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Non-Brownian suspensions present a transition from Newtonian behavior in the zero-shear limit to a

shear thickening behavior at a large shear rate, none of which is clearly understood so far. Here, we carry

out numerical simulations of such an athermal dense suspension under shear, at an imposed confining

pressure. This setup is conceptually identical to recent experiments of Boyer, Guazzelli, and Pouliquen

[Phys. Rev. Lett. 107, 188301 (2011)]. Varying the interstitial fluid viscosities, we recover the Newtonian

and Bagnoldian regimes and show that they correspond to a dissipation dominated by viscous and contact

forces, respectively. We show that the two rheological regimes can be unified as a function of a single

dimensionless number, by adding the contributions to the dissipation at a given volume fraction.
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The rheology of amorphous materials such as emulsions,
foams, metallic glasses, suspensions or granular materials
share a similar phenomenology close to the jamming tran-
sition at which viscosity diverges [1–4]. However, the
dynamics of these systems is not yet clearly understood
and the establishment of a unified theory remains a chal-
lenging goal of out of equilibrium statistical physics.
Following the pioneering work of Einstein [5], the com-
mon view on suspensions of particles in a fluid has long
been to start from the dilute limit and to perform an
expansion in volume fraction � [6,7], with a particular
emphasis on the effective interaction between particles
mediated by the fluid. By contrast, recent studies have
started to view the rheology of dense suspensions from
the other limit instead, in the framework of dense granular
systems [1,8–12]. The rheology of dense suspensions of
solid particles in an isodense fluid of viscosity �f is

Newtonian at small shear rate _� with a viscosity �= _�
diverging as �fð�c ��Þ��, as the particle volume frac-

tion goes to its critical value�c. The measured exponent �
ranges between 2 and 3 [1,13–15]. Mean field theory,
assuming a dissipation dominated by lubrication films
separating particles, predicts an exponent � ¼ 1 [9]. By
contrast, numerical simulations assuming that dissipation
is due to the nonaffine displacement of particles give the
exponent � ’ 2:2 [10,11]. There they relate the zero-shear
viscosity, a macroscopic dynamical observable, to a micro-
scopic observable: the variance of the nonaffine velocity or
displacement [10]. The latter is itself related to the geome-
try of the contact network [11].

While most fluids shear thin, it was first shown by
Bagnold [16] that suspensions exhibit shear thickening
when the volume fraction� is kept constant: their apparent
viscosity increases with the shear rate. However, the con-
ditions for such a property to emerge still remain contro-
versial [12]. In particular, as recently emphasized [1],
suspensions exhibit shear thinning when the confining

pressure Pp is controlled and kept constant, a property
reminiscent of dry granular materials.
In this Letter, we use discrete element simulations of

non-Brownian particles interacting with a continuum vis-
cous fluid to show that the rheology of suspensions at finite
shear rate can be unified with the Newtonian quasistatic
limit. More precisely, Boyer et al. [1] have recently shown
that the rheology of a suspension approaching the zero-
shear limit can be rewritten as a frictional law of the form
� ¼ �JðJÞPp and � ¼ �JðJÞ, where J ¼ �f _�=Pp is the

viscous number comparing viscous stresses to the confin-
ing pressure. In the inertial Bagnoldian regime, the flow is

characterized by the inertial number I ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� _�2d2=Pp

p
, with

a subsequent rheology of the form � ¼ �IðIÞPp and
� ¼ �IðIÞ. We show here that the contributions to the
dissipation can be added at fixed �, which results in a
unique rheology � ¼ �ðKÞ and �ðKÞ controlled by the
dimensionless numberK ¼ J þ �I2, where� is a constant
of order 1 encoding the details of dissipative mechanisms.
Numerical model.—We consider a two-dimensional sys-

tem constituted of ’ 103 circular particles of mass mi and
diameter di, with a �50% polydispersity. The shear cell is
composed by two rough walls, created by gluing together
two dense layers of grains, with periodic boundary condi-
tions along the direction x parallel to the walls. The position
of the walls is controlled to ensure a constant normal stress
Pp and a constant mean shear velocity _�. The particle and
wall dynamics are integrated using a Verlet algorithm. These
discrete elements are coupled to a density matched fluid,
described as a slowly varying continuum phase. The hydro-
dynamical fluctuations of the pores [17] are neglected. The
fluid velocity ufðyÞ and the fluid shear stress �fðyÞ profiles
are determined by averaging the equations governing the
motion of the fluid over x and over time t, as proposed in
[18] (see Supplemental Material [19]).
The particles are submitted to four types of forces.

(i) Upon contact, they interact with a viscoelastic force
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and with a Coulomb friction for relative tangential motion
between particles at contact [20–22]. The model used for
particle-particle interactions is identical to that proposed
by Luding [22]. Quantities used in the model are expressed
in terms of the grain density �, of the applied pressure Pp,
and of the mean grain diameter d. In this system of units,
the normal spring constant is chosen sufficiently large
(between 103 and 104) to reach the rigid regime in which
the results do not depend on it. The Coulomb friction
coefficient is chosen equal to �p ¼ 0:4, except for the

inset of Fig. 2 which is obtained in the frictionless limit
�p ¼ 0. The other viscoelastic parameters are chosen to

lead to a restitution coefficient small enough (between 0.1
and 0.9) to get results that do not depend on it (see
Supplemental Material [19]). (ii) They are submitted to a
viscous drag force given by

f drag
i ¼ 3	�f½ufðyiÞ � upi �; (1)

which involves the nonaffine particle velocity component,
i.e., the fluid velocity uf minus the particle velocity up, and
where i is the particle label. This is based on the assump-

tion that the particle based Reynolds numbers Rep ¼
�jup�ufjd

�f
remains small. (iii) When the fluid presents a

stress gradient, it exerts a resultant Archimedes force on

the particle, which reads farchi
i ¼ �ð1��Þ�1f

drag
i (see

Supplemental Material [19]). (iv) Finally, when particles
are separated by a lubrication film, we include the extra
stress as an interparticle force mediated by the fluid [23]:

f lubr;n
ij ðhijÞ ¼ � 3

8
	�fdij

ðupi � upj Þ � nij

ðhij þ 
Þ ; (2)

f lubr;t
ij ðhijÞ¼�1

2
	�f ln

�
dij

2ðhijþ
Þ
�
ðupi �upj Þ �tij; (3)

where hij is the gap between the particles labelled i and j,

dij ¼ 2didj
diþdj

is the effective grain diameter, and nij and tij

are the normal and tangential unit vectors between the
grains. 
 is a regularization length, chosen equal to 5%
of particle diameter. In real suspensions, it can be either
related to the slip length, to the grain roughness or to the
scale over which grains are elastically deformed [24]. This
lubrication interaction is truncated for hij > ðdi þ djÞ=4.

As the fluid is described as a continuum phase in a
steady state, inertial effects and nonaffine effects are en-
tirely ascribed to the particle phase. This means that the
density � only appears in the equation of motion for the
grains and includes the added-mass effect.

As obtained for dense granular flows [20], the simulation is
insensitive to microscopic parameters provided that the grains
are hard enough. The state of the system is then characterised
by the two dimensionless numbers I and J. In the following,
we will rather use the Stokes number I2=J ¼ � _�d2=�f and

the rescaled confining pressure I=J ¼ ffiffiffiffiffiffiffiffiffi
�Pp

p
d=�f.

Transition from viscous to inertial regime.—Figure 1
presents simulation results obtained at the same volume
fraction � ’ 0:78 by varying the rescaled confining pres-
sure I=J, where I is typically varied from 10�3:5 to 10�0:5.
It compares the contributions to the dissipated power of the
different forces acting on the bulk of the suspension. This
dissipation is balanced by the energy brought through the
boundaries of the element of suspension considered. While
the dissipation due to the drag force is dominant at small
I=J, the dissipation in the contacts becomes dominant at
large I=J and the system resembles a dry granular flow
(within the inclusion of the added mass effect inside the
density �). The system therefore presents a transition from
a viscous to an inertial regime, controlled by the rescaled
pressure. It can be seen that the dissipation in the fluid, both
in the pores and in the lubrication films, gives a subdomi-
nant contribution and varies like the contribution due to the
drag force. In the following, we will therefore focus on
results obtained without the lubrication forces.
Looking at the inset of Fig. 1, one observes that the

friction coefficient � defined as the ratio of the particle
shear stress �p and confining pressure Pp remains constant
across the transition. This means that, at fixed �, the shear
stress is controlled by pressure, with a multiplicative factor
insensitive to the nature of the dissipation mechanisms.

FIG. 1 (color online). Fraction of the power dissipated by
contact forces (�cont), viscous drag plus Archimedes forces
(�dþA), lubrication forces (�lubr), and fluid viscosity (�fluid ¼
�f _�2), as a function of the ratio I=J for a fixed value of the

volume fraction (� ’ 0:78). Solid lines are the best fits to the
expression ciJ

Jþ�I2
, with ci as fitting parameters, for the three last

dissipation components. Insets: Friction coefficient � against
I=J (solid curve illustrates the average �) and a schematic of the
numerical setup.
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Figure 2 shows the friction coefficient � of the system as a
function of the volume fraction � for different values of the
number I=J. A good data collapse is obtained, when I=J is
changed over five decades, showing that� is a sole function
of �. Moreover, the data obtained for frictional (�p ¼ 0:4)

and frictionless (�p ¼ 0) particles fall on the same master

curve [20] and differ only by the values of �c and �c.
A single rheology across the transition.—It has been

recently argued that, in the viscous quasistatic limit, tra-
jectories are mostly controlled by geometric effects close
to the jamming point, and do not depend much on the
nature of the mechanisms dissipating energy [10]. We
hypothesize here that the paths along which particles
move do not vary much across the viscous or inertial
crossover. In the viscous quasistatic limit, it was shown
that nonaffine displacements control the enhanced dissipa-
tion close to jamming and take place over a time scale

vanishing as _��1ð�c ��Þ�=2, where � ’ 2 is the diver-
gence exponent of the stresses [10,11]. In the inertial
regime, microscopic rearrangements take place over an

inertial time scale d
ffiffiffiffiffiffiffiffiffiffiffiffi
�=Pp

p
[20,25], over which we assume

energy is dissipated. Assuming further that these two time
scales are proportional to each other, we find that the
stresses must also diverge as ð�c ��Þ�� in this regime.

Under the assumption that, for a given volume fraction
�, the dissipation due to viscous effects and that due to
grain binary interactions can simply be added, particle

shear stress and confining pressure can be written as
sums of linear (viscous) and quadratic (Bagnold) terms in
_� [1,9,25,26]:

�p ¼ f�ð�Þð�f _�þ ��d2 _�2Þ; (4)

Pp ¼ fpð�Þð�f _�þ ��d2 _�2Þ: (5)

The best fit of� and�, functions of I and J, give a constant
value of � ¼ 0:635� 0:009 [Figs. 3(a) and 3(b)]. Indeed,
we obtain a collapse of all data when � and � are plotted
against K ¼ J þ �I2. This supports our above hypotheses.
Consistently, expressions (4) and (5) give the two relations
� ¼ f�1

p ð1=KÞ and � ¼ f�ð�Þ=fpð�Þ. Following empiri-

cal expressions proposed for � and� as functions of I or J
in the cases of dry granular flows and dense suspension,
respectively [1,20,25], we can generalize them using the
number K as

�ðKÞ ¼ �c � b
ffiffiffiffi
K

p
; (6)

�ðKÞ ¼ �c þ �F ��c

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
K0=K

p ; (7)

where �c ¼ 0:8140� 0:0003 is the jamming volume
fraction. The constants b, �c, �F, and K0 are specific to
the considered system. Here we find b ¼ 0:42� 0:01,
�c ¼ 0:277� 0:001, �F¼0:85�0:01, and

ffiffiffiffiffiffi
K0

p ¼0:29�
0:01. Combining the two constitutive laws we finally get

�ð�Þ ¼ �c þ �F ��c

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0b

2=ð�c ��Þ2p : (8)

This expression is in good agreement with the data dis-
played in Fig. 2. Furthermore, as f� ¼ �=K and fp¼1=K,

these two functions are predicted to diverge close to the
jamming point as ð�c ��Þ�2, as a consequence of Eq. (6).
This behavior is also very well supported by our data, as
seen in Fig. 3(c).
We have run simulations in which lubrication interac-

tions between the grains are taken into account. They do
not affect the qualitative results described above, but
slightly change the values of the constants. In particular,
the exponent of the diverging behavior of both functions f�
and fp is unchanged. This contradicts the claim of [9] that

the divergence would be in ð�c ��Þ�1 when lubrication
forces are present.
Discussion.—The above analysis shows a crossover

from viscous to inertial flow at a Stokes number I2=J ¼
_�d2�s=�f ’ 1=�. The suspension is therefore found to

present shear thinning at controlled granular pressure or
shear thickening at controlled volume fraction, when I2=J
goes beyond this value. In the experiments of Boyer et al.,
the maximum value of the Stokes number can be estimated
as 10�3. This value is far below the inertial regime, and,
consistently, all their rheological data collapse when using
J as the single dimensionless parameter [1]. By contrast,

FIG. 2 (color online). Friction coefficient of the suspension
� ¼ �=Pp as a function of the particle volume fraction �, for
different values of I=J. Inset: Same as the main plot but for
frictionless grains (�p ¼ 0). The solid lines are the best fit by

Eq. (8) for �p ¼ 0:4 and the dashed lines show the critical

values for �p ¼ 0:4.
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Fall et al. report in their experiments a crossover between
the two regimes, at a Stokes number of 0.002 [12]. This
value is three to four orders of magnitude lower than the
predictions of our simulations. We hypothesize that this
effect may result from nonlocal effects, as the base flow is
heterogenous. The dominant influence of nonlocality has
previously been observed in other heterogenous flows of
dense suspensions [27], emulsions [28], and granular sys-
tems [29–31]. Our setup is insensitive to nonlocal effects as
all studied quantities are homogenous in the central part of
our shear cell. Nevertheless, many flows are heterogenous
and it would be important to understand nonlocality in
order to rationalize even these.

Newtonian fluids exhibit a transition from laminar to
turbulent flow controlled by the Reynolds number based on
the size of the flow and on the suspension viscosity. It is
unlikely that dilute or even moderately concentrated sus-
pensions would be an exception to this rule. As the jam-
ming transition is approached (� ! �c), the suspension
viscosity diverges so that the Reynolds number vanishes.
The transition from the viscous to the inertial regime in
dense suspension is thereby of a different nature than the
transition from laminar to turbulent flow. In the former,
both the Newtonian and Bagnoldian regimes are controlled
by particle fluctuations with respect to the affine field.
These fluctuations are controlled by the Stokes number,
which is based on the grain diameter and the fluid viscosity
rather than the suspension viscosity. Further studies are
needed to investigate the transition from the inertial regime
to the turbulent regime when the particle volume fraction is
lowered.

In this Letter, we have shown that the Newtonian rheol-
ogy of suspensions can be unified with the Bagnoldian
shear-thickening regime for vanishing temperature. As
pointed out recently by Ikeda et al. [32], thermal and
athermal suspensions seem physically distinct, making a
unified description of glass and jamming transitions un-
likely. Future studies will have to explain the difference in
nature (if any) between mechanically induced fluctuations

(i.e., nonaffine motion) at zero temperature and thermal
fluctuations.
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