vanishingly small velocity U, so the
dissipated power per unit length is given by Eq. (15). For
U=0, this energy is dissipated in the pinning and depin-
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FIG. 48. Hysteresis as a function of the fraction X of the sur-
face covered by defects. From Ramos et al., 2003.

ning events: W=UnW,. The same reasoning for a reced-
ing meniscus leads to H=n(W,_,+ W,). Note that the total
energy dissipated in a forward-backward displacement
Ay.. of the contact line is HAy., which can be inter-
preted as the area of the force hysteresis cycle; see Fig.
10.

Using Eq. (106) leads to

[(Sq— ST’
n .

H~ )
ySin® Bq

(107)

This model was tested by Ramos et al. (2003), using well
controlled substrates with randomly positioned defects
of a size on the order of 20 nm. For low concentrations
of defects (n<10'"cm™2, i.e., a coverage smaller than
0.03), Ramos et al. (2003) found that H increases linearly
with n. Moreover, the slope of H vs n is consistent with
the estimated pinning force on one defect. It is obvious
in Fig. 48 that H does not vanish for n=0; the same is
true for the experimental data shown in Fig. 11. This
shows how difficult it is to manufacture a true reference
substrate with no hysteresis.

In addition, such pinning and depinning events gener-
ate a noise Af in the force necessary to move the contact
line at a given constant speed. For independent (nonin-
teracting) defects, Af is expected to scale as n'?F,,,.
Even if the size and strength of the defects are not
known, the measurement of Af thus allows one to test
the above expression for H: inserting the expression for
Afinto Eq. (107) leads to H~ (Af)?/ y sin® 6. Of course,
Af can be measured only if the line does not probe too
many defects at the same time so that the force is not
averaged. A way to circumvent this difficulty is to use
thin fibers (Di Meglio and Quéré, 1990), which permits
one to check the dependence of H both on Af and on
0eq- The results of Di Meglio and Quéré (1990) agree
with the theoretical estimates given above.
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3. Dynamics

So far we have mainly discussed the hysteresis, or the
value of the critical force f; necessary to unpin the line
(for simplicity, we consider only an advancing contact
line here). However, this does not answer the important
question of what the mean velocity U of the contact line
will be for a given applied force that is larger than f;.

This problem was addressed by Raphaél and de
Gennes (1989), who considered a line of length L ad-
vancing over a substrate with dilute defects so that the
line intersects only a single defect at a time. Assuming
that the velocity is fixed, the variable that characterizes
the dynamics is 7y,(f). The whole dynamics can conse-
quently be expressed as an ordinary differential equa-
tion for #,,, which is the dynamical analog of Eq. (104).
Neglecting inertia, this reads

Fais(mppt) = = Kogpg + Fy(ppy = Ut). (108)

Raphaél and de Gennes (1989) argued that the dissi-
pative force Fg; is due to viscous dissipation in the vi-
cinity of the contact line, at a scale smaller than the size
of the defects. This is reasonable when dealing with
macroscopic defects. For example, using Eq. (74) with
W,,=0, one obtains Fy,=uqdnmy,/dt in a linear approxi-
mation. Moreover, a static expression for K is used in
Eq. (108): it is assumed that the liquid-vapor interface
responds instantaneously to changes in the shape of the
contact line, consistent with dissipation concentrated
near it. Experimental time-resolved studies have shown
that this assumption is valid for a water meniscus pinned
by macroscopic defects (£=10 um) (Moulinet, Guth-
mann, and Rolley, 2004). However, other studies have
shown that this is no longer true for the special case of
superfluid helium. The depinning velocity of the contact
line is then of the same order of magnitude as capillary
waves (Poujade et al., 2002; Prevost et al., 2002), a situa-
tion presumably similar to that of crack propagation in
brittle solids (Schwarz and Fisher, 2001).

Even with these simplifications, Eq. (108) is difficult to
solve because of the nonlinear term F,(7,,— Ut). Once
the solution 7,,(f) is known, the average force F applied
to the contact line can be computed as the time average
of Kny. This gives U~ (F-F,)? with $=3/2 and, sur-
prisingly, 8=1/2 if the force is imposed instead of the
velocity. Raphaél and de Gennes (1989) argued that B
depends on the nature of the imposed parameter be-
cause the pinning occurs on a single defect so that the
disorder is not averaged. Note that the same results for
B were obtained by Joanny and Robbins (1990) in a dif-
ferent geometry, the dynamics of the contact line being
also described by a single degree of freedom.

For the more frequently encountered case of interact-
ing defects, the dynamics of the contact line cannot be
reduced to the dynamics of a single point. So far, the
predictions for the single defect problem have not been
tested in experiments.



788 Bonn et al.: Wetting and spreading

t = -5000 ms

t=0ms

FIG. 49. Successive positions of the contact line. Almost noth-
ing happens for <0 ms; then an avalanche occurs which is
nearly finished at t=500 ms.

C. Substrates with interacting defects

We now consider substrates with a large number of
defects which can act cooperatively to pin the contact
line. We first describe the qualitative behavior of the
contact line which has been studied in many experi-
ments (Decker and Garoff, 1997; Rolley, Guthmann, et
al., 1998; Schiffer and Wong, 2000; Moulinet, Guth-
mann, and Rolley, 2002, 2004; Prevost et al., 2002).

When many defects are acting together, the contact
line can be strongly distorted. Its distortion is governed
by a balance between the contact line stiffness and pin-
ning forces. The distortion of the contact line can be
characterized by the mean roughness W, which is de-
fined as

WA(L) = (w?) = [nlx + L) = n(x)]) < L, (109)

where the average is performed along the line. It is the
scaling of W with the line length L that has been the
focus of much theoretical and experimental efforts. As
usual for elastic interfaces (lines) in random media, one
expects that W scales as L%, where { is a universal rough-
ness exponent (Barabasi and Stanley, 1995).

When the defects are macroscopic, the thermal noise
is irrelevant: the line is trapped in a long-lived meta-
stable state and does not move. When submitted to an
increasing external force f, locally some parts of the con-
tact line jump, but in general the contact line as a whole
remains pinned until f exceeds the critical threshold f;
above which the mean velocity U of the line is nonzero.
Then, above the depinning threshold f;, the motion of
the contact line consists of a succession of slow drifts
and fast avalanches; see Fig. 49. The measurement of the
size distribution of avalanches is a way to characterize
the dynamics of the system.

One can measure the mean velocity U as a function of
the applied force f. Above the threshold fI, U is ex-
pected to scale like (f—f7)?; B is often called the velocity
exponent. Using the vocabulary of phase transitions, the
contact line undergoes a depinning transition at f=f;
which is characterized by the critical exponents ¢ and 8.
The U vs f characteristic resulting from an analogy with
systems such as domain walls in ferromagnets is shown
in Fig. 50.

Continuing the analogy with phase transitions, the
roughness and velocity exponents are expected to de-
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FIG. 50. Schematic of the velocity U as a function of f. The
dashed curve corresponds to zero disorder.

pend only on the dimensionality of the system and on
the range of the elastic interactions. For the contact line,
we have seen that the elastic restoring force is nonlocal,
and consequently the elastic interactions are of long
range. This is in contrast to domain walls in thin mag-
netic films, for which the interactions are of short range.
As a consequence, the domain walls behave as ordinary
strings; in this case, the predictions for critical exponents
seem to agree with experiments (Lemerle et al., 1998).
Due to the long range of the interactions, measuring or
computing ¢ and B for the contact line problem turns out
to be a difficult task and no general consensus has
emerged yet as we show.

1. The shape of the contact line at equilibrium

Before addressing the full problem of the dynamics of
the contact line, we discuss the roughness of the contact
line when the defects are weak. Early attempts to calcu-
late ¢ are due to Joanny and de Gennes (1984b), Pomeau
and Vannimenus (1984), and later Robbins and Joanny
(1987). The latter use simple scaling arguments to mini-
mize the total energy of the distorted line which is taken
to be the sum of an elastic and a pinning contribution.
For weak defects, metastability does arise from the col-
lective behavior of the defects. Thus a new length scale
Lp emerges, which is much larger than the correlation
length ¢ of the disorder. If the length L of the line is
smaller than L p, the disorder is too weak to pin the line,
whose roughness remains smaller than & However, if
L>Lp, the disorder wins, the line is pinned and may

become rough. The crossover length Lp=§&AS/ S)?
(Robbins and Joanny, 1987) is called the Larkin length in
the context of type-II superconductors.

For L>Lp, Robbins and Joanny (1987) found the
roughness exponent {=1/3. This value has been con-
firmed by a replica variational approach by Hazareezing
and Mézard (1999), who computed the entire scaling
function W(L), also taking gravity into account. The
scaling function W(L) has been measured with super-
fluid helium on a weakly disordered cesium surface
(Rolley, Guthmann, et al., 1998), finding good agreement
with the theoretical predictions as shown in Fig. 51.
However, it is not clear whether this solves the problem
completely. Indeed the model predicts the scaling behav-
ior at equilibrium, i.e., the scaling behavior of the mini-
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FIG. 51. (Color online) Roughness W(L) of the contact line as
a function of the scale L. Dots: Measurements for a weakly
disordered substrate for several values of Lp (Rolley, Guth-
mann, et al., 1998). Lines: Calculated scaling function (Haza-
reezing and Mézard, 1999).

mum energy state of the line. On the other hand, the
measured configurations of the line correspond to meta-
stable configurations in which the line is trapped as long
as the applied force is smaller than the depinning thresh-
old. According to Hazareezing and Mézard (1999), the
good agreement obtained by Rolley, Guthmann, et al.
(1998) is presumably due to the fact that the large cutoff
length €. is not much larger than L, so that there are
only a few metastable states available for the contact
line.

2. Hysteresis

Disorder leads to contact line pinning, which in turn
provokes the hysteresis of the contact line. The precise
value of the threshold is not universal: it depends on the
shape and density of the defects, their chemical nature,
etc. Predicting the critical depinning force F,, i.e., the
hysteresis, has attracted less attention from theoreticians
than the quest for universal exponents, although from a
practical point of view it is certainly an important pa-
rameter.

For weak collective pinning Robbins and Joanny
(1987) obtained

H ~ AS*/ysin® 6. (110)

This expression for H is identical to the one derived in
the case of independent strong defects, Eq. (107). For a
substrate covered by a density n of defects, this leads to
Hxn.

This result is not relevant for substrates with strong
interacting defects, which is the case in well controlled
experiments where patterned substrates are used. A nu-
merical study of the hysteresis on a heterogenous sub-
strate was performed by Crassous and Charlaix (1994).
They recovered the regime Hxn in the diluted limit of
noninteracting defects n<1/d€.. In the regime of collec-
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tive pinning, H is found to scale as n*’. This value is
consistent with the experimental data (Di Meglio, 1992),
although both experimental and numerical data were re-
stricted to a small range in n. Subsequent experiments
with well-characterized substrates by Ramos et al. (2003)
found H to decrease at large n. This was interpreted as a
consequence of an air bubble that remained trapped in
the experiment when the surface becomes too hydro-
phobic. Therefore there is clearly a need for further in-
vestigation of the hysteresis.

3. Predictions and measurement of the critical behavior
a. Equation of motion

The starting point for most theoretical and numerical
work on interacting defects has been a localized version
of Eq. (108), using Eq. (102), first proposed by Joanny
and Robbins (1990). Neglecting inertia and thermal
noise as before, a local force balance results in an equa-
tion for the position 7(x,f) of the contact line:

y sin® Ocq n(x")
(x—x")?

(111)

faiss =+ [SCx, m(x)) = ST+ dx'.

The force fj; is usually evaluated from viscous dissipa-
tion localized in the vicinity of the contact line, on a
length scale smaller than the one of the contact line dis-
tortions. Supposing that the fluctuations in S are not too
large, the contact line is only weakly distorted and the
local value of the contact angle is close to 6., Then
estimating the integral Eq. (74) as in Eq. (12) yields
faiss=—a~'dmldt, where dn/dt is the local velocity. The
effective mobility a is found to be a=6.4/37In({./\).
On the right hand side of Eq. (111), f is the external

force, and S(x,7(x))-S is a random noise due to the
substrate disorder. It is usually assumed that the noise
has short-range correlations, so that it can be described
by its amplitude AS and its correlation length £ The last
term on the right-hand side is the elastic restoring force
fo1 given by Eq. (102). We stress that f;; has been derived
using an expansion to first order in the deformation: it is
thus a harmonic approximation to the restoring force on
the contact line. The next nonzero term in the expansion
(which turns out to be a third-order term) was calculated
by Golestanian and Raphaél (2001a).

This model is appealing since it provides us with a
simple framework to understand the dynamics of the
contact line. Only a few parameters are needed: (i) an
effective mobility e, (ii) the disorder strength AS and the
correlation length & and (iii) the parameter ysin® 6,
which controls the stiffness of the contact line. Except
for the nonlocal form of the elastic restoring force, this
model is similar to the phenomenological models used
to describe the motion of elastic interfaces or lines mov-
ing through random media.
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b. Critical behavior

The problem of the computation of the roughness and
velocity exponents for the contact line triggered much
theoretical and numerical work. Ertas and Kardar (1994)
studied the contact line dynamics by a functional renor-
malization group (FRG) technique. To one-loop order,
they found B=7/9 and {=1/3, i.e., { has the same value
at threshold as at equilibrium. Following ideas put for-
ward by Narayan and Fisher (1992), Ertas and Kardar
(1994) subsequently argued that the roughness exponent
equals 1/3 to all orders. However, it was shown later
that extending Ertas and Kardar’s RG calculation up to
two-loop order leads to a different value of ¢ than the
equilibrium value. Notably, at the depinning threshold
{=0.5+0.1 and B=0.4+0.2 (Chauve et al., 2001). This
result is consistent with a numerical calculation by
Rosso and Krauth (2002), based on an exact enumera-
tion technique, which yields ¢=0.39.

A meaningful comparison between theory and experi-
mental results for W(L) is very challenging. Namely, the
scaling W= L¢ only holds for L larger than the typical
length scale of the disorder & and L smaller than the
large-scale cutoff length €,~1 mm. In addition, an opti-
cal measurement of W(L) (which is the easiest to realize
experimentally) requires & to be macroscopic. Using
W/é~(L/€)°¢ one finds for é=1 um, /=039, and L
=1 mm that W=15 um. This is a small value, and one
should consequently avoid the presence of large defects
or large-scale heterogeneities which may have a domi-
nant contribution to W when measuring the contact line
roughness. The presence of such defects could explain
the surprisingly high value for { obtained in some ex-
periments (Decker and Garoff, 1997).

Experiments by Moulinet ef al. (2002) on a glass sub-
strate covered by micrometric size chromium defects
yielded {=0.51+0.03. This value was obtained initially
from a simple analysis of the scaling of the mean width
W(L) of the contact line. The limitation of that method
is that the scaling only holds for §< L <{_, which is less
than three decades in the experiments. A more precise
characterization of the geometrical properties of the line
can be achieved by measuring the full width distribution
d(w?/W?) of the contact line for a given value of L. The
probability density ¢ is expected to be a universal func-
tion depending only on ¢ (Rosso ef al., 2003). Moulinet,
Rosso, et al. (2004) showed that the experimental distri-
bution is in excellent agreement with the predicted
shape, provided that {=0.50 (see Fig. 52), which agrees
with the value determined earlier. Thus careful measure-
ments are not consistent with the theoretical prediction
£=0.39.

The velocity vs force characteristic U(f), on the other
hand, can be measured even if ¢ is small. Thus, in prin-
ciple, any measurement of U(f) close to the depinning
threshold f, can yield the value of the critical velocity
exponent 8. Many experiments have measured U(f) in a
partial wetting situation, using various techniques [see
Schiffer and Wong (2000)]. Surprisingly, the exponent 8
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FIG. 52. Width distribution of a contact line ¢(z), where z
=w?/W?2. Symbols: Measured distribution for L =500 um. Full
(dashed) line: Scaling function for ¢=0.50 (0.39).

varies between 1 and 5 for the different experiments. In
addition, the value of B appears to be system dependent
and is in any case inconsistent with the prediction of the
FRG calculations.

However, for many of these experiments one may
worry whether the assumptions underlying Eq. (111) are
justified, since the substrate is not well characterized. In
most cases, the authors argued that the disorder is due
to the roughness of the substrate. First, it is not obvious
that the roughness has a short-range correlation charac-
terized by a single scale &, which is a necessary condition
for the model to apply. Second, even if the disorder is
short range, it is not obvious that the correlation length
& is large enough to neglect thermal fluctuations. Thus it
seems that using patterned substrates is the best way to
determine B. However, experiments on such substrates
have not been conclusive either, as pointed out by
Moulinet, Guthmann, and Rolley (2004). The main rea-
son is that the “bare” substrate without patterns already
displays some intrinsic hysteresis and is presumably dis-
ordered at a microscopic scale. The dissipation of the
contact line on the bare substrate can therefore not be
described by a simple viscous term as assumed in Eq.
(111). When adding macroscopic defects on the bare
substrate, one observes an increase of the hysteresis (or
a shift of the critical force), but the shape of U(f) above
the threshold is not changed much.

Hence one should be careful when analyzing this char-
acteristic, which depends in a complex way both on the
pinning on macroscopic defects and on the dissipation at
the microscopic scale. Using various disordered sub-
strates, which can be prepared by changing the sample
(Schiffer and Wong, 2000) or etching the surface (Ku-
mar et al., 1995), is not sufficient because the shape of
U(f) can be dominated by the dissipation at the micro-
scopic scale. Measuring true critical behavior requires
first to elaborate a nearly ideal substrate without hyster-
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esis, and then to add some controlled disorder with a
macroscopic correlation length £ In this respect, systems
such as the one developed by Ramos et al. (2003) look
promising.

¢. Beyond the harmonic approximation

Up to now, the only reliable measurement of a critical
exponent is the one for the roughness exponent {=0.50
(Moulinet et al., 2002), while the theoretical prediction is
£=0.39 (Rosso and Krauth, 2002). The reason for this
disagreement could be the following. In the context of
lines with standard short-range elasticity, it has been
shown by Rosso and Krauth (2001) that a small nonhar-
monic correction to the elastic energy can lead to a
strong change in the roughness exponent . Recent work
by Le Doussal et al. (2006) showed that adding the first
nonharmonic term to the contact line elastic restoring
force leads to a value of { in better agreement with ex-
periments (Le Doussal et al., 2006).

D. Thermal noise

Up to now, thermal fluctuations have been neglected,
which is reasonable for macroscopic defects. More gen-
erally, thermal noise is negligible if kzT is much smaller
than the pinning energy E*. The latter is related to the
mean size of the activated jumps, which depends on the
type of disorder.

For weak defects, i.e., collective pinning, the typical
length L* which is involved in a depinning event is of the
order L at the threshold (Robbins and Joanny, 1987).
As the applied force f decreases, L* and E* increase, in
strong analogy with the size of the critical nucleus in
homogeneous nucleation for first-order phase transi-
tions. This leads to the “creep” regime (Feigel’'man ef al.,
1989), which gives for f<f.

U(f.T) = exp[— (f /N TITo).

Such a dependence has been measured for magnetic do-
main walls, where m is found to be 1/4 in agreement
with the prediction (Lemerle ef al., 1998). Note that m
=1 for a contact line with long-range elastic interactions
(Rolley, Prevost, et al., 1998).

We are mostly interested in the case of strong pinning,
which occurs in most controlled experiments and practi-
cal situations. In this case, the pinning of the contact line
occurs on a scale £ and the typical pinning energy E* is
about &f,. With f.=H/2~0.1vy, one finds that thermal
noise is negligible for many systems (e.g., water at room
temperature but also superfluid helium at 1K) if ¢
>1 nm. However, even if E_>kgT, activation is rel-
evant when the applied force f is close to the depinning
threshold f,.. Thus if E* is taken as the potential V and ¢
as the step length N\ for the motion of a contact line in
the description of Sec. II1.D.2, Eq. (78) becomes

(112)
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FIG. 53. Schematic of the velocity variation. At 7=0 (line),
one expects a sharp depinning transition at f=f,, which is
blurred by thermal fluctuations at 7+# 0 (dashed line).

—E*lkyT 2
U:§e exp{ 3 } (113)

T 2kBT

Thus one expects a thermal rounding of the depinning
transition (Middelton, 1992; Vandembroucq et al., 2004),
as depicted in Fig. 53. Note that the prefactor of the
exponential term is actually more complicated, due to
the distribution of the energy barriers (Vandembroucq et
al., 2004). The thermal rounding of the depinning tran-
sition and an exponential variation of the velocity has
been observed in various systems such as magnetic do-
main walls (Kirilyuk er al., 1997) and solid friction
(Baumberger et al., 1999).

An activated motion of the contact line can be unam-
biguously observed if viscous dissipation is very small
(Prevost et al., 1999), as shown in Fig. 31. Recent experi-
ments with liquid hydrogen have also shown the same
behavior (Rolley and Guthmann, 2007). By analyzing
the In U vs f plot in both experiments, the typical length
scale of the disorder £ is found to be of the order of
10 nm, and E*/kgT is in the range 100-1000. As a con-
sequence, the rounding is observed only in a narrow
range of force, typically a few percent of f.. This is con-
sistent with numerical results for charge density waves
(Middelton, 1992). Therefore, in some special cases,
thermally activated motion may indeed be observed.

Even if the rounding is not observable in most sys-
tems, however, it may have some consequences for ana-
lyzing the depinning transition. In many experiments,
the dependence U(f) is measured over a limited range of
f. As stressed by Schiffer and Wong (2000), experimen-
tal data fitted by a power law U« (f-f.)? with B=2 can
also be fitted by an exponential law. So the surprising
high value of B obtained in some experiments could be
due to thermal activation. More generally, one should be
careful about the analysis of the critical behavior if the
typical length scale of the disorder is not known.

Besides the difficulty in analyzing the data in the pres-
ence of thermal noise, there is a more fundamental
problem when using a substrate with mesoscopic disor-
der. If ¢ is in the range 1-10 nm, it seems unreasonable
to assume that the bulk viscous dissipation occurs at the
contact line, on a scale smaller than the scale of the
distortions of the contact line. The effective mobility in-
troduced in Eq. (111) becomes questionable and one
cannot avoid treating the coupling between the liquid
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FIG. 54. Activation energy as a function of the hysteresis for
liquid hydrogen on various disordered cesium substrates.

flow and the motion of the contact line more quantita-
tively. This will lead to hydrodynamic coupling along the
contact line, and make the problem very difficult.

In the depinning approach, there is a single physical
mechanism and a single energy scale £* which controls
both the dynamics close to the threshold and the hyster-
esis H. Such a simple picture makes sense for systems
such as cryogenic liquids on alkali-metal substrates. For
such substrates with a disorder scale of the order of
10 nm, Rolley and Guthmann (2007) showed that E* is
of the order of H; see Fig. 54. On the other hand, in
more ordinary systems such as water or alcohols on vari-
ous polymeric materials, the molecular kinetic approach
has been widely used to analyze experimental results
(Blake, 1993; Hayes and Ralston, 1993).

In these analyses, no connection is made between the
hysteresis and the energy V characterizing the activated
dynamics. Hysteresis and dynamics are assumed to be
controlled by two different mechanisms, so that it is not
obvious to decide what sets the value of V. Recently, it
was proposed that V/\? is of the order of the work of
adhesion W,=9(1+cos 6. (Blake and De Coninck,
2002). For systems with complex substrate-liquid inter-
actions, the advance of the contact line could indeed be
controlled by molecular processes, as in the original mo-
lecular kinetic theory.

For instance, studies of water on polyethylene there-
phthalate (PET) yield an activation length N\ which is
indeed microscopic (Hayes and Ralston, 1993), and V/\?
of the order of y. On the other hand, the analysis in
terms of a molecular-kinetic model leads to unreason-
able values of A and V in experiments by Petrov et al.
(2003b). Using a range of simple liquids on amorphous
teflon substrates Petrov et al. found an activation length
N\ of the order of 10 nm, much larger than a molecular
length; also V does not scale like W,. From their data, it
can be found that V/\? is of the order of H. Thus the
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FIG. 55. Advancing thin film/thick film boundary. Helium film
of thickness 50 nm on a cesium substrate at 1.87 K. From
Miiller and Dupont-Roc, 2001.

simple depinning approach seems to provide a better
interpretation of this experiment.

E. Hot topics

1. Hysteresis again

We still have a poor understanding of the hysteresis
for random substrates as we have no theoretical or ex-
perimental answer to such basic questions as how H de-
pends on the density of defects or on the strength of the
defects. Numerical studies as well as measurements on
model substrates with macroscopic defects such as the
ones employed by Ramos et al. (2003) would be highly
desirable. However, such studies cannot be directly rel-
evant for much-used substrates such as polymeric mate-
rials; the latter often display some intrinsic hysteresis
which is likely due to pinning at microscopic (nanomet-
ric) scales. In this case, H is controlled by the detailed
properties of the substrate-fluid interaction, so a descrip-
tion in terms of a depinning transition is not likely to be
relevant. More insight into the behavior of such systems
could possibly be obtained by studying both the hyster-
esis and the activated dynamics of the contact line. It
would be worth analyzing available data such as those of
Hayes and Ralston (1993) or performing new experi-
ments to determine whether H is related to the activa-
tion energy.

2. Prewetting transition on disordered substrates

We have discussed so far what happens to a true con-
tact line, that is the edge of a liquid drop in a partial
wetting situation, when the solid substrate is heteroge-
neous. Slightly off the liquid-gas coexistence and on the
prewetting line of the phase diagram one may also ob-
serve a boundary between a thin film and a thick (meso-
scopic) film. On a disordered substrate, this boundary is
very distorted as shown in Fig. 55. Off coexistence, the
local variations of the spreading coefficient are equiva-
lent to a random field coupled to the surface film state
(thin or thick), which is the order parameter. Thus, in
principle, the system can be mapped onto a random-field
Ising model. The boundary is analogous to a domain
wall in a ferromagnet with a true line tension (of order y
times the thickness of the thick film). The random-field
Ising model approach has been used to describe the hys-
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teresis of the prewetting transition (Blossey et al., 1998)
on solid substrates as well as the activated motion of the
boundary (Miiller and Dupont-Roc, 2001). However, ex-
perimental results are still sparse in this field.
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