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Abstract. Conservation equations are written for surface flows (either fluid or granular). The particularity
of granular surface flows is then pointed out, namely that the depth of the flowing layer is not a priori fixed,
leading to open equations. It is shown how some hypothesis on the flowing layer allows to close the system
of equations. A possible hypothesis, similar to that made for a fluid layer, but inspired from granular flow
experiments, is presented. The force acting on the flowing layer is discussed. Averaging over the flowing
depth, as in shallow water theory, then allows to transform these conservation laws into equations for the
evolution of the profile of a granular pile. Apart from their interest for building models, these conservation
laws can be used to measure experimentally the effective forces acting on a flowing layer.

PACS. 83.70.Fn Granular solids – 46.10.+z Mechanics of discrete systems

1 Introduction

Granular media have recently attracted a renewed interest
from the physics community [1]. A property often high-
lighted is their ability to remain static (solid) even with
an inclined free surface. This observation is related since
Coulomb [2] to some macroscopic friction inside the mate-
rial. However, under some circumstances, a static pile can
start to flow, for instance if the slope of its free surface
exceeds a critical value. This motion has the particularity
of being a surface flow. Most of the pile remains static,
and only a relatively thin layer of grains at the surface is
rolling down: an avalanche occurs (Fig. 1a). A feature of
granular materials is thus the possibility of exhibiting two
types of behaviours, either a solid one (all the grains keep-
ing their neighbours), or a fluid one. The conditions gov-
erning the transition between the two states are still under
debate. This makes the description of an avalanche rather
difficult. Following the work of Savage and Hutter [3], the
first aim of this article is to profit from the particularity of
avalanches to be surface flows to apply to this case some
basic conservation laws (St Venant’s equations [4]) and to
use the approximations developed in hydrodynamics for a
thin fluid film flowing down an inclined plane (Fig. 1b).

However, at least two characteristics make the granu-
lar case different. In normal fluids, the internal equations
of the flowing layer have been established a long time ago,
and for instance the velocity profile in the layer is well
known to be parabolic for thin viscous films [5,6]. This
comes from the knowledge of the internal forces inside
the fluid. In contrast, in the granular case, even if the
microscopic forces acting on each grain are assumed
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to be known (e.g. by modelling the friction or the shock
between two grains), their link with the macro/meso-
scopic forces is still debated [7–9]. However, simple
global behaviours can be assumed on the basis of recent
experimental results. For instance, following the global
model introduced previously by one of us [10] to de-
scribe avalanches in a rotating drum, the assumption of
a Coulomb-Bagnolds force [11,12] acting on the flowing
layer leads to good agreement with experimental results.
The second difference is that the fluid is flowing on a
solid surface, which is fixed a priori. Although Savage and
Hutter first developed a general formalism, they restricted
their study to the case of a fixed bottom. For a large pile,
the situation is much more difficult since the boundary
between the static part of the pile and the flowing one (de-
noted as Z0 in Fig. 1a) is unknown. The condition under
which a static grain starts rolling or stops at this boundary
is then an essential ingredient of the problem, as exempli-
fied in [13]. However, we will show that the knowledge
of the macroscopic force with some flow characteristics
allows, in these simple conservation equations frame, to
deduce the evolution of the flowing/static boundary.

The aim of this article is not to present a new model,
which would be rather uncertain because of the lack of
knowledge of the forces inside the flowing layer, but rather
to present a general frame for describing these flows. Then
it will be suggested how this frame can be directly used
in the experiments.

This article first presents the basic equations and con-
servation laws, valid in any case (fluid, sand), which gov-
ern the evolution of a surface layer. In the third part, we
present some assumptions, inspired from experiments, on
the characteristics of granular flowing layers and on the
evolution of the static/flowing boundary. We stress the
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Fig. 1. Sketch of (a) a granular avalanche on a static pile, and (b) the flow of a thin liquid layer on a solid bottom. Both
can be described by an upper profile ζ(x, t), a static/flowing profile Z0(x, t) and a flow height H(x, t). In the fluid case, the
static/flowing profile is fixed, contrarily to the granular case.

Fig. 2. (a) Inside the flowing layer, the velocity of the grains is u along the x axis and w along the z axis. The volume of
integration V considered is limited by the vertical slices at x and x+ δx, and the upper free surface. (b) The motion of the free
surface ∂ζ/∂t corresponds to the motion of the grains: if there is only a vertical velocity w, then it follows directly. If there is
on the other hand only a horizontal velocity u, the inclined free surface induces a vertical displacement. On the contrary, the
static/flowing boundary moves (∂Z0/∂t) whenever, by definition, the grains do not move at this boundary. (c) Two possible
volumes of integration for the application of the transport theorem: the material volume Vm, the boundary of which follows the
grains motion, and the arbitrary volume, Va, enclosed by fixed lateral boundaries but a moving upper surface.

similarities and differences with the fluid case. These as-
sumptions are then used to show that the basic equations
can be reduced to simpler ones governing the dynamics
of two profiles (chosen among the static/flowing bound-
ary, the free surface and the flowing depth). Even with
these simplifications, there remains some unknown about
the force acting on the layer. We present in the fourth
part some consequences of our previous assumption of
a Coulomb-Bagnolds friction force [11,12] acting on the
layer. In the last part, before concluding, we present how
these conservation laws could be used in experimental sit-
uation to deduce the characteristics of the flowing granular
material.

2 Conservation equations

Let us consider the situation, depicted in Figure 2a, of a
free surface profile z = ζ(x, t), and a flowing/static bound-
ary profile z = Z0(x, t), the difference between the two
being the depth H(x, t) of the surface flow. The velocity
inside the flowing layer is (u,w) in the (x, z) coordinates.
We limit our approach to the 2D situation, but it could
be extended thoroughly.

The first equation of our model is the classical conti-
nuity equation, directly derived from mass conservation.
In order to be really precise, the experimental fact that
the grains have to dilate in order to flow, and that the
grain density varies along the flowing depth should be
taken into account. However, the measurements made by
Rajchenbach [14] show no density discontinuity between
the static part and the flowing layer and small variations
inside this layer. The granular medium becomes diluted
only close to the free surface (partly because of fluctua-
tions of the free surface). To the first order we can thus
assume that this variation is not essential for mass conser-
vation. It could however be important in the expression of
force terms. So our first approximation is the incompress-
ibility:

ρ ≈ const. (1)

We consider the small material volume Vm between x and
x+ δx, going arbitrarily deep in the static part, but lim-
ited by the upper free surface (dashed lines of Fig. 2a).
Sm denotes the surface enclosing this volume. The veloc-
ity of the surface motion, vm, is equal to the local grains’
velocity since Sm is a material (Lagrangian) surface. With
these definitions, the transport theorem applied to the
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density reads:

d
dt

∫∫∫
Vm

ρdv =

∫∫∫
Vm

∂

∂t
ρdv +

∫∫
O

Sm

ρ(vmn)ds = 0. (2)

This relation can be expressed here as:

ζ(x+δx)∫
−∞

u(x+δx, z, t)dz+

ζ(x+δx)∫
ζ(x)

(vm,n)|ζdl−
ζ(x)∫
−∞

u(x, z, t)dz=0.

(3)

Introducing the flow rate Q through a vertical slice,

Q(x, t) =

ζ(x)∫
−∞

u(x, z, t)dz, (4)

the first and last term of equation (3) reduce, in the limit
of small δx, to ∂Q

∂x δx. The unit vector normal to the free
surface (Fig. 2a) is

n =
1√

1 + (∂ζ/∂x)2
(−∂ζ/∂x, 1), (5)

so that

(vm.n)|ζ =
1√

1 + (∂ζ/∂x)2

(
w|ζ − u|ζ

∂ζ

∂x

)
· (6)

Deriving the overall profile, z = ζ(x, t), with respect to
time gives the free surface boundary condition [5]:

w|ζ =
∂ζ

∂t
+ u|ζ

∂ζ

∂x
· (7)

In order to compute the length of the free surface, its
inclination has to be taken into account (Fig. 2a), so that
the normalisation factor simplifies, and we finally get:

ζ(x+δx)∫
ζ(x)

(vm.n)|ζdl =
∂ζ

∂t
δx. (8)

We then obtain the first conservation equation:

∂ζ

∂t
+
∂Q

∂x
= 0. (9)

This equation can be derived more simply in the frame
of reference locally tangent to the free surface. However
it is interesting to find directly that there is no particular
factor due to the inclination of the surface. This direct
and simple relation between the upper free profile and the
spatial variation of the flux is a basic conservation law (see
the discussion on Flood waves in Whitham’s book [6]).

It is worth noting that the second profile, the static/
flowing boundary, does not appear in equation (9). There

is also a difference between these two profiles. The free
surface is material (it moves “with” the particles). For
instance, if the particles are moving up (first term in
Eq. (7)), the free surface follows (Fig. 2b). The advec-
tive term of equation (7) is often neglected (for nearly
horizontal surfaces) but it gives the variation of the free
surface for the pure translation of a deformation. It de-
scribes for instance the downward propagation of a fluid
mass in excess (Fig. 2b). On the contrary, it is not possible
to find a similar equation for Z0. If the volume of integra-
tion is stopped at the static/flowing boundary (Fig. 2a),
the equation remains the same since, by definition, the
fluid velocity is zero at Z0 (see Fig. 2b). The boundary
can thus move even though the material on it never does.
In other words, it is a much more abstract boundary than
the free surface, and we will have to consider its case in
detail later.

If the volume of integration is taken infinitely small in
the vertical direction, anywhere in the flowing layer, the
same computation leads to the incompressibility relation:

∂u

∂x
+
∂w

∂z
= 0. (10)

This relation provides a good basis to compute w from u.
Equation (9) gives the evolution of the profile as a

function of the flux. We thus now need an equation for
this flux. To do so, we consider the dynamical equation
for the material volume Vm (Fig. 2c):

d
dt

∫∫∫
Vm

ρudv =

∫∫∫
Vm

Fxdv (11)

where Fx is the force along x inside the layer. We also
have from the transport theorem:

d
dt

∫∫∫
Vm

ρudv =

∫∫∫
Vm

∂

∂t
(ρu)dv +

∫∫
O

Sm

ρu(vm.n)dv. (12)

To close our equations, we are looking for the variation in
time of the flux, which is defined for fixed surfaces along x.
So we use the same transport theorem but on the arbitrary
volume Va enclosed by fixed surfaces along x and x+ δx
(va = 0) and by the material free surface (va = vm)
(Fig. 2c):

d
dt

∫∫∫
Va

ρudv =

∫∫∫
Va

∂

∂t
(ρu)dv +

∫∫
O

Sa

ρu(va · n)dv.

(13)

which can be identified in the infinitesimal limit to:

d
dt

∫∫∫
Va

ρudv ≈ ∂

∂t
(ρQ)δx. (14)

The subtraction of equation (12) from equation (13) makes
the free surface term as well as the volume term disappear.
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Fig. 3. Sketch of the local frame of reference, (x′, z′) locally
tangent to the free surface.

Only the term on the fixed boundaries remains. Finally,
introducing the kinetic energy

E(x, t) =

ζ(x)∫
−∞

u2(x, z, t)dz (15)

and the force

P =

ζ(x)∫
−∞

Fxdz, (16)

we obtain our second equation:

∂Q

∂t
+
∂E

∂x
=

1
ρ
P. (17)

Unfortunately, this last equation does not close directly
equation (9). Even though it gives the time variation of
Q, it also introduces a new unknown E, not speaking of the
force P ... A way to close these equations is again to write
some equations for the energy and the force. This can be
done on a microscopic scale in the so-called kinetic the-
ories, which consider the shocks between grains [15]. We
will show below that such developments are not necessary
if the velocity profile inside the flowing layer is already
assumed.

3 Flow hypothesis and height equations

If the velocity profile inside the flowing layer u(z) is
known, we can, using it, compute directly both the en-
ergy E and the flux Q. We consider this velocity profile
in the coordinates (x′, z′) locally tangent to the free sur-
face (Fig. 3), with corresponding velocities (u′, w′). This
local frame is characterised by the local angle of the free
surface θ:

tan(θ) =
∂ζ

∂x
· (18)

The layer of flowing grains being assumed to be thin, the
velocity of the grains is essentially parallel to the free
surface and the variations along z′ are much larger than
along x′:

u′ � w′ and
∂

∂z′
� ∂

∂x′
· (19)

As a direct consequence, the difference between the slopes
of the free surface and of the static/flowing boundary is of
second order. The velocity u′ in the layer can be charac-
terised as varying from 0 at Z ′0 to a typical velocity U ′ at
the free surface, ζ′ = Z ′0 +H ′. For the sake of simplicity,
we can assume the shape of this profile to be always the
same:

u′(z′) = U ′f

(
z′ − Z ′0
H ′

)
, (20)

with f varying from 0 at 0 to 1 at 1.
This formula is valid in the shallow water approxima-

tion [5], i.e. for a thin inviscid fluid layer. Using approx-
imation (19), the Euler equation can be approximately
solved yielding a velocity profile independent of z′ (but
depending on x′):

f(u) = 1. (21)

The same assumption of a constant velocity profile is also
made for granular materials in previous models [3,13,16]
(Fig. 4c). The last ones furthermore assume that all the
grains of the flowing layer (the “rolling phase”) are moving
at the same constant velocity U ′ (independent of x′).

In the case of a very viscous fluid and the same ap-
proximations (except for particular places like hydraulic
jumps [17]), the equilibrium between gravity and viscous
diffusion leads to the hemi-parabolic profile (Fig. 4a):

u′(z′) =
g sin(θ)

2ν
(2z′H ′ − z′2), (22)

where ν is the viscosity and g the gravity. The parabolic
profile (Eq. (22)) is a particular form of formula (20) with

f(u) = 2u− u2

U ′ =
g sin(θ)

2ν
H
′2.

(23)

For the granular case, several experiments of dense chute
flow on rough bottoms indicate that the velocity profile
is linear [18–20]. The results of Rajchenbach et al. [14]
further show that in the case of a pile, the profile of the
flowing layer is also linear, and with a fixed velocity gra-
dient. Following his argument, the typical velocity a grain
can acquire between two collisions is

√
gd sin(θ), d being

the grain diameter. At each collision with the underlying
layer, a grain looses completely its excess in kinetic energy.
This gives a typical velocity gradient along the depth of

the layer of
√

g sin(θ)
d · So again we obtain the formula (20)

with: 
f(u) = u

U ′ =

√
g sin(θ)

d
H ′.

(24)
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Fig. 4. Sketch of the velocity profile inside the flowing layer for (a) the viscous boundary fluid layer, with a parabolic profile,
(b) the granular avalanche with a constant velocity gradient and a free static/flowing boundary, (c) the granular approximation
of a constant velocity (or the shallow water approximation).

The three profiles presented here are thus the three sim-
plest cases: a constant velocity profile in the inviscid liquid
case, a parabolic profile in the viscous liquid case and a
linear profile for the granular case (Fig. 4). Each of them
is different but they all lead to the same type of equa-
tions (for dimensional reasons). For the sake of the article
length we will only consider here the linear case in detail.

In fact, for most of the computation, we do not need
the assumption of a linear profile but only the linear rela-
tion between U ′ and H ′, corresponding to a velocity gra-
dient Γ ′ independent of H ′. For instance, we could just
assume a velocity profile of the type:

u′(z′) = Γ ′H ′f

(
z′ − Z ′0
H ′

)
· (25)

From expression (25) we can compute both Q′ and H ′:

Q′ = Γ ′H ′
2

1∫
0

f(h)dh = aΓ ′H ′
2
, (26)

E′ = Γ ′
2
H ′

3

1∫
0

f2(h)dh = bΓ ′
2
H ′

3
. (27)

The particular profile appears only through the two nu-
merical constants a and b. For simplicity we choose here to
use the linear profile and thus the corresponding constants
a = 1/2 and b = 1/3. We can note that in this specific
case the velocity profile does not explicitly depend on H ′
(Fig. 4b):

u′(z′) = Γ ′(z′ − Z ′0). (28)

Now we can replace the expressions (26) and (27) into
the equations (9) and (17). For a first derivation, we will
use the simplification that Γ ′ is constant in space and
time (possible variations of Γ ′ should be remembered in
some cases). We then obtain from equations (9) and (17)
respectively:

∂ζ′

∂t
+ Γ ′H ′

∂H ′

∂x′
= 0 (29)

∂H ′

∂t
+ Γ ′H ′

∂H ′

∂x′
=

1
ρΓ ′H ′

P ′. (30)

So we now find a system of equations for the height of
the overall profile and the thickness of the flowing layer.
In the second equation the force term is divided by the
advection velocity. We will call hereafter this term the
“driving term” of the height equation, to distinguish it
from the force term in the flux equation.

It is remarkable that in the present case of a linear
velocity profile the two advection terms are the same in
both equations and their advection velocity equal to the
surface velocity Γ ′H ′. This is not valid in general (different
numerical constants can appear). The two advection terms
thus cancel when we subtract one equation from the other.
Using ζ′ = Z ′0 + H ′, we then obtain an equation for the
static/flowing boundary without any advective term:

∂Z ′0
∂t

= − 1
ρΓ ′H ′

P ′. (31)

This last equation shows the direct relation between the
effect of the global force and the evolution of the static/
flowing boundary. This link comes from the assumption
(25). By imposing a fixed velocity gradient (or a partic-
ular velocity profile), we impose a relation between the
depth of the flow and its velocity. In other words, we con-
sider that the depth of the flow, and Z0, are determined
by the velocity: if the layer slows down, the particles ag-
gregate and Z0 moves up, if the layer accelerates, then the
particles are eroded and Z0 moves down. Now the veloc-
ity can be thought of as driven by the forces acting on the
layer (Eq. (17)), and the flow variation gives the evolution
of the overall profile (Eq. (9)).

The viscous fluid case is different in that the bottom
is fixed so that the velocity profile equation (22) can be
directly injected in equation (9) to find the evolution of the
free surface [5]. In the inviscid shallow-water case, we need
equation (17) to relate the velocity U ′ to the height H ′.
In the granular case, we also need equation (17) although
U ′(H ′) is already known, because we still don’t have any
equation for the evolution of the static/flowing boundary.
We thus obtain a set of two equations which can be chosen
among the three possible ones, for the overall height ζ′,
the static/flowing boundary Z ′0 and the flowing depth H ′.

These equations have a very simple form, but are writ-
ten in the locally tangent frame of reference. This is nat-
ural as it is in this frame that a simple assumption for
the velocity can be made. However, we can express the
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same equations in the usual frame of reference. This is
mainly a computational problem, which is solved in the
Appendix. We present here only the result in the linear
case (Eq. (28)), and in the limit of a smoothly varying Z0:

u(x, z, t) = Γ ′ cos2(θ)[1 +K]2(z − Z0(x, t)), (32)

with K being a term giving the deviation of Z0 from a
parallel to the free surface (K can be neglected in the
approximation of a thin layer, see Appendix). In this limit
we find also a linear profile, and thus the same equations
as above without the primes.

4 Force and driving terms

Before modelling the force P ′ acting on the layer, let us
ask and discuss an important preliminary question: does
the velocity profile, already assumed to be known, in-
dicate something on the nature of the global force P ′?
In the inviscid shallow water approximation, both grav-
ity and pressure remain in the integrated force since the
only assumption is the balance between pressure and
gravity in the z′ direction: ∂p

∂z′ = −ρg cos(θ). Macro-
scopically, the normal component of the weight is ex-
actly compensated by the reaction of the plane, which
is opposite to the hydrostatic pressure at the bottom of
the layer p = ρgH ′ cos(θ). The local tangential pressure
term to be considered in the equation of motion is thus
∂p
∂x′ = −ρg cos(θ)∂H

′

∂x′ · Integrated over the flowing layer
this gives a force term −ρgH ′ cos(θ)∂H

′

∂x′ , proportional to
the normal component of the weight ρgH ′ cos(θ), the coef-
ficient of proportionality being ∂H′

∂x′ . Depending on the sign
of this coefficient, the pressure acts either as a driving or
a resistive force (but remaining, as always, conservative).
The global force P ′ then reads:

P ′ = ρgH ′
(

sin(θ)− ∂H ′

∂x′
cos(θ)

)
. (33)

In this case, the constant velocity profile (Fig. 4c) is not
due to a previous use of the tangential dynamical equation
and equations (17,30) have to be used to determine the
velocity of the layer.

In the viscous fluid case (Fig. 4a), the velocity profile
inside the flowing layer (Eq. (22)) is obtained by equili-
brating locally gravity by viscous diffusion. Thus the in-
ertial effects are neglected and the force term P ′ is zero,
by assumption. The tangential dynamical equation is al-
ready used locally to obtain the velocity profile and cannot
thus be used under an integral formulation to get further
information.

By analogy with the viscous fluid layer, the linear ve-
locity profile assumed for granular avalanches (Fig. 4b)
could be thought of as resulting from a local equilibrium
between tangential forces (as done in [8,9]), even though
this hypothesis is not explicitly used. As in the viscous
case, the integral of these forces over the layer depth would
then be negligible. In the viscous case (Fig. 4a) however,

the bottom plane is submitted to a non zero force exerted
by the fluid: it would be deformed if it were not suffi-
ciently rigid. This is precisely the behaviour of the free
static/flowing boundary: if the force is large enough, the
bottom erodes. There should thus be in the force P ′ acting
globally on the layer some forces located on this particular
boundary: P ′ can therefore be modelled independently of
the assumptions done on the velocity profile. There can
be both a local equilibrium leading to the velocity profile,
as in the viscous case, and a global force P ′ of the order of
the layer weight, as in the shallow water approximation,
acting on the flowing/static boundary layer.

Within this hypothesis, we look at the typical force and
driving term that should be written in order to reproduce
the known dynamics of granular media, in particular the
hysteresis between flowing and static state. We are not
looking for a precise expression of these terms, especially
because there is not yet a physical derivation of them, but
rather for the minimum characteristics these terms should
present. In the previous model [10], the force proposed
was composed by the layer weight and a solid-like friction
(Fig. 5a):

P ′ = ρgH ′(sin(θ)− µ cos(θ)) (34)

where µ is the friction coefficient. P ′ is naturally propor-
tional to the height of the flowing layer, so that the driving
term in equations (30, 31) is independent of H ′:

1
ρΓ ′H ′

P ′ =
g

Γ ′
(sin(θ) − µ cos(θ)), (35)

or, developed around the friction angle θ0 = Arctg(µ):

1
ρΓ ′H ′

P ′ =
g

Γ ′ cos(θ0)
sin(θ − θ0) ≈ g

Γ ′ cos(θ0)
(θ − θ0).

(36)

The structure of this force (Eq. (34)) is similar to that
obtained in the shallow water approximation (Eq. (33)),
the main difference being the dissipative nature of the fric-
tion coefficient. In [10] the attention was focused on the
dependence of µ on the flow rate, µ(H ′), needed to re-
produce the experimental observations. The correspond-
ing dependence is recalled in Figure 6. It consists of a first
decrease from µs to µm, followed by a final increase of
µ corresponding to the possible invariant stationary solu-
tions tan(θ0) = µ(H ′).

In the previous model [10] a discontinuity was left at
zero velocity between the dynamical friction at very small
velocity and the static friction. Here we try to regularise
the transition between the two. A sand pile can be at the
equilibrium (H ′ = 0) when the angle is smaller than the
static friction angle. In this situation, the friction force bal-
ances exactly the gravity (Fig. 5b). The friction coefficient
should then be equal to tan(θ), and thus now depends on
θ, µ(H ′, θ). So for tan(θ) ≤ µs, µ(H ′, θ) should tend to-
ward µ(0, θ) = tan(θ) with H ′ decreasing to zero (Fig. 6).
To ensure the stability of this static position for small
disturbances, we also know that µ(H ′, θ) should decrease
towards this value when H ′ is decreased.
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θ1 < θs

PN

T

R=-N

µsR

F=-T

P

N

T

R=-N
-T

F=µsR

θ5 > θs

θ

PN

T

R=-N

F=µdR

a b c

Fig. 5. Sketches of the global friction force on the static/flowing boundary. In the flowing (dynamical) case (a), the friction
force is equal to the normal force time the dynamical coefficient, while in the static case, it depends on the surface slope: (b)
if the slope angle is smaller than the static friction angle, the friction force balances exactly the tangential component of the
weight. (c) On the contrary, if the angle is larger, the friction force is just equal to the normal force times the static friction
coefficient, and is then smaller than the tangential component of the gravity.

0

µm

HmH0

µd(H’)

H’

µ(H’,θ)

H’e(θ2)H’t(θ2)

tanθ1

tanθ2

tanθ3

tanθ4=µs

tanθ5

Fig. 6. If the friction force is divided by the normal force, it
defines a generalised friction coefficient µ(H ′, θ) depending on
the local state (thin lines). For large H ′ compared to a typical
height H0, it is equal to the dynamical coefficient µd(H ′) (thick
line). But if the height is decreased, toward the static case, it
tends to a value depending on the surface slope. Following Fig-
ure 5, if the slope is smaller than the static friction coefficient,
then µ(H ′, θ) just decreases to tan(θ) (metastable equilibrium,
θ1 to θ3). In this case, the system will tend towards the stable
flowing depth H ′e(θ) for a perturbation larger than the hys-
teretic threshold H ′t(θ), and otherwise freeze. The maximum
static angle corresponds to tan(θ4) = µs, which is marginally
stable. If the slope is larger (θ5), µ(H ′, θ) just varies as for the
maximum angle (tan(θ4) = µs) but the static solution (H ′ = 0)
is unstable. The picture is drawn using, in equations (37-38),
r(x) = exp(−x), µd(H) = µm + (µs − µm)(H/Hm − 1)2,
H0 = Hm/10.

If tan(θ) is larger than µs (Fig. 5c), the static friction
cannot balance gravity and the grains start flowing. We
assume, as for the Coulomb-Bagnolds friction, that the
tangential force is then strictly equal to µs times the nor-
mal reaction. µs is thus the maximum value the friction
coefficient can achieve. In this range of angles, the friction

coefficient µ(H ′, θ) is thus independent of θ. From these
considerations, we can take a simple form, independent of
θ, µd(H ′), and just modify it for values of H ′ smaller than
a typical height H0, to make it tend toward its static value
(depending on θ). Depending on the slope angle we thus
have:

if tan(θ) ≤ µs

µ(H ′, θ) = µd(H ′) + (tan(θ)− µd(H ′))r(H ′/H0) (37)
if tan(θ) ≥ µs

µ(H ′, θ) = µd(H ′) + (µs − µd(H ′))r(H ′/H0). (38)

whereH0 is the typical layer depth around which the tran-
sition between the static and flowing state occurs, and r
is a function decreasing from 1 at H ′ = 0 to 0 for large
flowing depth. A typical example could be an exponential
function (inspired from experiments [21–25]), as drawn in
Figure 6 with a parabolic µd(H ′).

Developing for small H ′, and assuming a linear varia-
tion of r around 0 (regularity), we found for tan(θ) ≤ µs:

1
ρΓ ′H ′

P ′f =
g

Γ ′
H ′

H0
(sin(θ)− µd(0) cos(θ)), (39)

with by convention r′(0) = −1. To obtain the stability for
tan(θ) < µs, and the marginal stability at tan(θ) = µs,
we thus have to take µd(0) = µs (cf. Fig. 6). This driv-
ing term has the same type of dependence on the angle
than previously (Eq. (35)) but it is now linear in H ′. Note
that this proportionality comes from the choice of a regu-
lar function r. Another dependence for small H’ could be
introduced.

Similarly, for tan(θ) ≥ µs, the driving term, developed
to the first order in H ′, reads:

1
ρ′H ′

P ′f =

g

Γ ′
(sin(θ)− µd(0) cos(θ)) + (µs − µd(0)) cos(θ)

H ′

H0
· (40)

With the constraint of µd(0) = µs, the second term van-
ishes (see Fig. 6). On the other hand, the first term is now
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non-zero even in the limit of zero H ′. These properties
remain valid when the regularising function is changed.
There are thus two different behaviours of the force in the
limit of a microscopic flowing depth, depending on the lo-
cal angle. If the angle is smaller than the static angle, the
force vanishes (proportionally to the layer depth for a reg-
ular r). For an angle exceeding the static angle, the force
becomes non-zero even in the limit of a static pile. This
corresponds to a typical experiment: after pouring sand
into a box, the slope of the pile at rest is approximately
at the dynamical angle. When the box is tilted by a few
degrees, the sand suddenly starts flowing. Reducing the
mechanical noise can increase this hysteresis angle, but
not arbitrarily.

This hysteresis between flowing and static state can
be well studied on a inclined plane [21], by making a con-
trolled perturbation of the static solution. It shows that
below a given threshold, or a given Ht, the static solution
is stable as in Figure 6. Above this perturbation thresh-
old, the grain layer starts to flow. Within this model, this
threshold is given by the unstable stationary solution on
the decreasing part of µd(H ′). We can see that, with the
simple example shown,Ht decreases roughly linearly when
tan(θ) is increased and it vanishes when tan(θ) reaches
µs, as observed in the experiment [21]. Note that the hys-
teretic height Ht is not related to the height on which
the flowing/static transition occurs, namely H0. This last
can be considered as constant, typically around a grain
diameter (or less).

5 Discussion and conclusion

The basic conservation laws for a sand surface flow have
been derived above. Several models have already been
written to describe the global evolution of flowing granu-
lar piles. The first observation is thus that these models
should obey to these general conservation laws, and more
precisely correspond to particular assumptions on the ve-
locity profile and driving force.

To write a complete model with the previous develop-
ments is not simple for several reasons. First, the velocity
profile should be more closely studied: is its linearity gen-
erally valid, its velocity gradient constant, and in which
reference frame? Furthermore, the global force acting on
the layer is still rather schematic. However, we can propose
a simple form from the above considerations (dropping the
primes and keeping the velocity gradient constant):

∂ζ

∂t
+εΓH

∂H

∂x
= 0 (41)

∂H

∂t
+εΓH

∂H

∂x
=
g

Γ
[sin(θ)−(µ(H)+δµ(H, θ)) cos(θ)]

(42)

with tan(θ) = ε ∂ζ∂x , ε = ±1, depending on the slope direc-
tion, and

δµ(H, θ) ={
(tan(θ)− µ(H)) exp(−H/H0) if tan(θ) ≤ µs

(µs − µ(H)) exp(−H/H0) if tan(θ) ≥ µs.

The first equation is the expression of mass conservation
(Eq. (9)), and the second (Eq. (30)) is derived from the
momentum conservation (Eq. (17)). We propose a friction
force between the flowing layer and the static bottom,
with a particular development in the limit of vanishing
flowing layer. It is also possible to deduce an equation for
the bottom evolution, using the relation ζ = Z0 +H and
the identity of the two advection terms:

∂Z0

∂t
= − g

Γ
[sin(θ)− (µ(H) + δµ(H, θ)) cos(θ)]. (43)

The model previously proposed [10], where the first mass
conservation equation was written for the whole avalanche
layer in a rotating drum, and the second, for the flux at the
middle of the sand bed, can be considered as a formulation
of the model proposed here integrated over the avalanche
length. The knowledge of the velocity profile was then not
even needed, because the flux directly gives the variation
of the mean angle of the pile:

∂θ

∂t
= −γQ (44)

∂Q

∂t
= p[sin(θ)− µ(Q) cos(θ)]. (45)

In this case there is no advection term (∂/∂t = d/dt),
from the simplifying assumption of a straight surface and
the symmetry of the cell. In this simple model a gener-
alised Coulomb-Bagnolds force for µ(Q) was particularly
effective in explaining the experimental results [10,14].

The model of Savage and Hutter [3], although de-
rived in a general frame, was developed for a fixed bottom
(∂ζ/∂t = ∂H/∂t). Its basic hypothesis corresponds to the
inviscid shallow water model: constant velocity profile for
a layer sliding on a fixed bottom. It reads (in their non-
dimensional form and with our notations):

∂ζ

∂t
+ ε

∂

∂x
(HU) = 0 (46)

∂U

∂t
+ εU

∂U

∂x
= [sin(θ) − tan(δ) cos(θ)] − β ∂H

∂x
· (47)

We recognise in the first equation the mass conservation
(Eq. (9)), and in the second the momentum conservation
(Eq. (17)). With this hypothesis of constant velocity pro-
file, the flux is simply HU , however U is not fixed. The
momentum equation is also integrated over the depth, giv-
ing an equation of HU , and is then divided by H to give
an equation for U . The driving term corresponds to the
pressure variation with the layer depth (Eq. (33)), plus a
Coulomb friction force on the bottom (Eq. (34))

Another model, by Bouchaud et al. and referred to
as BCRE, has also been proposed for granular surface
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a

b d

c

Fig. 7. (a-b) Two successive side-pictures of the sliding of a pile between two glass plates (∆t = 1/50 s). (c) Numerical treatment
of picture a) showing the free surface profile (upper black line) and the quickly flowing layer (white area). (d) Image difference
of a) and b), showing the internal extent of the flowing region (with even small displacements of grains). The measurement of
the profile evolution, together with the flowing depth and the velocity profile allows to measure the force acting on the layer
using the conservation equations.

flows [13], and, while completing this article, we be-
came aware of a modification of it recently proposed by
Boutreux et al. [16] (hereafter referred to as BRdG). The
basic hypothesis corresponds to a constant velocity pro-
file, as in the inviscid shallow water model and Savage and
Hutter model [3], but now with a constant advection veloc-
ity U . They considered the evolution of the flowing depth
and flowing/boundary profile and made a particular mod-
elling of the driving term. It reads (with our notations):

∂H

∂t
+ εU

∂H

∂x
= D

∂2H

∂x2
−H

[
γ
∂Z0

∂x
+ κ

∂2Z0

∂x2

]
(48)

∂Z0

∂t
= H

[
γ
∂Z0

∂x
+ κ

∂2Z0

∂x2

]
· (49)

The first equation corresponds to momentum conser-
vation simplified by U (Eq. (30)), and the second to the
difference between continuity and momentum equations in
the case of an identical advection terms (Eq. (31)). How-
ever, the driving term is not identical in the two equations,
as it should be following the derivation of equations (30,
31), because they add a diffusive term in the equation for
the evolution of the flowing depth, but not in the static
boundary profile equation. In the hydrodynamic analogy,
this term of diffusion of the height would correspond to
an effective surface tension while a second order term due
to viscosity would rather diffuse the impulsion. In any
case, within the previous approximations, such a diffusive

term would be of second order (Approx. (19)) and thus
neglected, as BRdG proposed.

The derivation of the driving term is different than in
our approach. We relate directly the driving force to the
physical force acting on the flowing layer, even though the
main term comes from the lower boundary. In BCRE and
in BRdG, the attention is directly focused on the evolu-
tion of the static/flowing boundary, writing a term from
collision considerations. This driving term was then pro-
posed to be proportional to the quantity of rolling grains
(H in our notation) and to the difference between the local
angle and an equilibrium (dynamical) angle, H

[
γ ∂Z0
∂x

]
≈

γH[θ0 − θ]. It was suggested in BRdG, again from colli-
sion considerations, that the driving term proportional to
H ′, proposed by BCRE, is reasonable for “thin layers” (or
“microscopic layers”), i.e. for layers around or less than
one grain in depth, but not for “thick avalanches” (several
particles in depth). BRdG thus proposed a constant driv-
ing term, only proportional to the angle difference, and
simplified the previous system to:

∂H

∂t
+ εU

∂H

∂x
= −V [θ0 − θ] (50)

∂Z0

∂t
= V [θ0 − θ], (51)

with the advection velocity U constant and a second con-
stant velocity V . This now corresponds to our model
above (Eqs. (41, 42)), with a simplified friction force (and
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constant advection velocity U). With our approach, we
were able to give an expression for the new constant:
V = g/Γ .

In the above discussion on the vanishing flowing layer,
we also found a driving term now proportional to H, as
proposed by BCRE. However, this result is obtained only
for a linear velocity profile, giving a driving term of the
form P/ρΓH, allowing to simplify by the flowing depth H.
With their assumption of a constant velocity U , we would
have obtained a driving term of the form P/ρU , giving a
force proportional to H in the thick and proportional to
H2 in the thin case. A constant driving term within this
constant velocity approximation would require the force
P acting on the flowing layer to be independent of the
depth H.

This constant velocity assumption may however be re-
lated to the motion of a microscopic layer (less than one
grain in height): the velocity of an isolated grain is approx-
imately

√
gd sin(θ), however isolated it may be. So even

if the mean depth H can be much smaller than one grain
diameter d, the propagation velocity can be considered as
having a non-zero lower bound. In this microscopic layer
limit, our discussion on the reactive force tells that above
a second larger angle, the static one, the force becomes
non-zero even for a static profile. This means that with
the Coulomb-Bagnold type of friction we do not have the
problem, found in BCRE, of nucleation of an avalanche
for an angle larger than this static angle. It is to solve this
nucleation problem that BCRE have to keep the diffusion
term in equation (48).

This article has presented the general conservation
laws that can be written for granular surface flows, and
shown how to use the hypothesis of a linear velocity pro-
file inside the layer, or other assumptions, in order to find
simple equations for the evolution of a sand pile with an
avalanche surface flow. Although a suggestion was made
above for the overall force acting on the flowing layer, we
think that the remaining task is to give a more precise
formulation of it, before looking at simple consequences
of the simplified model proposed here. It is more inter-
esting to first look at the way these conservation equa-
tions can be used directly in experiments. Knowing the
evolution of the upper profile (see Fig. 7) we can deduce
the evolution of the local flux. Then, with a simultaneous
measurement of the flowing depth, we could check directly
the hypothesis of the linear profile, and further deduce a
direct measurement of the effective force on the flowing
layer. More generally, these conservation equations pro-
vides strong guide lines and an interpretation scheme for
further models.

We thank University Paris VII for special support of this work
through BQR 97.

Appendix

The equations obtained in Section 3 are written in the lo-
cally tangent frame of reference. The same equations can

also be expressed in the usual gravity frame of reference.
We solve here this computational problem. In the follow-
ing we forget the variation in time (we consider a given
instant). We can first compute the velocity normal to the
free surface, using only the incompressibility (Eq. (10)),
as in Prandlt’s approximation of Navier-Stokes [5]. In the
general case (Eq. (25)), it reads:

w′ = − ∂

∂x′
(Γ ′H

′2)

h′∫
0

f(y)dy − Γ ′H ′ ∂H
′

∂x′
[1− h′]f(h′)

(A.1)

with

h′ =
z′ − Z ′0
H ′

· (A.2)

Now we can compute the velocity in the normal frame for
any point P inside the flowing layer:{

u(xp, zp) = u′(x′p, z
′
p) cos(θ) + w′(x′p, z

′
p) sin(θ)

w(xp, zp) = −u′(x′p, z′p) sin(θ) + w′(x′p, z
′
p) cos(θ).

(A.3)

When the point P (Fig. 8a) moves in the layer along a
vertical line (changing zp for a fixed xp), N remains fixed
in the static/flowing interface Z0, but the coordinate x′p
changes continuously (point R). The projection Q on the
static/flowing interface of coordinate Z ′0 (used to compute
the velocities u′ and w′) also moves. We thus have to com-
pute (z′p −Z ′0(x′p)) as a function of (zp −Z0(xp)), H ′ as a
function of H and h′ as a functions of h. This can be done
geometrically using the Figure 8b, in the approximation
of a flat Z0.

We define δZ0, the deviation of this boundary from the
parallel to the free surface, which first gives:

∂δZ0

∂x
(xp) =

∂Z0

∂x
(xp) + tan(θ). (A.4)

We also define

δ(xp) =
∂δZ0

∂x
(xp) sin(θ) cos(θ) (A.5)

K(xp) =
δ(xp)

1− δ(xp)
· (A.6)

Then the results from Figure 8 are:

(x′p − x′N ) = (xQ − xN )
1

cos(θ)
[1− δ(xp)]

(z′p − Z ′0(x′p)) = (zp − Z0(xp)) cos(θ)[1 +K(xp)] (A.7)

H ′(x′p) = H(xp) cos(θ) + (zp − Z0(xp)) cos(θ)K(xp)
(A.8)

h′(x′p, z
′
p) = h(wp, zp)

[
1 +K(xp)

1 + h(xp, zp)K(xp)

]
· (A.9)
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Fig. 8. (a) Notations for the flowing layer. A point P inside the flowing layer corresponds to a point M at the free surface and
N at the static/flowing boundary following the x axis, and to Q and U respectively in the local frame. (b) Close view, with the
position of the all the projections of Q onto the horizontal, the vertical, the parallel to the free surface x’ and its perpendicular
axis z′.

From equation (A6) we can see that K corresponds to
the deviation of the bottom from the parallel to the free
surface. It is thus reasonable to neglect it. In Figure 8a
this corresponds to neglecting RT compared to RN (or
QT compared to QN).

With these last three expressions, we can compute ev-
erything. However this leads to long formulae especially
because of the expression of h′. Thus we consider only
the development to the first order in K (with simplified
notations):

h′p ≈ hp[1 + (1− hp)K + ...]. (A.10)

In general there is also a possible variation of Γ ′ with x′

which could be taken into account to the first order:

Γ ′(x′p) ≈ Γ ′(x′N ) +
∂Γ ′

∂x′
(x′N )(x′p − x′N ) + ...

However, we have no idea of this variation without fur-
ther hypothesis. So we consider that Γ ′ is constant. Then
equation (A1) reads:

w′ = −Γ ′H ′ ∂H
′

∂x′

2

h′∫
0

f(y)dy + (1− h′)f(h′)

 · (A.11)

Reporting all the expressions leads to:

u′ ≈ Γ ′H cos(θ)f(h)
[
1 + h

[
1 + (1− h)

f ′(h)
f(h)

]]
+ ...

w′ ≈ Γ ′H cos2(θ)
sin(θ)

K

2

h′∫
0

f(y)dy + (1− h)f(h)

+ ...

(A.12)

with the notation f ′(y) =
df
dy

(y). Replacing it in equa-

tion (A3), we get u and w. In the linear case (Eq. (28))
this gives:
u ≈ Γ ′ cos2(θ)(z − Z0)[1 + 2K] + ...

w≈Γ ′ cos(θ) sin(θ)(z − Z0)
[
1+
(

1− cos2(θ)
sin2(θ)

)
K

]
+ ...

(A.13)

It is worth noting that in this case, there is no dependence
in h′ from the very beginning:u

′ = Γ ′(z′ − Z ′0)

w′ = −1
2
∂Γ ′

∂x′
(z′ − Z ′0)2 + Γ ′

∂Z ′0
∂x′

(z′ − Z ′0)
(A.14)
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(with the simplification of constant Γ ′). So we do not need
to restrict to the first order in K and this gives the exact
result (for a straight Z0):
u=Γ ′ cos2(θ)(z − Z0)[1 +K]2

w=−Γ ′ cos(θ) sin(θ)(z − Z0)[1+K]
[
1− cos2(θ)

sin2(θ)
K

]
.

(A.15)

The gradients in the two frames of reference are thus
linked by:

Γ = Γ ′ cos2(θ)[1 +K]2 ≈ Γ ′ cos2(θ). (A.16)
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nouvelles pour la solution des problèmes relatifs aux eaux
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