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Abstract An erodible bed sheared by a fluid flow, gas or liquid, is generally unstable, and

bedforms grow. The following questions are discussed, in the light of the recent literature:



2 F. Charru, B. Andreotti, Ph. Claudin

What are the relevant dynamical mechanisms controling the emergence of bedforms? Do they

form by linear instability or nonlinear processes like pattern-coarsening? What determines their

time and length scales, so different in air and water? What are the similarities and differences

between aeolian and subaqueous patterns? What is the influence of the mode of transport:

bedload, saltation or suspension? Can bedforms emerge under any hydrodynamical regime,

laminar and turbulent? Guided by these questions, a unified description of bedform growth and

saturation is proposed, with emphasis on the hydrodynamical regime in the inner layer and the

relaxation phenomena associated with particle transport.

CONTENTS

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Hydrodynamics over a wavy bottom in the unbounded limit . . . . . . . . . . . . . 4

Flow over a flat bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Linear response of the flow to a wavy wall . . . . . . . . . . . . . . . . . . . . . . . . . 6

Beyond the linear response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The scales of particle transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

What is the hydrodynamic parameter controlling transport? . . . . . . . . . . . . . . . 13

Linear response of the saturated flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

What are the dynamical mechanisms controlling sediment transport? . . . . . . . . . . 17

Stability analysis of a flat erodible bed . . . . . . . . . . . . . . . . . . . . . . . . . 20

Dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Linear wavelength selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Nonlinear coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Finite size effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Linear instability and pattern formation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



.. 2013 1056-8700/97/0610-00

Summary Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Future issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Side bar: oscillating ripples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Key Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1 Introduction

Sand or granular patterns may emerge from an erodible bed sheared by a fluid

flow in a wide variety of environments: in water channels, rivers and coastal ar-

eas (Best 2005), in deserts on Earth (Bagnold 1941, Pye & Tsoar 1990) and

under methane or CO2 atmospheres on other planets (Bourke et al. 2010), in

hydraulic engineering and industrial pipe flows (Schaflinger et al. 1995, Steven-

son et al. 2001). Their size can range from the centimeter scale for subaqueous

ripples to one hectometer for large river megadunes, from one decameter for the

smallest aeolian dunes to one kilometer for the largest ones. Mature, finite-height

bedforms are typically asymmetric, with an avalanche slip face on their lee side.

More generally, bedforms exhibit different shapes depending on the symmetries

of the fluid forcing, or the boundary conditions (see definitions in the margin)

(Andreotti et al. 2009, Fryberger & Dean 1979). The dynamics of these pat-

terns results from the interaction between the fluid flow and the bed topography

through particle transport. For unidirectional flow (Figure 1), the fluid acceler-

ates on the windward slope and decelerates on the lee side. Grains are therefore

eroded upstream of the crest and deposited downstream. The resulting migrat-

ing velocity c is inversely proportional to the dune height H (Figure 1), a simple

result of great importance which arises from mass conservation (Bagnold 1941).

3
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The wide occurence of sand patterns has stimulated a huge number of studies

aiming at their understanding. Since the pioneering book of Bagnold (1941), sig-

nificant progresses have been achieved which were reviewed, notably, by Engelund

& Fredsøe (1982) for ripples and dunes, Blondeaux (2001) for coastal forms, and

Seminara (2011) for fluvial sedimentary patterns. Some important issues, still

debated, are the following. What are the relevant dynamical mechanisms control-

ling the emergence of bedforms? Do they form by linear instability or non-linear

processes like pattern-coarsening? What determines their time and length scales,

so different in air and water? What are the similarities and differences between

aeolian and subaqueous patterns? (Figure 1) What is the influence of the mode

of transport: bedload, saltation or suspension? Can bedforms emerge under any

hydrodynamical regime, laminar and turbulent? The aim of the present review

is to propose, from the recent literature, a unified description of bedform growth

and a hierarchy of the relevant parameters and corresponding regimes. For this

purpose, we focus on the canonical situation of transverse bedforms under an

unbounded, steady, unidirectional flow. The paper is organized as follows. In

Section 2, the hydrodynamics above an undulated fixed bottom is reviewed. In

Section 3, we discuss the dynamics of sediment transport. Section 4 is devoted

to the linear stability analysis of a flat bed, and some nonlinear developments.

Finite size effects are finally discussed in Section 5.

2 Hydrodynamics over a wavy bottom in the unbounded limit

2.1 Flow over a flat bottom

Consider the flow of a fluid with kinematic viscosity ν and density ρf , exerting

on a flat bottom a shear stress τ0 = ρfu
2
∗ where u∗ is the friction velocity. x,
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y and z denote the streamwise and spanwise directions and the normal to the

bottom, respectively. The bottom is composed of grains of characteristic diameter

d, located at z = 0 (for a precise definition of this location, see e.g. Raupach

et al. (1991)). Far enough from the bed, the flow is generally turbulent with

logarithmic velocity profile

U(z) =
u∗
κ

ln

(
z

z0

)
, (1)

where κ ≈ 0.4 is the von Kármán constant. This ‘law of the wall’ (Raupach et al.

1991) involves a length z0, called the hydrodynamical roughness, which is picked

up by the matching with a surface layer. For d small enough, the surface layer

corresponds to the viscous sublayer, with thickness of about 6 times the viscous

length δν = ν/u∗ and linear velocity profile

U(z) = (u∗/δν)z. (2)

The flow is said dynamically smooth and the hydrodynamical roughness is given

by z0 ≈ 0.11 δν . A good estimate of the full velocity profile can be obtained from

the momentum equation u2∗ = (ν + `2U ′(z))U ′(z) with an exponential damping

of the Prandtl mixing length as the bed is approached,

` = κz (1− exp(−z/αδν)) (3)

where α ≈ 25 is the van Driest number (Pope 2000). For d larger than, say, one

tens of δν , the viscous sublayer is no longer relevant and the flow is said hydro-

dynamically rough. Measurements then give, for fixed grains, z0 ≈ 0.03 − 0.1 d

(Andreotti 2004, Bagnold 1941, Kamphuis 1974). A usual yet phenomeno-

logical description introduces the mixing length (Ayotte et al. 1994, Colombini

2004, Fourrière et al. 2010, Richards 1980)

` = κ(z + z0). (4)
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The existence of a layer of moving grains at the bed surface may increase the

roughness z0, see Section 3.

2.2 Linear response of the flow to a wavy wall

2.2.1 Structure of the flow disturbance and bottom shear stress.

Now consider a disturbed bottom, in the simplest situation of small amplitude

two-dimensional waves, ζ = ζ0 cos kx. Typical values of the parameters are given

in Table 1. For small wave slope, typically kζ0 < 0.1 (2ζ0/λ < 0.03), the flow

disturbance is sinusoidal and proportional to kζ0, i.e. the response is linear. The

measurements displayed in Figure 2 show such a linear response of the shear stress

τb, and the presence of higher harmonics for larger slope. Note, in particular, the

phase advance with respect to the bottom. The linear stability problem amounts

to the determination, for small slope, of

τb =
1

2

(
τ̂eikx + τ̂∗e−ikx

)
, τ̂ = τ0 (A+ iB) kζ0, (5)

where A and B are the components in-phase and in-quadrature with the bottom,

respectively. This subsection focuses on the unbounded limit, kD � 1, where

the vertical extent D of the flow is larger than the penetration depth ≈ 2π/k of

the flow disturbance, so that A and B depend on the single parameter kz0.

Figure 3 shows measurements as well as theoretical predictions of A(kz0) and

B(kz0). The reference curve, the black solid line, is based on the Reynolds-

averaged Navier-Stokes (RANS) equations and the mixing length (3). For given

base flow, four hydrodynamical regimes can be identified, controlled by kz0, which

are detailed below.

2.2.2 Viscous and inertial laminar regimes. At large wavenumbers,

the flow disturbance is confined within the viscous sublayer where the veloc-
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ity profile (2) is linear. The problem can therefore be solved by neglecting the

turbulent fluctuations (Benjamin 1959, Charru & Hinch 2000, Valance & Lan-

glois 2005). Figure 3a-b shows that the corresponding A and B (yellow curve)

matches, in effect, for kδν & 10−2, the calculation including the Reynolds stresses

(red curve). The flow disturbance has a two-layered structure sketched in Fig-

ure 3c: an outer layer (green) dominated by inertia and an inner layer (orange)

dominated by viscosity, where the flow is driven by the pressure gradient inherited

from the outer layer. The thickness δi of the inner layer can be defined from the

balance of longitudinal advection (∼ k(u2∗/ν)δi) and transverse viscous diffusion

(∼ ν/δ2i ), giving

δi ∼ (ν2/ku2∗)
1/3 = (δ2ν/k)1/3. (6)

δi also represents the penetration depth of vorticity disturbances, so that the flow

disturbance in the outer layer is potential. Asymptotic expressions of A and B

have been derived in the viscous and inertial regimes (orange and green dashed

lines) by Benjamin (1959) and Charru & Hinch (2000):

A+ iB = 2 + i 1
2(kδi)

−3 = 2 + i 1
2(kδν)−2 (kδi � 1) (7)

A+ iB = γL (kδi)
−1 eiπ/6 = γL (kδν)−2/3 eiπ/6 (kδi � 1) (8)

where γL ≈ 1.06. Figure 3 shows that these expressions are close to the exact

calculation (yellow curve).

2.2.3 Turbulent regime. For small wavenumber, the flow disturbance ex-

tends far beyond the surface layer so that Reynolds stresses cannot be neglected.

Figure 3 shows that A and B depend slowly on kz0, logarithmically, as expected.

The asymptotic analysis has first been tackled by Jackson & Hunt (1975) and

then improved in several ways, notably by Sykes (1980), see the review by Belcher
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& Hunt (1998). This analysis assumes that the surface layer – which selects z0,

viscous or not – has thickness much smaller than δi, and is valid for both the

hydrodynamically rough and smooth regimes. In the long wave limit kz0 � 1

where the inner layer thickness δi is much smaller than the wavelength, i.e. when

ln(δi/z0)� 1, the two-layer structure is recovered as sketched in Fig. 3c (left): an

outer layer where the disturbed flow is dominated by inertia (green) and an inner

layer dominated by Reynolds stresses (blue). From the balance of longitudinal

advection and the turbulent stresses as given by the Prandtl mixing layer theory,

the thickness δi of the inner layer is given from the implicit relation

δi
λ/4

ln(δi/z0) = 2κ2 (9)

(another expression has been proposed which involves the square of the logarithm

and provides smaller δi). From the matching of the outer and inner flows, the

shear stress components A and B are found to be (Hunt et al. 1988, Kroy et al.

2002, Weng et al. 1991):

A+ iB = 2
U2(δm)

U2(δi)

(
1 +

1 + 2 ln(π/2) + 4γE + iπ

ln(δi/z0)

)
, (10)

where U is the logarithmic velocity profile (1), γE ' 0.577 is Euler’s constant and

δm = (λ/4z0) ln−1/2(λ/4z0). Figure 3a-b shows that these asymptotic expressions

(dashed blue lines) are valid for kz0 . 10−5.

The bottom shear stress has never been measured so far in the turbulent regime,

so that only indirect determinations of A and B can be obtained from velocity

measurements in the inner layer, assuming that the log velocity profile locally

holds. As shown in Figure 3, they reasonably match the predictions (blue sym-

bols). Besides, these velocity measurements confirm the linear increase of the

mixing length with the distance to the bottom (Poggi et al. 2007). As shown
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numerically by Ayotte et al. (1994), the predictions for the inner layer (A and

B in particular) are robust to a change of the turbulence closure scheme: mixing

length schemes (Colombini 2004, Fourrière et al. 2010, Mason & King 1985),

models with equations for the turbulent kinetic energy and true second order

closures (Finnigan et al. 1990, Weng et al. 1991)). Since the time-scale over

which turbulent fluctuations adapt to the shear rate scales as δi/u∗ in the inner

layer, out-of-equilibrium turbulence effects vanish as ln−1(δi/z0).

On the other hand, in the outer layer, the flow disturbance depends significantly

on the closure law, especially Reynolds stresses. Second-order closures have re-

vealed the influence of the lag between production and dissipation of turbulent

fluctuations, related by Finnigan et al. (1990) to streamline curvature effects.

This results into a phase-lag of the shear stress with respect to the topography

(van Boxel et al. 1999, Walker & Nickling 2003, Weng et al. 1991, Wiggs et

al. 1996) which contrasts with the phase advance in the inner layer. The second

important effect in the outer layer is the rapid distorsion of turbulence by the

mean shear, which results into Reynolds stress anisotropy (Ayotte et al. 1994,

Finnigan et al. 1990).

2.2.4 Transitional regime. Most of the measurements of A and B re-

ported in Figure 3 have been obtained by Zilker et al. (1977) and Frederick

& Hanratty (1988) (green points), and fall in the range 10−5 < kz0 < 10−3

(green regions in all the figures). They clearly disagree with the calculations per-

formed with a simple mixing-length closure (red curve). For this range of kz0,

the perturbation partly penetrates into the turbulent region so that neither vis-

cosity effects nor turbulent fluctuations can be neglected. On the upstream face

of a bump where the flow is accelerated, the more negative streamwise pressure
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gradient tends to damp the turbulent fluctuations so that the viscous sublayer

thickens, whereas the opposite is true on the lee side. This results into a periodic

transition from viscous to turbulent inner layer (see schematics in Figure 3c).

Following Abrams & Hanratty (1985) and Frederick & Hanratty (1988), this

effect can be accounted for by a dependence of the van Driest number α in (3)

on the pressure gradient, with a space lag of the order of α3δν (from the classical

argument for the thickening of a boundary layer, see the Online Supplementary

Material). The prediction of this ‘Hanratty’s model’ is shown in Figure 3a,b

(black solid line), and nicely fits the measurements. The modulation effect is

resonant for wavenumbers kδν ≈ 2π/α3 ≈ 10−3, hence the large effect on A

and B in the vicinity of this value. Although this model provides a convenient

parametrisation, a true understanding of the interplay between a wavy bottom

and the modulation of the viscous sublayer remains to be achieved.

2.2.5 Physical mechanism of the phase lag between shear stress

and topography. The most important result of the above analyses is that

A and B are both positive, so that the shear stress maximum is generically

located upstream of the crest. The physical mechanism of this phase advance

can be understood as follows. In the outer layer where the flow perturbation

is essentially inviscid and potential (unlike the base state), the flow accelerates

upstream of crests and slows down downstream, with opposite variation of the

pressure (Bernoulli effect). This pressure also drives the flow in the inner layer,

but there, bottom friction opposes the velocity variations. Because of fluid inertia,

the variation of the shear stress must drive that of the fluid velocity, hence the

positive phase advance. For a more quantitative discussion in the laminar regime,

see Charru & Hinch (2000). As discussed in the following sections, this phase



Sand ripples and dunes 11

advance is responsible for the instability of an erodible bed.

2.3 Beyond the linear response

For sinusoidal bottom with slope kζ0 ' 0.1 (Kuzan et al. 1989), hydrodynam-

ical nonlinear effects are no longer negligible. Harmonics grow and the phase

advance of the shear stress reduces (Figure 2a-b) (Richards & Taylor 1981).

Most numerical simulations (RANS, LES, DNS) and experiments in water have

been performed in the transitional regime (Buckles et al. 1984, Cherukat et al.

1998, de Angelis et al. 1997, Frederick & Hanratty 1988, Henn & Sykes 1999,

Zilker & Hanratty 1979), where the linear regime itself is not well understood as

discussed above. In the simpler turbulent regime, qualitative aspects of the non-

linear hydrodynamical response have been understood, from field observations,

wind tunnel experiments and numerical simulations over both sinusoidal bottom

and isolated bumps (Buckles et al. 1984, Finnigan et al. 1990, Gong & Ibbet-

son 1989, Gong et al. 1996, Salvetti et al. 2001, Taylor et al. 1987, Yue et

al. 2006, Zilker & Hanratty 1979). The linear asymptotic theory of Hunt et al.

(1988) still predicts the dominant features of the flow (Belcher & Hunt 1998).

On the upstream side of bumps, vertical profiles of the speed-up remain correctly

described. By contrast, on the lee side, Prandtl mixing-length model fails to de-

scribe the flow and more elaborated closures schemes are necessary there (Ross

et al. 2004, van Boxel et al. 1999).

On erodible beds, the initial sinusoidal topography also deforms and becomes

asymmetric, while the height-to-length ratio tends to 1/15, approximately, for

mature subaqueous ripples and aeolian dunes (Baddock et al. 2007, Parteli et

al. 2006). An avalanche slip face develops on the lee side, from which the mean
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flow separates and a recirculation bubble forms. From the coupling between

hydrodynamics and erosion-deposition, the instability saturates, and the sand

flux and elevation profiles vary in phase (Figure 6c).

From the theoretical point of view, the main difficulty is the quantitative de-

scription of flow separation, which, for sinusoidal bottom, occurs for kζ0 & 0.3

(Buckles et al. 1984, Finnigan et al. 1990, Henn & Sykes 1999, Zilker & Han-

ratty 1979). Aside from studies based on the triple-deck theory (Lagrée 2003),

heuristic linear calculations have been proposed, of the turbulent flow above a

fictive obstacle made of the true obstacle prolonged by the separation stream-

line (Finnigan et al. 1990, Jensen & Zeman 1985). However, separation is

associated with the development of complex turbulent structures. An inflexion

point appears in the mean velocity profile, corresponding to the formation a free

shear layer. Spanwise vortices develop due to Kelvin-Helmholtz instability, which

vortices then impinge the bottom near the reattachement point. Downstream of

this point, very large velocity gradients take place close to the wall, associated

with large shear stress (Figure 2b), and followed by the formation of longitudinal

streaks and hair-pin vortices. When the reattachment length is larger than the

wavelength, the free shear layer spreads and rises, while a new free shear layer

is created downstream of the next crest, resulting in large production of turbu-

lence and strong mixing of momentum. Large-scale streamwise vortices emerge

with spanwise wavelength scaling on the streamwise wavelength of the bottom

(Hudson et al. 1996, Kruse et al. 2003).

A complete description of the nonlinear response is definitely beyond the present

review and remains a major challenging issue. A promising direction is weakly

nonlinear analysis, following the studies of (Bordner 1978, Caponi et al. 1982,
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Valance 2011) and (Andreotti et al. 2009, Colombini & Stocchino 2008) in

the laminar and turbulent regimes (the coupling with the neutral mode k = 0,

arising from (11), has not been included in the analysis yet). Another possible

direction is the development of the triple-deck theory for turbulent flow.

3 The scales of particle transport

The observed modes of transport can be associated with the different forces acting

on the particles. When the hydrodynamic forces exceed some threshold value

related to the bed disorder at the particle scale (a fraction of the immersed weight

(ρp − ρf )gd3), the particles at the bed surface are set into motion. When the

particles and the fluid have comparable densities (typically sand grains in water),

the moving particles roll and slide on each other within a thin layer, of a few

diameters thick, which mode of transport is called bedload. Lubrication forces are

responsible for the dissipation. Conversely, for large ratio ρp/ρf (typically sand

grains in air), the grains experience large jumps and the transport mode is called

saltation. Dissipation is mainly due to the collisions of the moving particles with

the bed. Finally, when the fluid velocity fluctuations, of magnitude u∗, become

comparable with the settling velocity Vfall, of the order of
√

(ρp/ρf − 1)gd, grains

are dispersed throughout the whole fluid layer, which mode of transport is called

suspension.

3.1 What is the hydrodynamic parameter controlling transport?

The spatio-temporal evolution of the bed profile ζ(x, t), which is our primary

interest, is related to the particle flux per unit width, q(x, t), through the mass
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conservation equation

φb
∂ζ

∂t
= −∂q

∂x
, (11)

where φb ≈ 0.6 is the volume fraction of the bed. Transport models aim at relating

the flux q to the fluid flow. They are usually calibrated in homogeneous and

steady situation controlled by one single hydrodynamic parameter: the bed shear

stress τ , or equivalently the shear velocity u∗. The resulting particle transport

is characterized by the so-called satured flux qsat(τ). Due to the trapping of

the particles by gravity, qsat vanishes below a threshold value τth = ρfu
2
th ∼

(ρp − ρf )gd which is sensitive to the geometrical disorder of the granular bed

(Charru et al. 2004). Introducing the Shields number Θ = τ/[(ρp − ρf )gd],

dimensional analysis gives the general form of the transport law as

qsat = usd Q(Θ), (12)

where us is a characteristic velocity. The usual choice for us is the characteristic

settling velocity
√

(ρp/ρf − 1)gd, but models based on the balance of horizontal

momentum rather bring us = uth. The dimensionless function Q depends, in ad-

dition to Θ, on the density ratio ρp/ρf , which controls in particular the transition

from bedload to saltation, and the settling Reynolds number Res = Vfalld/ν (or

equivalently the threshold Reynolds number Reth = uthd/ν), which controls the

hydrodynamical regime at the grain scale.

When the bed topography is modulated by bedforms, the shear stress and par-

ticle flux are no longer uniform. This raises two issues. First, does the saturated

transport law still hold? Early investigations have assumed local saturation of

the sediment transport, with the local flux q = qsat(τ) controlled by the local

shear stress τ . However, there is experimental evidence that transport does not

adapt instantaneously to a spatial change of the shear stress (Anderson & Haff
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1988). As an illustration, Figure 4a displays the spatial relaxation of the flux

towards saturation downstream of the transition between a non-erodible bottom

(x < 0) and an erodible bed (x > 0), in the aeolian case, whereas Figure 4b

displays similar results for suspension. However, over bedforms, the transport

is never far from its saturated state, so that it can be described by a first-order

linear relaxation in space and time:

Tsat
∂q

∂t
+ Lsat

∂q

∂x
= qsat − q, (13)

where Lsat and Tsat are called the saturation length and times (Andreotti et al.

2002, Charru 2006, Claudin et al. 2011, Narteau et al. 2009, Parker 1975,

Sauermann et al. 2001). Regarding ripples and dunes, the first term of this

equation can be safely neglected, since Tsat is usually much smaller (∼ 1 s) than

the bedform growth time (∼ 102 s for subaqueous ripples and ∼ 105 s for aeolian

dunes). This separation of times justifies the simplifying assumption that the

fluid flow can be computed as if the bed were fixed. The physical significance of

Lsat is discussed below.

Second issue, at which vertical location should the shear stress be evaluated?

As discussed in the previous section, τ can exhibit large vertical gradients in the

outer layer, so that the question deserves attention. The usual approach uses

τ(z = ζ(x, t)), which is a rigorous approximation when the transport layer, of

thickness δt, is much thinner than the inner layer (typically, δt ≈ d ≈ 10−1δi in

water close to threshold, and δt ≈ ρp
ρf
d ≈ 10−2δi in air). An alternative approach

has been proposed by Colombini (2004), which evaluates the shear stress at the

distance z = ζ(x, t) + δt. Although appealing, this approach amounts to consider

that the transport layer behaves as pure fluid, which is clearly not the case.

Further investigation is needed here, accounting for the two-phase nature of the
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transport layer and the shear-stress gradient in which the latter is embedded.

3.2 Linear response of the saturated flux

Eq. (13) describes the linear response of the flux q to a change of the saturated

flux qsat. To complete the description of transport on bedforms, one needs the

linear response of qsat to a small change δτ of the shear stress τ , and to a small

change s = ∂xζ of the local bed slope from the horizontal. The response to δτ

can be written (φbQ/τ)δτ where Q is the susceptibility with respect to the shear

stress:

Q =
τ

φb

∂qsat
∂τ

∣∣∣∣
τ

(14)

As gravity tends to entrain particles downwards, a slope induces an additional

contribution to the flux −S Qs, where S is the susceptibility with respect to the

slope:

S = − 1

Q

∂qsat
∂s

∣∣∣∣
s=0

. (15)

For q ∝ (τ−τth)n and with the assumption that the slope effect can be embedded

in the change of the transport threshold, δτth/τth = s/µ where µ is an effective

friction coefficient, one obtains S = 1
µτth/τ . Experiments give µ ' tan 37◦ in

tilted wind tunnels (Iversen & Rasmussen 1999), and, for bedload in water,

µ ' tan 35◦ (Dey 2003, Fernandez Luque & van Beek 1976) or µ ' tan 65◦

(Loiseleux et al. 2005), values consistent with the avalanche angle. Finally, S

typically decreases from ≈ 1.6 at the transport threshold to zero at large flow

velocity.
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3.3 What are the dynamical mechanisms controlling sediment

transport?

The scaling laws followed by qsat, Lsat and z0 depend on the dynamical mecha-

nisms controlling transport. We shortly review the results obtained for the three

modes of transport.

3.3.1 Bed load in water. The physical explanation proposed by Bagnold

(1956) for the equilibrium bedload transport in the turbulent case is as follows.

The moving particles are confined within a thin transport layer of thickness δt '

d and have a mean velocity up ∝ u∗ − βuth, where β < 1 characterizes the

effective bed friction. Across the transport layer, the fluid transmits momentum

to the particles in proportion to the number n of mobile grains per unit surface.

The equilibrium transport corresponds to the fluid shear stress being reduced to

threshold at the fixed bed, which leads to n ∝ u2∗ − u2th. As the flux is q = nup,

one gets Q ∼ (Θ − Θth)(
√

Θ − β
√

Θth). The scaling of the sediment flux with

the third power of the shear velocity, for large Θ/Θth, has been recovered in

most experiments (Bagnold 1956). For viscous bedload, similar arguments give

Q ∝ Θ3 (Bagnold 1956, Charru & Mouilleron 2002, Leighton & Acrivos 1986,

Mouilleron et al. 2009, Ouriemi et al. 2009), while erosion-deposition models

for a monolayer of particles, close to threshold, rather lead to Q ∝ Θ2 (Charru

& Hinch 2006a).

The saturation transient may be controlled by two mechanisms: the erosion or

deposition of particles (related to the relaxation of n), or particle inertia (relax-

ation of up). For bedload, Charru & Hinch (2006a) proposed that erosion and
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deposition are the limiting processes, which leads to the saturation length

Lsat ∝
U

Vfall
d (16)

where U is the fluid velocity at the particle scale and d/Vfall is the typical time

needed for one particle to settle. Therefore, Lsat scales on a deposition length

(Lajeunesse et al. 2010). However, Lsat has never been measured directly for

bedload, unlike for saltation and suspension.

As mentioned in the previous section, bedload transport may change the hydro-

dynamical roughness z0 seen from the inner layer. The measurements collected

by van Rijn (1982) show z0 = 1 − 10 d, which is significantly larger than for a

fixed bed; Richards (1980) uses the empirical result that z0/d increases linearly

with Θ. A thorough assessment of these laws remains to be performed. Beside,

in the transitional regime, transport may affect the modulation of the viscous

sublayer.

3.3.2 Saltation in air. The stress balance still holds for saltation, and

the scaling of n is the same as above (Owen 1964). However, the particle motion

takes place over a much thicker layer, δt ' (ρp/ρf )d� d, in which, contrarily to

bedload, the wind velocity is strongly reduced due to the large particle inertia

(Andreotti 2004, Ungar & Haff 1987). The entrainment of new grains mostly

result from collisions. The balance between erosion and deposition implies that

the mean grain velocity up is a constant, scaling with uth. The resulting scaling

law Q ∼ (Θ − Θth) is in agreement with wind-tunnel experiments (Creyssels et

al. 2009, Iversen & Rasmussen 1999), but contrasts with the initial proposition

of Bagnold (1941) and followers.

The saturation transient is limited by particle inertia, so that the saturation

length Lsat scales with the length needed for one grain to be accelerated up to
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the wind velocity (Andreotti et al. 2010, Hersen et al. 2002):

Lsat ∝
ρp
ρf
d. (17)

Lsat is therefore independent of u∗ and is of the order of one meter, as confirmed

by direct measurements (Figure 4a). Note that the initial exponential increase

of the sand flux that can be seen in the figure for q � qsat, is due to erosion and

takes place over a distance decreasing as u−2∗ (Sauermann et al. 2001).

Experiments (Iversen & Rasmussen 1999) and models (Andreotti 2004, Durán

et al. 2011) agree on the large increase of the hydrodynamical roughness z0 with

the density of mobile grains, and therefore with u∗. It provides a direct proof of

the strong negative feedback, inside the transport layer, of the particles on the

fluid velocity.

3.3.3 Suspension. In the suspension regime (u∗ & Vfall), particles diffuse

over the whole water depth D, and the particle flux results from the balance

between upwards diffusion and sedimentation. Experiments (Ashida & Okabe

1982, Jobson & Sayre 1970, van Rijn 1986) and theoretical analysis (Claudin et

al. 2011) have shown that the saturation length then scales as

Lsat ∝
U

Vfall
D, (18)

i.e. on a deposition length based on the depth-averaged flow velocity U and the

settling time D/Vfall (Figure 4b). This law is the same as for bedload, expect

that the length over which the grains settle now scales with the flow depth D

rather than the grain diameter. As D/d � 1, Lsat can be very large: several

meters in flume experiments and hundreds of meters in natural rivers.
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4 Stability analysis of a flat erodible bed

The question of the instability of an erodible bottom is now addressed by putting

together the previous analyses of the fluid flow (§2) and particle transport (§3).

The instability mechanism is shown to arise from the hydrodynamics, for both

subaqueous ripples and aeolian dunes, while gravity and sediment transport are

stabilizing. Unbounded flow is still considered here as the reference case.

4.1 Dispersion relation

As clearly recognized by Kennedy (1963, 1969), a crucial feature at the origin

of the growth of a sinusoidal disturbance of an erodible bed is the phase lead

of the perturbation τb of the bed shear stress, as given by Eq. 5. Let ζ(x, t) =

ζ0e
σt cos(kx−ωt) be the slowly varying bed disturbance. The component of τb in

quadrature with ζ(x, t) (proportional to B > 0) drags the particles from troughs

to crests, amplifiying the initial bed disturbance (positive growth rate σ), whereas

the in-phase component (proportional toA > 0) is responsible for the downstream

migration of the disturbance, with phase velocity c = ω/k. We discuss here the

dispersion relation, i.e. the dependence of σ and c on the wavenumber k.

4.1.1 Stabilizing effects ignored. We first ignore the stabilizing slope

effect (S = 0) and consider that particle transport q is at local equilibrium with

the shear stress (Lsat = 0). Then, as q = qsat(τ), the amplitude of the flux

disturbance is q̂ = φbQ (A+ iB) kζ with Q defined by Eq. 14. The bed evolution

is governed by the particle mass conservation equation (Eq. 11) and the dispersion

relation follows as

σ = B(kz0)Qk
2, c = A(kz0)Qk. (19)
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Since fluid inertia imposes B > 0 for any wavenumber (Figure 3b), all wavenum-

bers are amplified (Figure 5a). Some stabilizing processes must be at work to get

some wavenumber selection.

4.1.2 Slope effect. Introducing the slope effect, q̂sat becomes

q̂sat = φbQ [A(kz0) + i(B(kz0)− S)] kζ. (20)

The additional S-term does not provide any new length scale but reduces the

growth rate from QB k2 to Q(B−S) k2. As Bk2 tends to the constant value 1
2δ
−2
ν

at large k (§2), the slope effect stabilizes short waves: instability is suppresed

beyond some cut-off wavenumber (Figure 5a) (Fredsøe 1974). The slope effect

is expected to be significant close to the transport threshold Θth and become

negligible farther as S decreases with increasing shear stress (§3).

4.1.3 Transport relaxation. For spatially varying shear stress, the ad-

justment of the particle flux is not instantaneous but takes place over some re-

laxation length Lsat (§3). According to Eq. 13, the amplitudes of the actual and

saturated flux disturbances, q̂ and q̂sat, are then related by (1 + ikLsat)q̂ = q̂sat,

so that the growth rate and wave velocity become

σ = Qk2
(B − S)−AkLsat

1 + (kLsat)2
, c = Qk

A+ (B − S)kLsat

1 + (kLsat)2
. (21)

We see that transport relaxation brings a stabilizing term in the growth rate

when A > 0, which dominates at large wavenumber (Figure 5a). Thus, transport

relaxation stabilizes short waves, like the slope effect.

4.2 Linear wavelength selection

The most unstable mode is expected to correspond to the observed wavelength

emerging from an initially flat bed, at least for short times when nonlinear effects
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are still negligible. We discuss here the competition of the mechanisms at work

for the selection of this mode, which involves a hydrodynamical length scale (the

inner layer thickeness δi or the roughness length z0), the transport relaxation

length Lsat, and the dimensionless slope parameter S.

4.2.1 Zero Lsat. Ignore first the transport relaxation, so that only the

slope effect may counteract the destabilizing fluid inertia. The most unstable

wavenumber is nearly proportional to the cut-off wavenumber kc, which is solution

of B(kcz0) = S according to Eq. 21 and can be obtained graphically from Figure 3.

Using the asymptotic expression Eq. 8 for B (laminar inertial regime), a good

estimate of the most amplified wavelength is found as (Charru & Mouilleron

2002)

λ = 2π
3S
γL
δi or λ = 2π

(
3S
γL

)3/2

δν . (22)

The full calculation in the smooth hydrodynamical regime (Figure 3b) confirms

this scaling with the hydrodynamical length δν (Sumer & Bakioglu 1984).

Using the measured values of S (§3), the predicted wavelength in water is

found to be much smaller, by one order of magnitude at least, than measured

wavelengths (Figure 5a). Large values of S, likely unrealistic, are necessary to

reduce the discrepancy (e.g. S = 2.8 used by Richards (1980)). For aeolian

dunes, the mismatch reaches three orders of magnitude. The conclusion is that,

although some uncertainties remain on the values of S, the slope effect alone is

not stabilizing enough.

4.2.2 Nonzero Lsat. Figure 5b displays the most unstable wavelength λ/Lsat

as a function of Lsat/z0, calculated from Eq. 21 for the three hydrodynamical

models discussed in Section 2. When the saturation length is small compared to

the hydrodynamical length, say Lsat < 10 z0, it appears that the selected wave-



Sand ripples and dunes 23

length is essentially controlled by the hydrodynamics, which is in the laminar

regime. In particular, for nonzero S, the scaling Eq. 22 is recovered.

For large Lsat/z0 and S = 0, Figure 5b shows that λ/Lsat is nearly constant

and in the range 15−30, which means that λ scales approximately on Lsat. In the

hydrodynamically rough regime (blue solid line), this result can be understood

from the fact that for kz0 � 1, A and B depend weakly –logarithmically– on kz0

and can be considered as constants and evaluated at z0/Lsat. Then, the most

amplified wavenumber is expected to scale on the cut-off wavenumber kc defined

by B(kcz0) = A(kcz0) kcLsat, i.e. the balance of destabilizing fluid inertia and

stabilizing particle relaxation. This analysis finally gives (Andreotti et al. 2002)

λ ∝ A(z0/Lsat)

B(z0/Lsat)
Lsat. (23)

In the hydrodynamically smooth regime (red and black lines), the above scaling is

recovered but at larger Lsat/z0 (> 104), i.e. in the turbulent regime. For smaller

Lsat/z0 in the range 101 − 104, i.e. in the more complicated transitional regime

(green area), the selected wavelength depends on both z0 and Lsat.

The slope effect parametrized by S induces a further stabilizing effect, which

results in larger wavelengths (dashed lines in Figure 5b). When S > B(kz0) for

all wavenumbers, the flat bed is stable (at the right of the dots ending the dashed

lines). This situation is more likely to happen close to the transport threshold

where the slope effect is stronger, and in the turbulent regime where B decreases

below S = 1.6. Farther from threshold, S decreases and long waves become

unstable.

4.2.3 Aeolian dunes. The best understood situation is that of aeolian

dunes, for which wind tunnel experiments have provided measurements of qsat,

Lsat, S and z0 (e.g. Andreotti et al. (2010), Creyssels et al. (2009), Ho et
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al. (2011), Iversen & Rasmussen (1999). Aeolian transport takes place in the

turbulent regime for which hydrodynamical calculations are robust with respect

to turbulent closures and lead to nearly constant A and B (Figure 3). Moreover,

the different lengths of the problem are well separated (Table 1). Figure 6c

displays the development of dunes on the flank of large barchans (Elbelrhiti et

al. 2005). In this situation, Lsat is the relevant length scale and Eq. 23 holds.

The slope effect changes Eq. 23 to λ ∝ A
B−SLsat, which predicts an increase of

λ close to the transport threshold, in agreement with observations (Figure 6d)

(Andreotti et al. 2010).

The proportionality of the saturation length with the drag length (ρp/ρf )d

(Figure 4b) may be assessed by the comparison of dune sizes in different environ-

ments. In particular, it explains why on Mars, where the atmosphere is signifi-

cantly lighter than on Earth, dunes have wavelengths ten times larger (Claudin

& Andreotti 2006). Conversely, aeolian features that emerge under high pres-

sure CO2 are on the decimeter scale (Greeley et al. 1984). As for the growth

rate σ ∼ L2
sat/Q, its dependence on L2

sat may explain the apparent large-scale

inactivity of Martian dunes, since it predicts very large growth time, typically

centuries, in contrast to days on Earth. Recent observations of the propagation

of small ripples confirm that Mars is active (Silvestro et al. 2010).

4.2.4 Subaqueous ripples. The situation in liquids is less definite than in

air, for the following reasons: (i) the separation of the length scales, δt, Lsat, z0

and δi, is less pronounced (Table 1); (ii) no direct measurement of Lsat is avail-

able yet; (iii) the observed ripples lie at the transition between the laminar and

turbulent regimes, more sensitive to the flow modeling (Figure 6b). Numerous

experiments have been performed, with various particles, with a free surface or
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an upper wall, but eventually exploring a rather limited range of the parameters

(e.g., the grain Reynolds number d/δν , and the distance to threshold u∗/uth).

Moreover, the focus is often on mature ripples rather than on the first stages of

the instability.

Initial ripple wavelengths are typically in the range 100–800 d, both in water

(Baas 1994, 1999, Betat et al. 1999, Coleman & Melville 1996, Fourrière et

al. 2010, Langlois & Valance 2007) and in viscous fluids (Charru & Mouilleron

2002, Kuru et al. 1995). Figure 5a displays measured growth rates and a fit with

Eq. 21 including both the slope effect and a (somewhat large) saturation length.

Figure 6b displays measured wavelengths from the above references together with

the most amplified mode computed from the three hydrodynamical models. It

can be seen that subaqueous ripples form in the transitional regime (green shaded

area) where the most amplified wavelength involves both Lsat and δν . The general

trend that emerges is the decrease of λ/d with d/δν . Only Hanratty’s model

reproduces the correct trend, with the saturation length fitted to Lsat ' 12 U
Vfall

d,

consistently with measurements of the deposition length by Lajeunesse et al.

(2010).

The existence of an instability threshold larger than the transport threshold is

consistent with the observation a ‘lower plane’ regime reported in bedform sta-

bility diagrams (Southard 1991). An ‘upper plane regime’ where the bedforms

flatten and disappear is also reported in these diagrams, which generally corre-

sponds to large particle Reynolds number, typically d/δν > 25. This observation

is accounted for by Sumer & Bakioglu (1984) with a shift of the mixing-length

depending on the roughness. Another explanation could be that for large grains,

the flow depth is relatively smaller, or that the transport layer thickens and the
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saturation length becomes larger, which effects are stabilizing (§5).

4.3 Nonlinear coarsening

We now turn to nonlinear aspects, restricting the discussion to subaqueous rip-

ples. Once the quasi-sinusoidal ripples have emerged from the flat bed, their

height H = 2ζ0 first grows exponentially with time (Figure 7a) (Betat et al.

1999, Fourrière et al. 2010). Then nonlinear effects quickly arise: the profile

becomes asymmetrical (inset in Figure 7a), and after a couple of minutes the rip-

ple height saturates, while the wavelength remains unchanged. Then, on a much

longer time scale (hours), the small velocity differences related to small height

differences (c ∝ 1/H, §1) lead to collisions and merging between adjacent ripples,

see the spatio-temporal diagram in the inset of Figure 7b (Betat et al. 2002,

Coleman & Melville 1994). This results in coarsening of the pattern and an

increase of the averaged wavelength (Figure 7a). Eventually, λ saturates because

of finite-size effects, see §5.

Most of the ripple lengths reported in the litterature correspond to mature

nonlinear bedforms (Guy et al. 1966, Yalin 1985)), not linear waves. A selection

of these measurements close to threshold (u∗ < 1.5uth) is displayed in Figure 6d.

Interestingly, they nearly fall on a straight line close to the edge of the transitional

regime (the left edge in Figure 3), kδν ≈ 3× 10−4.

5 Finite size effects

We now consider bounded flow, i.e. kD . 1, where the upper boundary, either

a rigid wall (closed channels) or a free surface (open channels, rivers, stratified

atmosphere), is expected to affect the bottom shear stress. Several new patterns



Sand ripples and dunes 27

arise, such as subaqueous dunes, anti-dunes, chevrons and alternate bars, see the

photos in Figure 8.

5.1 Hydrodynamics

For rigid upper boundary, the only new parameter is kD. As this parameter de-

creases, the inner layer progressively invades the whole flow. The sole effect of the

confinement is to lower inertia, so that the in-quadrature shear stress component

B decreases, for both laminar and turbulent flows (Charru & Mouilleron 2002,

Engelund 1970, Fourrière et al. 2010, Richards 1980).

For a free surface flow with surface velocity U , an additional parameter enters

the analysis: the Froude number Fr = U/
√
gD which measures the relative

magnitude of inertia and gravity. The situation can be summarized as follows.

For subcritical flow (Fr < 1), the confinement is still stabilizing: the in-phase

shear stress component A increases, while B lowers and even becomes negative

for kD � 1. The Saint-Venant equations, for instance, produce a negative B

(Gradowczyk 1968, Luchini & Charru 2010). For the more general case of

3D flow over a wavy bottom ζ = ζ0 cos(kxx) cos(kyy), only the component Bx

parallel to the main flow becomes negative, whereas the transverse component

By is enhanced (Andreotti et al. 2012). For supercritical flow (Fr > 1), the free

surface is crucial when the surface waves resonate with the undulations of the

bottom, which occurs in a narrow window in the diagram (Fr, kD) (Engelund

1970). The resonance induces a sharp decrease of B, and also strongly affects A

which can become negative.
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5.2 Linear instability and pattern formation

The linear stability analysis can be performed as before with A and B now en-

coding the finite-D effect. Sediment transport remains unchanged and essentially

imposes the length scale Lsat. Different regimes are found, depending on the di-

mensionless ratio Lsat/D (Andreotti et al. 2012). For small Lsat/D and Fr < 1,

the most unstable wavelength is not influenced by the free surface and remains as

in the unbounded case (ripples). In particular, there is no secondary maximum to

be associated with dunes. Experimental evidence (see Figure 7) strongly suggests

that dunes emerge from the pattern coarsening of ripples (Coleman & Melville

1994, Fourrière et al. 2010, Raudkivi 2006, Raudkivi & Witte 1990) rather

than by linear instability (Colombini 2004, McLean 1990, Richards 1980). The

increase of the mean wavelength is stopped by the stabilizing role of the free

surface at small kD, and λ eventually scales with D. In the aeolian case, the

stratified structure of the atmosphere above deserts is qualitatively analogous to

a river surrounded by air: the equivalent of the flow depth is the thickness of the

convective boundary layer, capped by the thin inversion layer which plays the

role of the free surface. This stratification, whose thickness varies by a factor of

up to 5 from coastal to continental deserts, bounds the size of giant aeolian dunes

(Andreotti et al. 2009).

For Lsat/D & 0.1 and still subcritical flow, oblique bedforms with angle α with

the flow direction are more unstable than transverse ones (α = 0). This explains

the generation, in shallow water, of rhomboid beach patterns or chevrons (the

combination of two plane waves with angles α and −α) (Daerr et al. 2003, De-

vauchelle et al. 2010, Morton 1978, Venditti et al. 2005). This also explains the

oblique or alternate bars observed in flumes with coarse grains (Lanzoni 2000,
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Lisle et al. 1991). Large values of Lsat/D are also reached when suspension

is the dominant mode of transport (§3). Some alternate bars observed in flume

experiments are in this regime (Chang et al. 1971), as well as the bars formed

in rivers during floods, where most of the sediment is suspended. In rivers and

flumes, the depth-to-width ratio D/W is a new control parameter, with the trans-

verse wavenumber of bedforms being selected by the finite width. The braiding

patterns observed for small D/W can be interpreted as high-order modes.

For supercritical Froude number (Fr > 1), the free surface now has a destabiliz-

ing effect associated with the change of sign of A at the resonance. The growth

rate of modes with kD ' 1 dominates that of ripples when Lsat & D. This

situation corresponds to large deformations of the free surface and anti-dunes

propagating upstream (Kennedy 1969, Parker 1975). The range of unstable

wavenumbers kD is so closely related to the resonance, and thus so narrow, that

the most unstable mode is selected by the hydrodynamics, λ ∝ D. Besides,

anti-dunes hardly experience pattern coarsening.

Measured wavelengths corresponding to the patterns described above are dis-

played in the (Fr, kD) diagram of Figure 8. They gather in different groups.

Anti-dunes nicely follow the resonant curve (red solid line), while dunes (and

mega-dunes) lie in the subcritical unstable region.

6 Conclusion

6.1 Summary Points

1. The formation of subaqueous ripples and aeolian dunes in unbounded flow

(bedform wavelength smaller than the flow depth) results from the desta-

bilizing action of fluid inertia, which induces a phase advance of the shear
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stress relative to the bed disturbance.

2. The most relevant hydrodynamical length is the thickness δi of the inner

layer above which the dynamics of the flow disturbance is essentially inviscid

and potential.

3. The destabilizing inertia is balanced by the stabilizing lag of the particle

flux with respect with shear stress. The saturation length Lsat associated

with this relaxation effect is an essential feature for the understanding of

the instability. A second stabilizing effect is the bedform slope which drags

the particles towards troughs.

4. For aeolian dunes, the scales of the problem are well separated, the initial

dune wavelength is, as a first approximation, proportional to the saturation

length, times the hydrodynamical factor B/A encoding the phase advance

of the bed shear stress. The saturation length results from grain inertia

and is proportional to the drag length (ρp/ρf )d. Weaker effects arise from

the dependence of λ/Lsat to Lsat/z0 and the slope parameter S.

5. For subaqueous ripples, the conclusion is less clear-cut. Most of the ex-

perimental and field data lie in the transition between the laminar and

turbulent regimes, where the bed shear stress is more sensitive to the tur-

bulence modeling. However, there is direct evidence that ripples form by

linear instability of a flat bed, and their initial wavelength, in the range

100–800 d, is consistent with Lsat in the range 10–30 d. The rapid coarsen-

ing of the pattern makes difficult the interpretation of many data from the

literature.
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6.2 Future issues

1. The laminar-turbulent transitional regime, in which most of the subaqueous

ripples lie, remains to be understood. The effect on the bed shear stress of

turbulent coherent structures in the near-bed region, notably longitudinal

streaks, is largely unknown.

2. The nonlinear description of the hydrodynamical response to a complex

relief remains to be completed, in particular, the secondary flows behind

star dunes and other three-dimensional dunes.

3. The saturation length Lsat for bedload has to be measured and understood,

as well as its large increase at the transition from bedload to suspension.

4. A quantitative nonlinear description of the asymmetry and saturated am-

plitude of dunes is open, as well as the description of dune interactions,

collisions, coalescence and splitting, in one-dimensional channels and two-

dimensional fields.

5. Finally, the effects of grain polydispersity and segregation have to be un-

dersood.

7 Side bar: oscillating ripples

The oscillatory motion of a liquid above a granular bed leads to the formation

of ripples, as under steady flow (Rousseaux et al. 2004, Sleath 1976). The

sand ripples one observes on a beach at low tide are an example: these ripples

were formed by the oscillations induced by the surface waves when the beach

was covered with shallow water. The mechanism of their formation, related to

fluid inertia, is the same as that of ripples under steady flow, with positive phase
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advance of the shear stress dragging the particles towards crests during each half-

period (Blondeaux 1990, Charru & Hinch 2006b). The net particle flux towards

crests can also be understood as the result of the mean steady drift flow (steady

streaming). Similar structures are also observed on the continental shelf at water

depths of two to three hundred meters, with a wavelength on the order of a meter.

These ripples play an important role in attenuating the wave motion, essentially

owing to dissipation in the oscillating boundary layer and vortex detachment

from their peaks.

8 Key Terms and Definitions

• Barchan dune: crescentic-shaped dune migrating on a non-erodible ground,

with horns pointing downstream.

• Star dune: large dune shaped like a star, with several arms originating from

the crest; fairly stationary because of changing wind regimes.

• Aeolian ripple: centimeter scale bedform created by the impact on a sand

bed of saltating grains entrained by the wind. The formation of these

ripples, quite different from that of subaqueous ripples, is out of the scope

of the present review.

• Subaqueous ripple: centimeter scale transverse bedform created by the

steady water flow over an erodible bed.

• Subaqueous dune: large bedform whose size scales on the water depth.

• Oscillating ripples: subaqueous ripples created by oscillating flow.

• Antidune: subaqueous bedform propagating upstream in supercritical flow.

• Chevrons: subaqueous inclined (non-transverse) bedforms emerging in shal-
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low flows.

• Alternate bars: non-transverse features forming in rivers and flumes, with

size much larger than the flow depth.

• Saturation length: distance needed for non-equilibrium particle flux to relax

towards its saturated value.

• Saturated flux: volume of particles transported per unit time and width, in

equilibrium with the shear stress exerted by the fluid flow.
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Table 1: Typical flow conditions and length scales for a sand bed under oil

(ν = 10−5 m2 s−1), water (ν = 10−6 m2 s−1) and air (ν = 15 × 10−6 m2 s−1):

friction velocity u∗, grain diameter d, particle Reynolds number d/δν , typical

wavelength λ, inner layer thickness δi, scale separation δi/δt (tr: transitional

regime, tu: turbulent regime), kz0, Shields number θ and Lsat/d.

Fluid flow u∗ d d/δν λ δi δi/δt kz0 Θ Lsat/d

(m s−1) (mm) (m) (mm) ×103

Oil 0.02 0.1 0.2 0.1 1 5 3 (tr) 0.25 ≈ 20?

Water 0.02 0.2 4 0.1 1.4 4 0.3 (tr) 0.12 ≈ 10?

Air 0.4 0.2 5 50 500 50 0.03 (tu) 0.05 ≈ 104
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Figure 1: Migration velocity c of dunes as a function of their height H for aeolian

barchan dunes (•), dunes propagating on the back of large aeolian dunes (◦)

and subaqueous barchan dunes (�). Solid line: Bagnold’s prediction. Inset:

photographs of barchan (top) and transverse (bottom) dunes formed under water

(left) and air (right). Note the superimposed bedforms on the back of aeolian

dunes.
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Figure 2: Bottom shear stress τ/τ0 on a smooth sinusodal bottom (black line).

(a) Measurements for 2ζ0/λ = 0.0125 (�) and 0.05 (�) (Zilker et al. 1977) and

best fit with three harmonics (solid lines). (b) Measurements for 2ζ0/λ = 0.2 (•)

(Buckles et al. 1984) and large-eddy simulation for 2ζ0/λ = 0.0125 (......), 0.1

(−−), and 0.2 (——) (Henn & Sykes 1999).
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Figure 3: Shear stress components in-phase A (a) and in quadrature B (b) as a

function of the wavenumber kz0. Inset: phase shift tan−1(B/A) in degrees. Solid

lines: full calculations; dashed lines: asymptotic calculations. (——), smooth

closure Eq. 3; (——), ‘Hanratty’s model’; (——), rough closure Eq. 4; (——),

laminar Couette flow; (−−), Eq. 10; (−−), Eq. 7; (−−), Eq. 8. Green region:

transition between the laminar and turbulent regimes. �, •, from electrochemical

measurements (Frederick & Hanratty 1988, Zilker et al. 1977). N, from velocity

measurements on a 40 m long protodune. �, flume (Poggi et al. 2007). •, flume

(Finnigan et al. 1990). (c) Schematics of the layered structure of the disturbed

flow in the different regimes.
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Figure 4: Relaxation of the sediment flux q towards qsat; (a), aeolian transport;

(b), suspension. (a), The wind erodes a sand patch starting at x/Ldrag = 0 with

drag length Ldrag =
ρp
ρf
d; N, u∗/uth ' 1.8; �, u∗/uth ' 1.5; •, u∗/uth ' 1.2. Red

lines: best exponential fits q/qsat = 1 − exp(−x/Lsat) (Andreotti et al. 2010).

Inset: Lsat/Ldrag as a function of u∗/uth. Black symbols: direct measurement

from wind tunnel experiments; red symbols: indirect estimate from the analysis

of dune initial wavelengths (field data); dotted line: Lsat = 2(ρp/ρf )d ≈ 0.8 m.

(b) Similar measurements for particles transported in suspension, with distance x

rescaled by the deposition length Ldep = (U/Vfall)D, for net erosion (•, van Rijn

(1986); •, Ashida & Okabe (1982)) and net deposition (�, Ashida & Okabe

(1982)), along with exponential fits (solid and dotted lines).
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Figure 5: (a) Growth rate σ as a function of wavenumber kz0 from Hanratty’s

model, for Lsat = 0 and S = 0 (dotted line), Lsat = 0 and S = 1.0 (dashed line)

and Lsat = 90 δν = 36 d and S = 1.0 (black line). These latter values are chosen

to fit measurements (•) from Betat et al. (1999). (b) Most unstable wavelength

λ rescaled by Lsat computed for S = 0 (solid lines) and S = 1.6 (dashed lines).

The color code is as in Figure 3.
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Figure 6: (a) Time evolution of the amplitude H (�) and wavelength λ (•) of

ripples in a natural river in Gascogne, from a flat sand bed. Inset: bed profiles

at t = 25 s and t = 150 s. (b) Measured initial wavelengths λ/d as a function

of d/z0, for u∗/uth in the range 1.8 ± 0.2: �, Coleman & Melville (1996); �,

Baas (1994, 1999); �, Kuru et al. (1995); �, Charru & Mouilleron (2002);

�, Langlois & Valance (2007); �, Fourrière et al. (2010); �, Betat et al.

(1999). Solid lines: predictions for the most unstable wavelength, with S = 0.5

and Lsat/d = 2.5 U(d)/Vfall (rough case) and Lsat/d = 12 U(d)/Vfall (smooth

case), with color code as in Figure 3. (c) Profile δh of dunes on the flank of a

large barchan and corresponding sand flux perturbation δq. (d) Measured initial

wavelength of aeolian dunes as a function of the rescaled wind velocity. Yellow

region: uncertainty on the value of Lsat, in the range 0.5–0.9 m.
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Figure 7: (a) Slow time evolution of the wavelength by pattern coarsening after

the initial stage shown in Figure 6a, and saturation due to the influence of the

river depth. (b) Spatiotemporal diagram of the nonlinear coarsening (Coleman &

Melville 1994). (c) Wavelengths collected by Yalin (1985) for final subaqueous

ripples (triangles), for u∗/uth < 1.5, in the graph λ/d vs d/z0. The black line of

Figure 6b (Hanratty’s model) is reported for reference.
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Figure 8: Top: photographs of bedforms with kD . 1 (finite-depth or finite-

width effects). Bottom: data-set of natural bedforms in the plane (kD, Fr);

green circles: dunes in flumes; grey region: B < 0, white region: B > 0.
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