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The dynamical mechanisms controlling the rheology of dense suspensions close to jamming are

investigated numerically, using simplified models for the relevant dissipative forces. We show that the

velocity fluctuations control the dissipation rate and therefore the effective viscosity of the suspension.

These fluctuations are similar in quasi-static simulations and for finite strain rate calculations with various

damping schemes. We conclude that the statistical properties of grain trajectories—in particular the

critical exponent of velocity fluctuations with respect to volume fraction �—only weakly depend on the

dissipation mechanism. Rather they are determined by steric effects, which are the main driving forces in

the quasistatic simulations. The critical exponent of the suspension viscosity with respect to � can then be

deduced, and is consistent with experimental data.
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Athermal disordered systems such as foams [1],
emulsions [2], nonBrownian suspensions [3], or granular
materials [4] exhibit a critical phase transition between
liquid-like and solid-like mechanical behavior when the
particle volume fraction � crosses the jamming point �c.
For �>�c, these amorphous systems can resist shear.
The elastic shear modulus vanishes at �c with a critical
exponent different from the mean field one [5,6]. Above
the yield stress �Y , vanishing at �c, they present a
nonNewtonian rheology, for which several different inter-
pretations based on (i) an analogy with the glassy dynamics
of a system presenting scale-free energy distributions [7],
(ii) interacting plastic events [8], and (iii) the critical scal-
ing laws of the shear modulus and coordination number [9]
have been proposed. Together with the conventional mo-
lecular dynamic (MD) simulations, quasistatic (QS) meth-
ods have been applied to study the plastic flow of athermal
amorphous solids at the yield-stress �Y [10–14] level. It is
generally assumed that QSmethods accurately describe the
dynamics of the true system in the limit of asymptotically
small shear rate _�. However, the existence of a proper QS
limit remains controversial, and there is growing evidence
that QS flows actually correspond to a finite-size domi-
nated regime, with a correlation length that saturates at the
system size [8,14].

Symmetrically, for �<�c, amorphous materials can
flow under an infinitesimal shear stress � and present a
viscosity � diverging at �c, like � / ð�c ��Þ��. Scaling
laws are expected to be different in thermal (glassy) and
athermal sytems [15]. In the case of a suspension of
nonBrownian particles, the best fit of recent experimental
results give a critical exponent of � ¼ 2:4 for volume-
controlled experiments [16] and of � ¼ 1:9 for pressure-
controlled experiments [3]. The explanations of the critical

exponent as well as the underlying mechanisms of the flow
arrest have remained open and controversial questions up
to now. Among the proposed mechanisms is the hydro-
dynamic dissipation in lubricated films separating the par-
ticles, or friction-induced normal stresses [17]. A
completely different interpretation relates the divergence
of the viscosity to a singular mode of the network of
contacts close to the isostatic point [18].
Here, we present simulation results for the viscous flow

of a simplified model system in the vicinity of the close-
packed state at�c. We identify a dynamical contribution to
the divergence of the viscosity, which has its origin in the
singularity of velocity fluctuations. By comparing different
computational model systems, we show that some of the
statistical properties of these velocity fluctuations are sur-
prisingly model independent. We show how the rheological
properties, in particular the form of the flow curve and
divergence of the viscosity, can be obtained from one set of
trajectories based on a QS simulation method.
Simulations.—We consider a two-dimensional system

constituted by N soft spherical particles of mass m, N=2
of diameter d, and N=2 of diameter 1:4d. The particle
volume fraction is defined as � ¼ P

N
i¼1 �r

2
i =L

2, where L
is the size of the simulation box. Periodic (Lees-Edwards)
boundary conditions are used in both directions. Two
particles i, j interact when their distance r is smaller than
the sum of their radii, ri þ rj, with a repulsive potential

EðrÞ ¼ �ð1� r=ðri þ rjÞÞ2. All the observables below are

given in units of d,m, and �. We compare the divergence of
the viscosity for�<�c ¼ 0:843 [13,19] using two differ-
ent dynamics: nonequilibrium dissipative MD and QC
simulations.
In MD simulations, the system is sheared at a shear rate

_�. Newton’s equations of motion m~€ri ¼ Fel
i þ Fvisc

i are
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integrated with elastic contact forces ~Fel ¼ � ~rE and a
viscous drag force

~F viscð ~viÞ ¼ ��	 ~vij	 ~vij
�1; (1)

proportional to the 
th power of the velocity difference
	 ~vi ¼ ~vi � ~vflow between the particle velocity ~vi and the
flow velocity ~vflowð ~riÞ ¼ ~ex _�y, whose fluctuations are
ignored [20–23]. The flow can be viewed as being set up
by a nonNewtonian fluid characterized by a friction coef-
ficient � . In the special case 
 ¼ 1, the fluid is Newtonian
and � is proportional to the bare fluid viscosity �f (in

Stokes approximation, � ¼ 3��fd). Thermal and lubrica-

tion forces are ignored. Unlike in granular systems, the
particle-particle collisions are elastic and the only dissipa-
tion is due to viscous losses associated with the fluctuations
of the particle velocity field. The shear stress � is calcu-
lated from the particle positions ~ri ¼ ðxi; yiÞ and the forces
~Fi ¼ ðFix; FiyÞ acting on them as� ¼ L�2

P
N
i¼1 xiFiy. The

dominant contribution comes from the elastic forces that
result from particle overlaps. The resulting relation be-
tween the shear stress � and shear rate _� is shown in
Fig. 2(a). For small strain rates, both inertia and deforma-
tion of the particles are negligible, and the stress grows
with strain rate as � ¼ � _�
, characteristic for a power-law
fluid. The ‘‘effective viscosity’’ �ð�Þ is measured in this
regime and is a function of the volume fraction, as shown in
Fig. 1 for the Newtonian case (
 ¼ 1). At larger strain rates
and in weakly damped systems (� ¼ 0:001 or 
 > 1), one
observes a shear thickening regime, which can be ascribed
to inertia. Conversely, for stronger damping (� ¼ 0:1 and

 < 1) and, in particular, for volume fractions close to �c

[23], one observes a shear-thinning regime, when particle
deformation starts to be relevant.

Quasistatic simulations consist of successively applying
small steps of shear and minimizing the total potential
energy. By construction, they generate particle trajectories
at _� ! 0. An elementary strain step of �0 ¼ 5� 10�5 is
used. After each change in boundary conditions, the parti-
cles are moved affinely to define the starting configuration
for the minimization, which is performed using conjugate
gradient techniques [24]. The minimization is stopped
when the nearest energy minimum is found. As no static,
force-balanced state exists below the jamming point
(�<�c), the interparticle forces at the minimum are
strictly zero; i.e., the particles can always arrange in such
a way as to avoid mutual overlaps. Thus, each minimized
configuration corresponds to a true hard-sphere state, and
the resulting particle trajectories can be viewed as a se-
quence of snapshots of a flowing hard-sphere system at
zero temperature. Particle motion in such a system is
driven by steric exclusion and the lack of free volume. In
particular, particles have to move over larger distances
when the jamming point is approached, to find a new
overlap-free state compatible with the imposed shear [25].

Without particle overlaps, all the contact forces and
therefore the shear stress are strictly zero in the QS simu-
lation. Still, an effective shear stress and viscosity can be
obtained from the power � per unit surface that would be
dissipated along the QS trajectories, if the dissipation
mechanism of Eq. (1) was present. � is equal to the power
injected per unit volume in the system, � _�, and can be
expressed as

� ¼ L�2

�X
i

~Fviscð ~vi;qsÞ � ½ ~vi;qs � ~vflowð~riÞ�
�

(2)

From this expression, we deduce the viscosity:

� ¼ �

_�1þ

¼ ��

N

L2

h	v1þ
i
_�1þ


¼ ��
N

L2

Z
�1þ
Pð�Þd�:

(3)

where Pð�Þ is the probability distribution function (PDF)
of the particle velocity rescaled by the shear rate � ¼
	v= _�. As particle coordinates in the QS simulation are
only available at discrete steps, one has to define an effec-
tive particle velocity ~vqs ¼ _�	~r=�0 from the particle dis-

placement 	~r during such a single step. Therefore, � is
also the displacement rescaled by the strain interval � and
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FIG. 1 (color online). Viscosity � normalized by the friction
coefficient � as a function of the volume fraction �, measured
from molecular dynamic (MD) and QS simulations, for a dis-
sipation induced by viscous drag forces of Eq. (1) (labelled

 ¼ 1) or the lubrication-like mechanism of Eq. (3) (labelled
LF). In MD, the viscosity is measured in the low shear rate
regime for _� ¼ 10�6 and � ¼ 10�1. In this regime, �=� does not
depend on the precise value of these parameters, as shown in
Fig. 2(a). The quantitative agreement between MD (
 ¼ 1) and
MD (LF) is coincidental. Inset: compilation of experimental data
available in the literature at imposed pressure P (with �c ¼
0:587) and imposed volume fraction � (with �c ¼ 0:615) for
the ratio of suspension to solvent viscosity.
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Pð�Þ the van Hove function. Note that viscosity is related
to the (
þ 1)st moment of the velocity fluctuations, and
thus of Pð�Þ [Eq. (2)].

Results.—To statistically characterize the trajectories, we
consider the probability distribution for particle velocities,
Pð�Þ. We concentrate on the velocity component in the
gradient direction (y component), which automatically elim-
inates trivial particle motion due to the average flow field.
When the strain rate is small enough, Pð�Þ reaches a
limiting form [dotted line in Figs. 2(b) and 2(c)], which is
directly related to the small strainrate power-law regime of
Fig. 2(a). Whenever the rheology �ð _�Þ deviates from this
asymptotic behavior, the distribution function Pð�Þ deviates
from its asymptotic form as well. Interestingly, the approach
toward this asymptotic form is rather different in the weakly
damped, i.e., shear thickening, system [Fig. 2(b) and � in
Fig. 2(a)] as compared to the strongly damped, shear-
thinning system [Fig. 2(c) and � in Fig. 2(a)].

The velocity fluctuation PDFs obtained in the QS simu-
lation [solid lines in Figs. 2(b) and 2(c)] are similar to those
obtained in MD in the limit of vanishing _�. In particular,
the sharp shoulder at � � 4 is well reproduced for both
strongly (� ¼ 10�1) and weakly (� ¼ 10�3) damped sys-
tems. Furthermore, as shown in Fig. 3, the small strainrate
form of Pð�Þ only weakly depends on the value of the
exponent 
. Again, the most pronounced feature is the
shoulder, which is nearly identical in all four simulations.
However, small differences between MD and QS still
remain, especially for small damping [Fig. 2(c)] or 
 > 1
(Fig. 3). Here, a rise at small � ! 0 is observed at the
smallest strain rates, which is not present in the QS simu-
lation. Importantly, such small velocities do not contribute
to the second moment of the distribution and therefore are
irrelevant for the dissipated energy and the viscosity
[Eq. (2)]. By way of contrast, these small differences
may be important for the number of interparticle contacts.
As it turns out, the coordination number Z, which is the

number of contacts per particle (taken from simulation
snapshots), strongly varies with either 
 or � and is also
different in the QS simulation; its value changes from
Ziso & 4, i.e., close to the isostatic state, down to small
values Z < 1.
We conclude that the overall features of the particle

trajectories in the MD simulations are statistically compa-
rable to those in the QS simulation. The small strainrate
power-law fluid regime (Newtonian for 
 ¼ 1) should
therefore be considered as a true QS limit, which is by
no means obvious. In fact, the QS limit seems much better
defined here (�<�c) than in the plastic flow regime
(�>�c), where QS simulations have usually been
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FIG. 2 (color online). Rheology and velocity fluctuations at � ¼ 0:836. (a) Relation between stress � and strain rate _� obtained
from MD simulations for � ¼ 10�1 at 
 ¼ 2=3 (j), 
 ¼ 1 (d), and 
 ¼ 4=3 (m) and for � ¼ 10�3 at 
 ¼ 1 (�). A small strainrate
regime can be identified where � ¼ � _�
. The solid lines correspond to this expression, with � independently determined from the QS
simulation using Eq. (2). (b–c) PDF Pð�Þ of the rescaled velocity fluctuations� ¼ 	v= _� at 
 ¼ 1, for (b) � ¼ 10�1 and (c) � ¼ 10�3.
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FIG. 3 (color online). Comparison of the PDF Pð�Þ of the
rescaled velocity fluctuations � ¼ ðv� vflowÞ= _� obtained for
the different computational models at different volume fractions
�. Measurements are performed in the low shear rate asymptotic
regime for _� ¼ 10�6 and � ¼ 0:1. The three values of 
 corre-
spond to the dissipation mechanism of Eq. (1), the LF label
refers to the lubrication-like mechanism of Eq. (3), and QS to
quasistatic simulations.
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applied, but where they suffer from a dependence on
system size [8,14].

One important consequence of the equivalence MD-QS
is that one set of QS trajectories can be used to determine
the flow rheology for different values of 
. Figure 2(a)
compares the rheology obtained using MD (data points)
and QS (solid line) simulations. They nicely collapse on
each other when MD simulations are considered in the
limit of small shear rate. Figure 1 shows the viscosity �
determined from both simulations as a function of volume
fraction �. Beyond noting the quality of the collapse, one
observes that the viscosity diverges with �c ��, with a
scaling exponent ’ 2:2, consistent with the values mea-
sured experimentally.

Equation (2), giving the power dissipated per unit vol-
ume, leads to the scaling law �	 h	v1þ
i, which connects
the divergence of the macroscopic viscosity to the scaling
law followed by the microscopic particle motion 	v	
ð�c ��Þ��. Thus, the seemingly harmless power balance
turns into a relation between the exponents controlling the
divergence of velocity fluctuations and that of viscosity:
� ¼ �ð1þ 
Þ. We have recently shown that � � 1:1 [25],
which gives (for 
 ¼ 1) � ’ 2:2, consistent with the
exponent extracted from the MD data in Fig. 1. Note
however, that subdominant corrections can lead to apparent
exponents that, in the considered range of densities, may
not reflect true asymptotic behavior [19,26].

Discussion.—The small strainrate rheology, � ¼ � _�
,

as well as the divergence of the viscosity, �	 	��ð1þ
Þ,
depend on the value of 
. On the other hand, the underlying
particle trajectories are hardly affected by changing 
.
This points to a certain decoupling between particle tra-
jectories and the dissipative process. In this picture, the
statistical properties of trajectories are largely governed
by the structural singularity of random close packing
and the lack of space available for particle motion. On
the other hand, system-specific dissipation mechanisms
affect the rheological properties via the dissipated energy
along these geometrically predetermined trajectories.
Certainly, such a decoupling cannot be realized in a
perfect manner, as shown by the small differences of
Pð�Þ at small � and in the tails (Figs. 2 and 3).
Nevertheless, it seems to be strong enough so that the
various flow curves [Fig. 2(a)] and the viscosity (Fig. 1)
can accurately be predicted from the sole knowledge
of one set of QS trajectories. The scaling law relating the
viscosity to the volume fraction is a directly testable pre-
diction of the central idea of this Letter. It proposes to
measure the rheology of particles suspended in a
nonNewtonian solvent like a polymer melt or a visco-
plastic fluid.

In order to investigate the universality of the decoupling
phenomenon, we have conducted additional simulations
with a damping that describes a modified lubrication force
[27] between neighboring particles i and j:

~F dissð ~vi; ~vjÞ ¼ ��n̂ij½n̂ij � ð ~vi � ~vjÞ�; (4)

In agreement with previous (overdamped) simulations
[9,23], the spatial velocity-correlation function is qualita-
tively different in the models of Eqs. (1) and (3) (not
shown). Still, the probability distribution Pð�Þ (Fig. 3) is
remarkably similar across all models considered. In par-
ticular, the scale of velocity fluctuations increases on ap-
proaching the critical volume-fraction �c, and the overall
agreement between the different curves seems to improve.
This supports our interpretation of the role of close packing
for the particle trajectories. Furthermore, starting with the
QS trajectories, a calculation similar to Eq. (2) can again be
used to predict the viscosity. As Fig. 1 illustrates (open
circles), this calculation is quite accurate but slightly
overestimates the true viscosity (triangles), roughly by a
factor � 1:5.
In conclusion, singular velocity fluctuations cause a

dynamical contribution to the divergence of the viscosity,
as independently noted in Ref. [18]. These velocity fluctu-
ations are surprisingly conserved across different computa-
tional models, which we explain with geometric features
and the lack of available space close to the jamming
transition. Our results complement those obtained in
Ref. [18], for frictionless hard-spheres. In that system,
the jamming transition coincides with the isostatic thresh-
old and the flow properties can be related to the geometry
of the contact network. The coordination number Z is then
the relevant control parameter. Our results bridge the gap
between such an ideal system and those where inertia and
elasticity lead, for a given volume fraction �, to strong
changes of Z. Indeed, in our simulations, the value of Z has
no immediate predictability and � is the only relevant
parameter. Our results open the promising perspective of
the existence of an inherent contact network that would
govern the topography of the energy landscape. Such a
concept would establish the missing connection between
volume fraction and connectivity.
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