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Selection of velocity profile and flow depth in granular flows
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The dynamics of a two-dimensional pile constituted by spherical grains organized in parallel layers is
investigated theoretically. Only three effects are taken into account in the model: driving by gravity, nonlocal
dissipation due to shocks, and trapping of grains by the bumps of the underneath layer. This is sufficient to
recover the basic properties of granular avalanches: the transition between static and flowing state is hysteretic;
the pile does not flow on the whole height but only in a layer at the surface; the velocity profile inside the
flowing layer is approximately linear and is followed by a creep motion in(thes) static part. The flow
height increases as a function of the pile angle and tends to infinity for a critical angl&he dependence of
this critical angle with the static angles, the restitution coefficienp, and the moment of inertid, is

investigated.
DOI: 10.1103/PhysRevE.63.031305 PACS nunier83.80.Fg, 45.05tx
[. INTRODUCTION fluids in which the constraint and thus the velocity gradient

are null at the free surface and maximum at the static bound-

Although they are difficult to analyze, most of the basicary. This is very important since it proves that in granular
properties of granular media are somehow easy to observBows the constraints are not only related to the strain tensor
For instance, most of us have already built a sand pile by1].
pouring some sand on an horizontal surface. The sand accu- In a previous articl¢7] we have revisited the dynamics of
mulates at the top of the pile, which remains static until thea single grain rolling on a rough inclined surface. We have
angle ¢ of the free surface becomes locally larger than theshown that this simple system already presents a subcritical
static anglep,. Then, an avalanche spontaneously starts andifurcation between equilibrium and motion similar to that of
rushes down the pile. It survives as long as the free surfaca@ whole sand pile. Three dynamical mechanisms were taken
angle remains larger than the dynamical angle The dy-  into account. The grain is driven downward by gravity but a
namics of the avalanche appears to be very different fronpart of its kinetic energy is dissipated each time it collides
that of usual fluids since only a thin layer of grains is set intobeneath a bump. The balance between these two effects de-
motion (Fig. 1). This behavior rises several problems still termines a limit velocity. The two critical angles come from

open up to now: the trapping of the grain between the plane bumps. The static
(i) What are the basic mechanisms leading to the subcritiangle ¢ is the angle above which the trap disappears. The
cal transition between equilibrium and motion? dynamical anglep, is the angle below which the limit ve-

(i) What selects the depth on which the sand flows? locity is not sufficient to escape from trapping.
(iii) What determines the velocity profile inside this layer? ~ The aim of this paper is to extend the previous mqdé!
Velocity profiles in avalanches were measured by Rato the case of several layers of grains, keeping the same three
jchenbacH1] in a rotating drum with a width of one grain effects, gravity driving, dissipation by shocks, and potential
diameter. He found that the velocity profiles were approxi-trapping. We will examine the two problems previously
mately linear[ d,v =T"(¢)] with a slight viscouslike curva- risen: the selection of the flowing height and the shape of the
ture (9,,0<0) in the upper part and a slight creeping tail velocity profile.
(9,20 >0). The same kind of profiles were obtained numeri-
cally by Azanza, Chevoir, and Maucharor2] and
Prochnow, Chevoir, and AlbertellB] but with a larger cur-
vature @, <0). However, the existence of a static bottom Many effects can influence the dynamics of granular
was not observed in the numerical simulations: the grainflows: the roughness, the elasticity, and the geometry of
were always rolling down to the rough bottom. For com-grains but also electrostatic interaction or humidity. How-
pleteness, let us mention that velocity profiles were als@ver, three mechanisms are always present in any granular
measured in experiments on collisional flows down roughmaterial: gravity, dissipation by the shocks between grains,
inclined planeg4,5], with the same conclusion. and trapping of the grains between their neighbors. Our aim
We measured velocity profilgfig. 1) at the boundary of is to build a simple model in whicbnly these three effects
a quite large channglLO0 grain diametejy a (intercorre-  play a roleand can be tuned independently.
lation of imageg method PIV. They exhibit a strong shear at  We consider a two-dimensional pile constituted by spheri-
the free surface followed in the lower part by a creep motioncal grains organized in parallel layers. All the quantities used
region as that observed by Komatstial. [6]. Again, the in this paper are rescaled using the grains diameténeir
velocity profile is approximately linear but exhibits now a massm, and the gravity fieldy (d*%g~*? is the typical ti-
positive curvature 4, >0) so that the velocity gradient is mescale The lower layem=0 is fixed and constitutes the
maximum at the free surface. It is just the opposite of usuatough plane on which the grains flow. The plane can be

II. MODELING

1063-651X/2001/6(8)/03130%8)/$15.00 63 031305-1 ©2001 The American Physical Society



B. ANDREOTTI AND S. DOUADY PHYSICAL REVIEW E63 031305

FIG. 2. The grainn is assumed to roll without sliding on the
grain n—1 beneath it at the contact poiht{. The positions are
specified by the angle,, which vary fromeg just after one shock
down to— ¢, just before the next one. The system is periodic along
the direction of the layers so that only the dynamics of one chain of
grains has to be computed.

FIG. 1. During an avalanche, only a thin layer of grains flows. N
The velocity profile exhibits a large gradient in the bulk of the U= _E (N+1—i)cog6,—¢). (4)
layer. At the interface between the static pile and the flowing layer, i=1
a region of creep motion can be observed. This instantaneous ve-
locity profile was obtained by means of PIV in a channel of 100Finally, the equations of motion directly follows as a set of
grain diameters width. coupled equations labeled oy

inclined at an angle, which is the control parameter. Inside tpaa
each layern, the grains are separated by a fixed distance ,Zl @i n[co% 6= 6) +(—1)""1]6,
2d singg (Fig. 2. N
A. Equations of motion - .21 @i nSIN(6; = On) 61 O+ (NF+1=n)sin(6,— ).
By assumption, the grainms— 1 andn of successive layers (5)
are in permanent contact at poihf. The position of the
grainn relatively to the graim—1 is specified by the angle It is worth noting that the right-hand side is composed by
0, (Fig. 2) between the perpendicular to the inclined planetwo terms: an inertial term quadratic #) and the gravity
and the vector joining the centers of mas&,(,G, term proportional to the number of beads above
=2InGn=u9n). The velocity of the graim is thus When the graifl collides with the graird — 1, part of the
kinetic energy is dissipated. We assume that the shock is
instantaneous and that the forces are transmitted through the
ol @ contact pointd ,. To find theN independent quantities con-
served during the shock, let us consider the subsy$tem
+1,...N}. Except gravity, which can be neglected, the only
external force on this subsystem is that exerted at the contact
point I, by the grainn—1. As a consequence, the angular

n
Vnzzl Oiugy

We assume that the gramrolls without sliding around the
beneath on@—1 so that its angular velocity is

n momentum of the subsystefm,n+1,...N} about the point
anzz (—1)* k. (2) I, is conserved. Denoting, respectively, by the subscripts
i=1 and + the quantities before and after the shocks, we obtain

N
2, ainlcos 67 —67)+ (=136

The motion is conservative except during the shocks. In-
troducing the moment of inertid of a grain about its diam-
eter, the kinetic energy of the whole chain of grains reads: "

1 N =, @ [cog 6 —67)+(—1)" 16, .
T:Z,le ai'j[cos(ﬁi—01-)+(—1)'+JJ]0i0j (3) =1
The relative positiond, of the grainl changes during the
with @; ;=[N+1—max(,j)]. Its potential energy is shocks from— ¢ to ¢, if 6 is negative, and frompg to
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— ¢, if 6 is positive. The positiom,, of all the other grains ~ Where the restitution coefficientis approximately equal to
remain the same before and after the shock. The previol&if(¢d/es and where the matriM is given by M, ;=[1

expression can thus be simplified into +(—1) "I [N+1—max(,n)J/(N+1—n).
N
izzl i.n[ €O% 6i+ B 0:) (= 1)i+n‘]](.0i+ B bi_) C. Discussion
_ The model fully generalizes the case of one grain on a
=—2a o sin(6,)sin(¢q)| 6 |. (6)  rough bottom investigated in a previous arti§d. For N

The most important thing to note about these shocks is their 1 the equation of motion reduces to D) 6=sin(6—¢)

nonlocality. The collisions are not binary but the whole chain—p|6|6, which already leads to a subcritical transition be-
of grains is involved: the flowing layer is not isolated and tween equilibrium and motion. This characteristic is due to

consequently its momentum is not conserved. the fact that the grain can remain static in the dip between
underlying grains and, when flowing, that it has to keep
B. Simplified model enough kinetic energy after each collision to pass above

these graing7]. In Eq. (7), this trapping effect is related to
the fact that the gravity term siéf- ¢) has a drawback effect
in a part of the trajectoryfor o> 6> o).

Investigating the effects of the dynamical mechanisms di
rectly from Egs.(5) and (6) governing the motion and the

collisions is not an easy task. We will thus first simplify the . .
model term by term. The case of several stacked layers is more complicated

The expression of the kinetic energy involves a projectiorf)ecause thle sr;ochk of or_:%_gram hss an eﬁectEon aIIhthe other
factor cos@ — 6,), which remains almost constant during the 12Yers(nonlocal shocks This can be seen in E¢7) where

motion. The first simplification is to approximate this factor € left-hand side involves the angular acceleration of all the
by 1 so that the kinetic energy becom@s: %Eir\szlai’i[l chain of,gralns. Thl§ mtrqduces an essential difference with
+(—1)i+j\]]9i 9,— . As a consequence, the inertial term in the B_agnold s mode[8] in which the shocks are assumed _to_ be
right-hand side of the equation of motid®) disappears. bm_ary and ha_Lve an effect only for _the two layers _coll|d|ng.
This is justified by the fact that sifi6,) is null on the This nonlocality makes the resolution hardly possible theo-

average and leads to a simpler equation of motion: retically._ L .
g P a Keeping the dissipation localized at the shocks, we would
N , ) have to perform a molecular dynamics type of simulation. To
> i [14(=1)""316= (N+1-n)sin(6,— ¢). avoid this, the dissipation has been replaced by a friction

quadratic inf acting continuously along the grain trajectory.

Similarly, the restitution factor simf) in the right-hand This simplifica_tion allows a fixeq time step simulation. It
side of the collision equatiof6) could be thought of as being Was checked in the case of a single grain that the overall
null on the average. This is true, except for the gtaimhich ~ dynamics does not change. On the other hand, to keep the

collides with the one beneath. Indeed, the ardjlés known trapping effect, the force term was of course not similarly
to be equal to— g (or ¢, for a backward collision After ~ 2veraged.

averaging over microscopic configurations, the second equa- The SeCO’.‘d interest of the simplificatiggq. (7.)] Isto
tion becomes allow the tuning of each effect separately. The dissipation is

controlled by the coefficiend. The trapping of the grains is

N related to the oscillation of the gravity term sih¢). It is
2 @ [1+(— 1)i+nJ]('9i+ — 'gi—) thus controlled by, i.e., by the compacity of the pile. The
i=1 accumulation restitution of rotation energy is controlled by
) - the moment of inertid. Finally, the effect of the rough fixed
= —2(N+1-1D)sirf(¢g) 8,06/ - bottom depends on the total number of laykirs
On the average, the grairmakes approximateltzi9||/290s . RESULTS
shocks per unit time. The discrete shocks can thus be re-
placed by a continuous friction force: A. Velocity profiles
N We integrate the model numerically using a fourth-order
Runge Kutta method. As a reference case, we closé,

) __1\i+n
i; il 1 (=110 Oilshocks ©s=40°, J=0.5, andN=50. A visualization of the pile is

) shown on Fig. 3 forp=24° together with the mean velocity
Sin’( ) |€ |€ profile. The first thing to note is that the grains only flow in
@ nene the upper part of the pile: as in a actual sand [fey. 1),
there exists a quasistatic part. The second is the similarity
We finally obtain an equation set governing the motion: between the actual velocity profile and that given by the
) o model. It is characterized by a strongly sheared layer near the
My i0;=sin(6,—¢)—p| 6,6, (7)  free surface together with a slight creep motion in the bottom

=—(N+1-n)
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FIG. 3. Left: a visualization of the flowing layere(=24°). FIG. 4. Evolution of the mean velocity profile with the angle
Right: the corresponding mean velocity profile. by steps of 0.5°. The flowing height increases with the agglehe
creep motion reaches the bottom plane arogrd25°. Above this
part. The curvature is the same as in the experimepp ( value(insey, the velocity profile changes and becomes again nearly
>0) corresponding to the fact that the velocity gradient islinéar abovep=33°. The velocities are rescaled by,
maximum at the free surface.

Looking at Fig. 3, one can observe that the first seven Another way of defining the flow depth is to use integral
layers (n=N—6 to n=N) are moving. This region corre- quantities like the flow rat@=3N_,v, and the translation
sponds on the mean velocity profile to the large shear regiopinetic energy E=3N_v2 Dimensionally, we obtain a
at the free surface. Below, only two layers are moving lengthH=Q¥E and a frequency{ «<E2/Q3. The prefactors

=N-9 andn=N-15) all the others being trapped. At the ; : : )
same depth, the mean profile does not exhibit any discontfEan be adjusted to recover the right flowing depth and veloc

nuity. The creep motion in this region is thus very intermit- |ty g;l.chent when the velocity profile is linesolid fine in
tent. One layer starts jumping above the one beneath but thé:r{g' '
remains trapped for some time. A different layer makes a

relative motion of one grain and so on. Due to this irregular 0.7

motion, we will focus on quantities averaged over 1000 unit r

times. 0.6
The evolution of the mean velocity profile with the plane

angleg is shown in Fig. 4. It turns out that the flowing height 0.54

increases with the angle, betweerr18° ando=25°. In

this angle range, the velocity profile remains approximately 0.4

linear in the bulk but the creep motion region is more and

more extended. Around=25°, the flow reaches the bottom 0.3

(Fig. 4, insel. Above, the velocity profile changes drastically '

and becomes again linear at much larger angles 2°), 0.0

with just the velocity gradient increasing with the plane ’

angle ¢. o1l

B. Flow height 0

It is interesting to characterize the flow by a few param- 0 5 1o 15 20 25 30(p (0)35

eters such as the flow heigHtand the mean velocity gradi-
entI” inside the flowing Ia_yer. _Ho_wev_e_r, without & pre_cise FIG. 5. Velocity gradient” as a function of the angle. I'g is
model of the creeping tail, this is difficult to do. A first yhe yelocity gradient at the free surfagashed line on the inget
possibility is to use simply the velocity gradient at the free s the bulk mean gradient defined using the momen@iand
surfacel's=vy—vy-1 (Fig. 5. The typical flow heightHs  the kinetic energyE (dotted line on the insgtThe black points are
can then be defined using the velocity at the free surfacgptained by increasing slowly the anglé(t) = + 105, the white
vn=IsHs. This corresponds to approximate the velocity ones by decreasing the angié(t)=—10"°. The solid line corre-
profile by its tangent at the free surfa¢dashed line on sponds to the velocity gradient of a single grain on a rough bottom
Fig. 5. (N=1). The velocity gradients are rescaled g{?d 2.
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FIG. 6. Flow depthH as a function of the angle. H, andHq
are, respectively, estimated from the velocity profile in the bulk and  FIG. 7. Flow depthH as a function of the angle for different
at the free surfacésee Fig. % As in Fig. 5, the black points are total heightN (10, 20, 30, 40, and 50As previously, the heights
obtained by increasing slowly the angté(t)=+10"°, the white  are given in number of grains.
ones by decreasing the angié(t)=—10"°. The heights are res-

caled by the grains diameter to escape from a potential trap whose defiih-gH[1

5 5 —COoSps—¢)] increases linearly witlH. If we assume that
H :ﬂ I :E ®) the other layers do not help the grain to escape from trap-
bT3E’ P 8Q¥ ping, i.e., that they do not transmit kinetic energy to it, the
last grain to flow has just enough kinetic energyI(?) to

The evolution of the velocity gradierit and of the flow- escape from the potential trapping. The flowing height is
ing depthH with the anglep are plotted in Figs. 5 and 6. The then given byH=I"%/[1— cos(ps— ¢)], which predicts an in-
flow height defined from the velocity profile at the free sur- crease ofH with ¢ and a divergence at=¢,. The diver-
face Hs) and in the bulk Hy) have globally the same evo- gence ofH is indeed observed, but for a smaller angle In
lution. They increase gradually with the angfefrom H fact, all the layers are coupled so that the upper layers help
=3 at ¢=16° to the total number of layerld=N=50 at the lower layers to escape from trapping. But this help is not
large angle. The mean velocity gradient in the bdlk)and  enough to balance the increase of the potential trap; the
at the free surfacel(;) evolve very differently. Atp=16°,  depth obtained from the numerical integration of the model
the velocity profile is strictly linearT’, and I'g are thus is larger than that estimated under the hypothesis of un-
equal. AboveI', decreases due to the development of thecoupled layers.
creep motion tail. A sudden change of behavior appears at
¢=25°, angle at which the creep motion reaches the fixed
bottom. Above[',, increases rapidly and becomes asymptoti-
cally equal tol' at very large angles, corresponding to the  The white points in Figs. 5 and 6 are obtained by decreas-
fact that the velocity profile tends towards linearity. On theing the anglee continuously at the slow rate ap’(t)=
other hand, the velocity gradient at the free surface remains 10~ °rad ¢’?d~*2. The initial condition was prepared ran-
almost equal to the velocity of one graiN€1) on a fixed domly at ¢=35° and the equations of motion were inte-
bottom (solid line on Fig.  meaning that it does not feel grated over 1000 unit times before decreasing the angle. To
much from the motion in the bulk. It can be seen in Fig. 6¢check that the pile was always at statistical equilibrium, we
that the crisis aroung=25° results in a fast increase of the investigated the reversibility of the curve by preparing the
flow heightH with the angle. initial condition randomly atp=16° and by increasing the

As a first approximation, the total number of layeMs angle at the ratep’ (t)=10"°rad g¢’?d 2. The result, in
modifies only the height at whicH saturates at large angles black points in Figs. 5 and 6, shows very clearly that above
(Fig. 7). It can also be noted that the saturation is sharper fop=16° the system is reversible.
thin layers (N=10 and N=20). It is remarkable that the This is evidently not the case if we start from a pile ini-
sudden increase of the flow height approximately occurs aially at rest. In that case, the motion starts spontaneously at
the same angle.. This suggests the existence of a diver-the static angleps, above which the trapping disappears.
gence ofH(¢), in the limit of a very large number of layers. Betweene=16° ande= ¢,=40°, the equilibrium is meta-

It is clear that the selection of the flow depth can be asstable and one rolling grain is sufficient to initiate the motion
cribed to trapping i.e., to the fact that grains should have af the whole layer. Finally, belowp=¢4=16°, the flow
sufficient kinetic energy to climb the bumps of the under-stops[9]. We thus recover, in the present model, the hyster-
neath layer. More precisely, a grain of the layé#1—H esis between equilibrium and flowing observed in actual
has to lift up the H—1) grains located above it. It has thus sand piles.

C. Reversibility, Hysteresis
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FIG. 9. Flow depttH as a function of the angle for different
static anglep, (35°, 40°, 45°, and 50°and thus different compaci-
ties. As a guideline, a fit by the functioa sin(¢)/sin(e—¢.) is
superimposed to the numerical points. The divergence apgle
increases withpg but @ remains constanto(=2.5). As previously,
. . . ) . . the heights are rescaled by the grains diameter
We investigate in this section the effect of the static angle
¢, Of the restitution coefficienp and of the moment of creasedby o) or kinetic energy reducetby p or J), both

inertia J on the dynamics of the pile. For all the sets of the analew. above which the motion is possible and the
parameters investigated, we recovered qualitatively the be- gi€eq P

havior previously described. We will thus limit ourselves to angle g for which the flow height diverges, increase.
study, parametrically, the flowing heighty,(¢).
The relation between the flowing height and the angle is IV. CONCLUSION

shown in Fig. 8 for two different restitution coefficiengs We have proposed in this paper a crude model of sand
The global evolution is the same but the divergence and thgjies constituted by parallel layers of grains. Only three

saturation are much sharper fpr=2 than forp=1. For a  mechanisms are taken into account: gravity, dissipation by
larger dissipation rate, both the anglg above which the nonjocal shocks, and trapping of the grains. The models al-
motion is possible and thap; at which H diverges, are |ows nonetheless to recover the subcritical transition between
larger. On the other hand, the range of angles for which thgtatic equilibrium and motion observed in actual sand piles
pile flows on a finite depth is smallgB°® for p=1 against

5.5° for p=2). The increase of the critical angles with the

FIG. 8. Flow depthH as a function of the angle for two
different restitution coefficient§p=1 and p=2). As previously,
the heights are rescaled by the grains diameter

D. Parametric study of the flowing height

J=0.75 J=0.25

dissipation rate is indirectly related to the trapping. When 04
is increased, the kinetic energy globally decreases. As a con-
sequence, a larger angle is necessary to recover a kinetic ~

energy sufficient to escape from the trapping.

Similarly, we observe in Fig. 9 that the two critical angles
increase with the static angle;. This time, the range of 30
angles for which a static part exists also increases with
Changing the static angleg allows to change the depth of
the traps without changing the kinetic energy. Again, for a 20
larger static anglers, a larger kinetic energy is necessary to
escape from the trapping and thus a larger angle.

The moment of inertid of the grains about their diameter
controls the accumulation and the restitution of rotation ki-
netic energy. Whed is increased, the angke, at whichH 0
seams to diverge decreag€dy. 10. As for the dependence 18 20 22 24 26 28 ) 30
of p and ¢, this is due to the trapping. An increase bf ?
induces a regulation of the kinetic energy by the rotation: the  F|G. 10. Flow deptiH as a function of the angle for different
grains become less sensitive to the oscillation of the gravitynoments of inertial (0.25, 0.5, 0.75, and)1As in Fig. 9, a fit by
force. Thus, for a large moment of inertlaa lower angle is  the functiona sin(g)/sin(e—¢) is superimposed to the numerical
necessary to escape from the traps. points. The divergence anglg, increases whed is decreased but

This parametric study shows that the selection of the floww is constant as previouslyr=2.5). As previously, the heights are
depth is governed by the trapping effect: if trapping is in-rescaled by the grain diameter

104
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0. Experiment the velocity profile is linear with a velocity gradieri
proportional to 6,%[sin(g)/p]*? and without a static part
-5 (Fig. 11).

10 From this simple comparison, we can conclude that
(i) the existence of a strong gradient at the free surface is
e 15 N°“1T°°al shocks - not due to trapping but to the nonlocality of the shocks: when
o Diffusion - Binary shocks - Fon local shocks | +1Tapping | one grain collides a second grain, it looses a part of its mo-
Py 4 y P y > mentum but this momentum is not transmitted to the second

grain. It is transmitted through the whole chain of forces to
-10; -10?-10? -10 the rigid bottom. The importance of the dissipation non-
locality is confirmed by the observation that the velocity gra-
-15 -15 -15 -15 . : : o .
dient at the free surface is almost insensitive to the dynamics
FIG. 11. In an actual sand pile, the flow is limited to a strongly Of the grains beneath it. Indeed, it is approximately equal to
sheared layer at the free surfatep). Depending on the nature of the velocity of one grain on a rough plane, as if each layer of
the dissipation, the velocity profile is different; for a viscous diffu- grains was rolling on a fixed orfd].
sion (thermal binary shocks, leftfor binary collisions as in Bag- (i) in the absence of a drawback force at some places, the
nold’s model(center lefj, and for nonlocal shock&enter right.  grains cannot remain at rest. The selection of a flowing depth
These three models do not predict any internal limit to the flowjs thus directly related to the trapping of the grains in the
depth. To recover this behavior, both nonlocal shocks and trappingoles of the underneath layer. More precisely, it is due to the
of grains between its underneath neighbors have to be taken infyct that the trapping potential increases linearly with the
account(present model, right depth while the kinetic energy relatively to the underneath

but also the selection of a finite flow depth and the shape offYer is almost that of one grain. ,
the velocity profile. (ii ) the velocity profile is strictly linear in the absence of

The velocity profile inside a dense granular flow is differ- f@PPing while it exhibits a creeping tail in the full model
ent from that of a viscous fluif =1 — (z/H)2] by two prop- Fig. 11). The creeping tail is thus also a signature of trap-

erties: there exists a quasistatic part and the velocity gradiem!"9:

is maximum at the free surface. A viscous fluid flows down_ AS & conclusion, this model reproduces the velocity pro-
to the fixed bottom and the velocity gradient is null at thefil® observed experimentaliincluding the maximum shear

surface (Fig. 11. In the later case the velocity profile is &t the surface and the creeping Xadnd the selection of a

derived from the viscous interaction between the fluid layersfinité flow depth. lts simplicity allows to show that the strong
ear can be ascribed to the equilibrium between gravity

This viscous coupling can be described as the exchange Gf .~ oM
momentum due to binary shocks of molecules induced byfiving and dissipation by nonlocal shocks, and that the
thermal agitation. BagnoifB] proposed an adapted descrip- creePing tail and the finite depth can be ascribed to the trap-
tion, the collisional granular flow model, in which the shocks PIng éffect. It could be tempting to tune this model and in-

are not induced by thermal agitation but by the velocity dif-roduce further effects to reproduce more closely some ex-
ference of the grains themselves. This gives a viscdiiy perimental results. However, it presents internal limitations

momentum diffusion coefficienho longer constant but pro- due%.lto its fixed geometry. Mor”eover,l mos# Off the \aeloc_:it.y
portional to the velocity gradient. The resulting velocity pro- Profiles measured experimentally could suffer from the rigid
file [vocl—(z/H)¥?] is still very different from that mea- glass boundary introduced for side visualization. The de-

sured in dense flowing layer§Figs. 1 and 1L Other tailed theoretical description of this velocity profile is also

adaptations could be thought as to change the relation pdifficult [10.11.

tween the stress and the strain to obtain the good profile. It is more |ntere§t|_ng to see the pres_ent ”.“?de' as a tool to
However, in any continuous model with a local stress s:trair’FmderStand the origin of several particularities of granular
relation, the shear stresthe constraintsshould be null at lows, and to use its general results to improve continuous

the free surface and the shear strain should thus vanish at tgPdels. For instance, the BCRE modgd®,13, which con-.
free surface. Following the conclusions of Rajchenbach,s'der equations governing the flow layer evolution, explicitly

Clement, and Durafil], any model based on a local stress assume that the velocity profile is constant and do not take

strain relation is inconsistent with experimental observationdt0 account the hysteresis between static and flowing states
(Figs. 1 and 11 (the trapping. But another type of modéknown as DAD’S

In the present model, the shape of the velocity profile is[14’1'"-ﬂ uses the assumption of a linear vel_oc_|ty profile,
recovered. To discriminate between the effect of the nonlocaf/0Ser 10 the results presented here. The predictions of these

shocks and that of the trapping, we can look at the resuﬁiifferent models should thus be closely compared with ex-
obtained when we average the equation of motidh to perimental observations to investigate the influence of the

suppress the trapping. During motion, the gravity termdifferent mechanismévelocity profile, trapping.).on inho-

sin(6,— ¢) oscillates ancthanges signit is the existence of Mmegeneous flows like avalanches.
this drawback force at some places that allows static posi-
tions. The average of this term over microscopic configura-
tions is proportional to-sin(e). If we replace it in the equa- The authors wish to thank A. Daerr, L. Quartier, and Y.
tions of motion(7), steady flows are immediately obtained; Couder for many stimulating discussions about this work.
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