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a b s t r a c t

Aeolian processes involve the wind action on a sedimentary substrate, namely erosion, sand transport and
deposition. They are responsible for the emergence of aeolian dunes and ripples but also erosive structures
like yardangs. In this review, we discuss the physics of aeolian sediment transport from a physical point of
view. Relevant time and length scales associated to turbulent wind fluctuations are summarized using aero-
dynamic theory. At the microscopic scale, the different forces acting on the grains are detailed. We then
introduce the concepts – e.g. saturated flux, saturation length – and the relevant framework for the devel-
opment of a continuum quantitative description of transport. Static and dynamical entrainment thresholds
are modeled and discussed. Steady transport is investigated in two asymptotic regimes: close to threshold
and far above it. In both cases, a simple picture, taking into account the negative feedback of particles on the
wind flow, is analytically drawn and compared to experimental and numerical data. The low wind velocity
regime corresponds to the model proposed by Ungar and Haff (1987) and the high wind velocity regime is
elaborated from initial ideas of Bagnold (1941). Transport transient is also studied in detail, and scaling laws
for the saturation length are proposed. Finally, some open issues for future research are outlined in the
conclusion.
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1. Introduction

When the wind blowing over a sand bed exceeds a certain
velocity threshold, the particles of the bed can be set into motion
and transported away. Different modes of transport are usually
classified following the nature of forces at work on the grains
(Fig. 1). When hydrodynamical forces are dominant, as for fine par-
ticles, grains are transported in suspension. When the particles are
large enough so that gravity is also influential, the grains experi-
ence successive jumps and the transport mode is called saltation.
Larger particles (bed load) move by tractation or creep motion,
where bed contact is maintained, and gravity, hydrodynamical as
well as contact forces are all important. Finally, when saltation is
strong enough, grains on the bed are ejected by impacts of the sal-
tating grains and move by a small hop. This is called reptation. This
mode is then dominated by gravity and contact forces. In contrast
to the other modes, reptation is specific to the aeolian situation, i.e.
to the case for which the density of the fluid is much smaller than
that of the grains. A dense fluid such as water effectively dissipates
most of the kinetic energy of the moving grains at the moment of
impact. Following the nomenclature of ordinary particle physics,
we have proposed to name the grains contributing to the different
modes of transport: saltons, reptons, tractons and suspendons.

The qualitative understanding and the quantitative description
of sand transport by wind is a major issue discussed in the aeolian
community (Sarre, 1987; Pye and Tsoar, 1990; Anderson et al.,
1991; McEwan and Willetts, 1993, 2000; Andreotti et al., 2002a;
Nickling and McKenna Neuman, 2009; Zheng, 2009). This research
area is also important in an environmental context. In particular, it
governs some of the mechanisms at the heart of the formation of
ripples and dunes (Fryberger and Dean, 1979; Cooke et al., 1993).
Taking a definite physical point of view, we wish in this paper to
review and explain all the physical ingredients that are essential
to achieve this understanding. Rather than treating all of these dif-
ferent modes in their whole complexity, we show how the descrip-
tion of transport can be abstracted into a few key quantities: the
entrainment threshold, the saturated flux and the saturation
length and time scales. Also, avoiding empiricism as much as pos-
sible, for all involved mechanisms and limiting regimes we derive
the corresponding scaling laws, in which the dominant parameters
are evidenced.

We start with basics concepts of aerodynamics that are rele-
vant to sediment transport (Section 2). We then detail the differ-
ent forces acting at grain scale (Section 3). In Section 4, we
introduce the concepts and the formalism for the development
of a general quantitative description of transport. Section 5 is
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Author's personal copy

devoted to the description of the static and dynamic threshold. In
Section 6, we present two limiting regimes of transport: close to
the threshold and far above it. In both cases, a simple picture can
be analytically drawn. The low wind velocity regime is elaborated
from the ideas first proposed by Ungar and Haff (1987). In the
high wind velocity regime, the scaling laws proposed by Bagnold
(1941) are explored under a new context. Section 7 is dedicated
to transport transient, and scaling laws for the saturation length
are proposed. Finally, the conclusion (Section 8) is a presentation
of current important and open problems that should be investi-
gated in future research.

2. Aerodynamical time and length scales for aeolian transport

Common observation shows that the amount of sand trans-
ported increases with the wind velocity. In this section, we discuss
some of the difficulties arising when one aims to relate quantita-
tively sand flux to velocity measurements. They are related to
the key issue of determining the relevant aerodynamical time
and length scales for aeolian transport.

2.1. Fluctuations of wind velocity

Aeolian transport generically takes place in a turbulent flow.
Saltation is effectively related to the capacity of grains to rebound
and to expel other grains when they collide the sand bed, a charac-
teristic which disappears when the fluid viscosity m is high or when
the density ratio qp/qf between the particles and the fluid is low. A

turbulent flow is characterized by a velocity field fluctuating over a
wide range of space and time-scales. The time-scale over which the
forcing of the flow takes place is called the integral time scale T. It
is the time difference beyond which velocities measured at a single
place and at two different times become uncorrelated. Similarly,
the length at which the forcing of the flow takes place is called
the integral length scale L. The velocity signals measured at the
same time in two points separated by a distance larger than L
are uncorrelated. Using L and T, one can construct a large scale
velocity U = L/T. Alternatively, U can be defined as the root mean
square velocity fluctuations over a time window T = L/U.

Under natural conditions, winds result from the differential
heating of geographic zones at different scales. Large scale atmo-
spheric circulation is due to the temperature contrast between
the poles and the equator, and is sensitive to the planetary Coriolis
effect. Local winds can dominate in coastal zones and be influenced
by topography. In deserts, the forcing scale is set by the altitude of
the so-called capping inversion layer, which separates the convec-
tive boundary layer from the stable free atmosphere: L is typically
on the order of 103 m. Sand is transported when the wind is suffi-
ciently strong i.e. when U is on the order of 100 m/s. The integral
time-scale T from the meteorological point of view is thus around
103 s, i.e. 15 min. The atmospheric Reynolds number Re = UL/m is
typically on the order of 108. In a wind tunnel, the flow is induced
by a longitudinal pressure gradient (White and Mounla, 1991).
Most wind tunnels are meter scale L � 100 m so that the Reynolds
number is ‘only’ 105, for the same velocity U. The corresponding
integral time-scale T is on the order of 1 s.

The velocity variations over time-scales smaller than T may be
called turbulent fluctuations (Fig. 2a). The velocity variations over
time-scales larger than T can be qualified as meteorological and are
of a different nature (Fig. 2b). They result from a combination of
randomness and coherence. In particular, the diurnal cycle and
the annual seasonal cycle induce periodic deterministic compo-
nents of period 1 day and 1 year, respectively. In between the
meteorological range and the turbulent range of the temporal
spectrum, wind velocity signals show a spectral gap where the
fluctuations are small (Van der Hoven, 1957; Harris, 2008). Weath-
er is controlled by atmospheric structures whose horizontal
length-scale is around 107 m and whose velocity is around
101 m/s. The associated time-scale, which is around 10 days, gives
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Fig. 1. Schematic representation of the different transport modes.
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Fig. 2. The two types of wind velocity time variations. (a) Turbulent fluctuations of the wind velocity, measured with an anemometer whose response time is ’1 s. This
corresponds to the time-scale Tdrag at which grains respond. Two hours of signal are represented, during which the wind conditions – the wind velocity averaged over the
turbulent integral time-scale T – were constant. Still, the fluid velocity averaged at the time-scale Tdrag and therefore the sediment flux present fluctuations. (b) Typical
variations of the wind velocity at the turbulent integral scale T. The same anemometer is used, but the velocity is averaged over a 15 min time-window. The date is shown in
little endian form.
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the lower bound of the climate range of time-scales. We note for
completeness that different authors (see Lovejoy and Schertzer
(2010) for a recent review) challenge the existence of the spectral
gap associated to the 2D/3D transition and claims the existence of
a unique cascade across time T.

The statistical properties of turbulent fluctuations are deter-
mined by the forcing velocity, i.e. the velocity averaged over a
time-window T. As a consequence, the sediment transport is ex-
pected to be correlated with the wind strength, when both are
averaged over the time-scale T. Cup-anemometers with a sampling
time around 0.1 Hz are thus perfectly adapted to characterize aver-
age sand transport. Airport weather stations with 4 or 24 measure-
ments a day may even be sufficient. For example, Fig. 3 shows the
relation between propagation speed c of dunes, their height H and
the saturated flux over a flat bed Q, which is determined from the
wind velocity averaged over T. The typical time-scale to measure
significant barchan displacements is several years (Finkel, 1959;
Long and Sharp, 1964; Hastenrath, 1967, 1987; Slattery, 1990) or
several decades for the 40 m high mega-bachans. The observed
agreement with Bagnold’s relation c / Q/H supports the assump-
tions that dune slip faces can be considered perfect sand traps
(see schematic in Fig. 3) and that the mean wind velocity is the rel-
evant information needed to determine the mean sand flux.

The finest scales of turbulence must be resolved to enable
experimental measurement of turbulent velocity fluctuations.
The velocity fluctuations du(‘) at scale ‘ are on the order of
U(‘/L)1/3 (Kolmogorov, 1941; Frisch, 1996). The local Reynolds
number ‘du(‘)/m, which characterizes the motion at scale ‘, reaches
1 at the so-called Kolmogorov scale ‘K, which scales as LRe�3/4. The
corresponding time-scale ‘K/du(‘K) scales as TRe�1. For atmospheric
turbulence, the Kolmogorov length-scale ‘K is millimetric and the
time-scale is around 10�1 s. For a wind tunnel, the Kolmogorov
time-scale can be much smaller (between 10�3 and 10�2 s). Hot
wire anemometers exhibit these ideal space and time resolutions.

Following Reynolds’ decomposition principle, the full velocity
field can be decomposed into average ui and fluctuating u0i compo-
nents. By construction, the variations of the average are slower
than T and those of the fluctuations faster than T. This decomposi-
tion can be performed by applying a low-pass/high-pass filtering at
frequency T�1, for instance by averaging over a time-window T. The
equations governing the average velocity field ui can be written as:

@iui ¼ 0; ð1Þ
qf Dtui ¼ qf @tui þ uj@jui

� �
¼ �@jsij � @ip; ð2Þ

where sij ¼ qf hu0iu0ji is the Reynolds stress tensor, defined as the
low-pass filtering of the product of velocity fluctuations (both hu0ii
and hu0jimust be zero). The Reynolds stress is an inertial effect inter-
preted as a pseudo-stress tensor. The turbulent shear stress is de-
fined as: sxz ¼ qf hu0xu0zi. It is a vertical flux of horizontal
momentum carried by wind fluctuations. As exemplified below,
the averaging procedure must be consistent with the time-scales
of the problem. In particular, the instantaneous value of u0iu

0
j is not

an instantaneous shear stress.

2.2. Turbulent boundary layer

The wind flow above a sand bed is called the turbulent bound-
ary layer. We first consider a flat homogeneous ground, where the
shear stress is a constant, noted qf u

2
� , where u⁄ is called the shear

velocity. The flux of momentum is transmitted from the upper lay-
ers of the atmosphere to the ground throughout air. The turbulent
regime is characterized by the absence of any intrinsic length and
time scales. In particular, the viscosity is completely inefficient at
large scales. At a sufficiently large distance z from the ground
(but z� L), the only length-scale limiting the size of turbulent ed-
dies – the so-called mixing length – is precisely z and the only mix-
ing time-scale is given by the velocity gradient j@zuxj. As originally
shown by Prandtl (1925), it results from this dimensional analysis
that the only way to construct a diffusive flux is a turbulent closure
of the form:

sxz ¼ �j2qf L
2j@zuxj@zux; ð3Þ

where the mixing length is L = z and j ’ 0.4 is the (phenomenolog-
ical) von Kármán constant. In the logarithmic boundary layer, the
normal stresses can be written as:

sxx ¼ syy ¼ szz ¼
1
3
sll with sll ¼ j2v2qf L2j@zuxj2; ð4Þ

where v is a second phenomenological constant estimated in the
range 2.5–3. Note that v does not have any influence as it describes
the isotropic component of the Reynolds stress tensor, which can be
absorbed into the pressure terms. Introducing the strain rate tensor
_cij ¼ @iuj þ @jui and its squared modulus j _cj2 ¼ 1

2
_cij _cij, we can write

both expressions (3) and (4) in a general tensorial form:

sij ¼ j2qf L
2j _cj 1

3
v2j _cjdij � _cij

� �
: ð5Þ

flow

150

100

50

0
403020100

50
75

25

Tarfaya

50 m

Fig. 3. Relation between dune speed c and height H measured for aeolian barchans of the Atlantic Sahara (�). The solid line is Bagnold’s expression: c / Q/H. As shown by the
photograph the distance between the position of a Barchan dune at two dates is measured using both aerial photographs and GPS contours. Flux rose: saturated flux over a
flat bed Q computed from wind velocity measurements in Tarfaya (Atlantic Sahara) as a function of the wind direction. This flux rose is aligned with the dune propagation
velocity. Data from Elbelrhiti et al. (2005, 2008).
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As the shear stress is constant across the turbulent boundary
layer, one obtains the velocity by a simple integration. It has a sin-
gle non-zero component along the x-axis, which increases logarith-
mically with z (Stull, 1988; Garrat, 1994):

ux ¼
u�
j

ln
z
z0

� �
; ð6Þ

where z0 is a constant of integration called the aero/hydrodynamic
roughness.

This expression does not apply for z ? 0: close to the bottom,
there is a so-called surface layer, which matches the logarithmic
profile to a null velocity on the ground. The hydrodynamic rough-
ness z0 should be distinguished from the geometrical (or physical)
roughness of the ground, usually defined as the root mean square
of the height profile variations. z0 is defined as the height at which
the velocity would be zero, when extrapolating the logarithmic
profile (6) to small z. There are number of physical mechanisms
that control z0. If the ground is smooth enough, a viscous sub-layer
of typical size Oðm=u�Þ exists, whose matching logarithmic profile
determines the value of z0. On the contrary, if the geometrical
roughness is larger than the viscous sub-layer, turbulent mixing
dominates at small z with a mixing length controlled by the ground
topography. In the case of a static granular bed composed of grains
of size d, reported values of the hydrodynamic roughness are rea-
sonably consistent: z0 ’ d/30 in Bagnold (1941), z0 ’ d/24 in Sch-
lichting and Gersten (2000) and z0 ’ d/10 in Kamphuis (1974)
and Andreotti (2004). The situation is different in the presence of
sediment transport, which induces a negative feedback on the
flow. In this case, the hydrodynamic roughness z0 may be directly
controlled by the transport characteristics (e.g. mass flux and grain
trajectories), see Sections 6.1.3 and 6.4.

Finally, it is worth noting that there is a factor ’35 between the
wind velocity measured at 10 m above the ground and u⁄. A shear
velocity value of 1 m/s corresponds to a wind blowing at 125 km/h
10 m above the surface.

2.3. Fluctuations of sediment transport

Due to inertia, the motion of sand grains responds very differ-
ently to small and large time-scale velocity fluctuations. The length
needed to accelerate a grain at the wind velocity U (see Eq. (61)) is
called the drag length Ldrag and scales as

Ldrag ’ 2
qp

qf
d: ð7Þ

It is on the order of 1 m. The associated time-scale is

Tdrag ¼
Ldrag

U
’ 2

qp

qf

d
U

ð8Þ

and is on the order of 1 s. To characterize aeolian sediment trans-
port, one usually defines a sand flux by averaging over the motion
of many grains. Tdrag and Ldrag are the relevant scales to perform
such averaging as the flux cannot evolve more rapidly than Tdrag

and over distances smaller than Ldrag. The vertical scale is set by
the transport layer thickness Hf, which is on the order of 10�2 m.

In a wind tunnel, Tdrag coincides with the integral time-scale T.
As a consequence, the sand transport (averaged over a time Tdrag)
does not fluctuate much. Conversely, in the field, Tdrag is much
smaller than T so that sand transport fluctuation is high. Since
these fluctuations are part of the turbulence, they are statistically
determined by the wind velocity, if the later is properly averaged
over the integral time T. At this time-scale, the sand transport is
well and truly a function of the wind velocity. A striking conse-
quence of this property occurs in the field when one tries to relate
sand transport to velocity signals. If the distance between the flux

and velocity sensors is too large, they dot not sample the same tur-
bulent structures and so their signals do not correlate with any
fluctuations. However, their correlation can be restored by averag-
ing the signals over a time window of size T.

The situation in which the transport law is calibrated is usually
a uniform turbulent boundary layer of constant shear velocity u⁄
over a flat sand bed. In this situation, one observes a steady uni-
form transport characterized by a flux qsat called the saturated flux,
which corresponds to an equilibrium between flow and transport.
qsat is an increasing function of u⁄. As u⁄ must be defined at the
integral time-scale T, the curves qsat(u⁄) obtained in a wind tunnel
and in the field may be quantitatively different although qualita-
tively similar.

In order to relate them to each other we must consider Tdrag.
Transport is mostly determined by the velocity field inside the
transport layer. The time-scale over which the momentum is ex-
changed in the fluid increases linearly with the distance z from
the surface as z/u⁄. The equilibration time of the fluid inside the
transport layer is then on the order of Hf/u⁄ � 10�2 s, which is
much smaller than Tdrag. In the atmospheric case, one can thus con-
struct a time-varying shear velocity u⁄, measured at the level of the
transport layer, and averaged over Tdrag. The relation between the
sand flux, also averaged over Tdrag, and this shear velocity should
in principle be the same as that measured in a wind tunnel. By a
further averaging of the relation over the integral time T, one ob-
tains the relation valid at this atmospheric time-scale.

2.4. Turbulent flow over a relief

As shown by Jackson and Hunt (1975), the turbulent flow over
an undulating topography of wavelength k and with a small aspect
ratio can be decomposed into three regions.

� Outer layer: In the outer layer, away from the bottom, the pres-
sure gradient is mostly balanced by inertial terms, like in an
inviscid potential flow. The streamlines follow the topography
so that the velocity at the bottom of the outer layer is in phase
with the bottom, i.e. it is largest above the crests of the bumps.
� Inner layer: In the inner layer, the inertial terms of the Navier–

Stokes equation are negligible, and the longitudinal pressure
gradient is thus balanced by the Reynolds shear stress trans-
verse gradient i.e. by the mixing of momentum due to turbulent
fluctuations. The thickness ‘ of the inner layer is related to the
wavelength by k � ‘ln2(‘/z0). At the transition between the
inner and outer layers, the fluid velocity is slowed down by
the shear stress. Due to inertia, when a stress is applied, the
velocity response is lagged. Then, the velocity, which is inher-
ited from the outer layer is always phase delayed with respect
to the shear stress. As a consequence, the shear stress is
phase-advanced with respect to the topography, which means
that the shear stress reaches its maximum upstream of the
crests of the bumps. The shear stress phase shift vanishes for
asymptotically small z0/k and gently increases with ln(z0/k)
(Fourrière et al., 2010). The asymptotic calculation performed
by Jackson and Hunt (1975) and simplified by Kroy et al.
(2002a,b) is recovered only for asymptotically large ln(k/z0), a
limit rarely reached in real problems.
� Surface layer: The surface layer, already introduced, is responsi-

ble for the hydrodynamical roughness z0 seen from the inner
layer. The shear stress profile is insensitive to the mechanisms
at work in the surface layer, provided that its thickness is smal-
ler than that of the inner layer: the hydrodynamical roughness
is then the single quantity inherited from the surface layer.

This structure has very important consequences for sand trans-
port and wind velocity measurements. First, as the wind strength
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varies along the dune topography, the sand flux is never saturated.
We will develop in Section 4.4 a framework which accounts for sat-
uration transients. Second, the velocity profile in the outer layer is
not logarithmic. Therefore, one cannot extract the local value of
the shear velocity at the surface of a dune from the fit of the velocity
profile to relation (6), which is only valid in homogeneous situations.

Still, one can use the relation between the saturated flux and
the basal shear velocity if the transport layer is embedded in the
inner layer (Hf < ‘). For this, the basal shear velocity u⁄ must be
determined from velocity measurements performed inside this in-
ner layer. In practice, for a dune of length k, the sensors have to be
placed within a distance ’10�2k from the bed. The easiest method
is to place an anemometer just above the transport layer, where
the shear velocity is the measured velocity multiplied by a con-
stant factor. For quantitative applications, it is necessary to cali-
brate the relation between the roughness z0 and the velocity in a
wind tunnel.

3. Force acting on grains

The aim of this section is to review the different forces at work
at the scale of grains. We start with aerodynamical forces, then
treat contact forces between grains, and finally describe the colli-
sion between two particles. As stated in Section 1, the nature of
these forces determines the classification of the modes of trans-
port. These forces are also important for threshold scaling laws.
Further, this analysis provides the microscopic input for subse-
quent discrete or continuum descriptions, and at the end of this
section we describe the principle of discrete element numerical
simulations for sediment transport. We focus on basic results in
this section and provide more details in Appendix A.

3.1. Aerodynamic forces in uniform steady flows

3.1.1. Viscous regime
Consider a grain of diameter d moving at a constant speed ~up

with respect to a steady fluid of density qf and viscosity g
(Fig. 4a). The dynamics are controlled by a single non-dimensional
number, the grain-based Reynolds number R, which compares
inertial and viscous effects at the scale of the grain:

R ¼
qf upd

g
¼ upd

m
; ð9Þ

where m = g/qf is the kinematic viscosity.
At low Reynolds number R, exchanges of momentum between

the grain and the fluid are dominated by viscous diffusion. The
drag force exerted by the fluid on the grain, which results from vis-
cous shear stress, can be estimated dimensionally. As the velocity
gradient is proportional to up/d, the viscous stress scales as gup/d.
The surface on which this stress is applied is proportional to d2.
The force exerted by the fluid on the particle is simply the stress
multiplied by the surface:

~Fd � �gd~up: ð10Þ

It is possible to compute this force exactly, for the case of a sphere
with diameter d. Given a sphere area of pd2, the numerical coeffi-
cient in front of expression (10) is then equal to 3p, so that the drag
force, called the Stokes force in this case, reads:

~Fd ¼ �3pgd~up: ð11Þ

Given this low Reynolds number limit, the velocity field around a
moving particle decreases by 1/r, where r is the distance to the par-
ticle center. This slow decrease explains the long range interactions
between grains in a viscous suspension. Let us apply the Stokes for-
mula to sediments. Consider a unique spherical falling grain sub-
jected to gravity. The force balance reads

~Fd ¼
p
6
ðqp � qf Þd

3~g ð12Þ

and the fall velocity is defined as

ufall ¼
qp � qf

qf

gd2

18m
: ð13Þ

3.1.2. Turbulent regime
At high Reynolds number, the viscous diffusion is negligible rel-

ative to the convective transport due to velocity fluctuations. The
force ~Fd exerted on a spherical grain remains parallel to the veloc-
ity ~up but does not depend anymore on viscosity. The main force
results from the asymmetry of pressure between the two sides of
the grain (Fig. 4c). As the streamlines converge along the upstream
face of the grain, this zone of the flow does not fluctuate much, so
that energy dissipation is low there. One can apply Bernoulli rela-
tion to estimate the pressure on the upstream side of the grain as
1
2 qf u

p2. On the grain flanks, the boundary layer separates from the
grain and a highly dissipative recirculation bubble forms. The pres-
sure on the downstream face is thus negligible. Globally, the total
force is on the order of the product of the pressure by the surface

~Fd ¼ �
p
8

C1qf d
2up~up: ð14Þ

The factor C1 is called the drag coefficient and depends on the grain
shape. For smooth spheres, at high Reynolds number, the
experimental value of C1 is approximately 0.47 but for natural
grains, physical measurements indicate C1 ’ 1.

In the turbulent regime, the fall velocity becomes:

ufall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp � qf

qf

4gd
3C1

s
: ð15Þ

Let us consider quartz grains, 300 lm in diameter, falling down
through air. Their terminal velocity is on the order of 3 m/s, which
is a few times greater than the typical velocity of grains transported
in saltation by the wind, when they collide with the ground. In this
example, the particle Reynolds number is only 60, which means
that grains in saltation are in the cross-over between the regime
dominated by viscous stress and that dominated by the down-
wind/upwind asymmetry of the pressure field. The same is true
for saltons on Mars, Venus or Titan, with R on the order of 10.

3.1.3. Cross-over between the two regimes
It may be of interest, for practical reasons, to describe the two

above asymptotic regimes by a unique law. From dimensional
analysis, the resultant of hydrodynamical forces acting on a grain
keep the form:

~Fd ¼ �
p
8

CdðRÞqf d2up~up: ð16Þ

The drag coefficient Cd is now a function of the Reynolds number R,
which can be determined experimentally. At low Reynolds number,

Fig. 4. (a) Schematic of a grain moving at the velocity ~up in a fluid at rest. (b)
Streamlines in the frame of reference of the grain, in the viscous regime (R� 1)
and (c) in the inertial regime (R � 1).
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the force is proportional to the viscosity, which means that Cd must
be proportional to R�1. At high Reynolds number, the drag coeffi-
cient tends to the constant C1 defined above. To match these two
scaling laws, the following empirical formula is satisfactory

Cd ¼ C1=2
1 þ sR�1=2

� �2
; ð17Þ

where s is a constant on the order of ’
ffiffiffiffiffiffi
24
p

’ 5 (Ferguson and
Church, 2004). Note that, this relation does not account for the
so-called drag crisis, for which Cd shows a sharp decrease between
R ¼ 105 and R ¼ 106, i.e. well above values encountered in natural
aeolian situations.

3.2. Aerodynamical forces in unsteady heterogeneous flows

In the previous paragraph, we have considered a single grain at
a constant speed with respect to a fluid at rest. In most cases, how-
ever, the grains are in motion in an unsteady inhomogeneous fluid.
What are the hydrodynamical forces acting on a particle in this sit-
uation? In the limit of small Reynolds numbers, it is possible to
perform analytical developments from the viscous regime, taking
into account various effects at the perturbative order: unsteadi-
ness, inertial effects, velocity gradient influence, etc. However,
measurements show that these systematic developments have a
small range of validity: above a Reynolds number of order 10,
the discrepancies with perturbative analysis is such that one has
to go back to dimensional analysis. In the limit of high Reynolds
number flows, there is no such asymptotic developments. A com-
mon trick is to keep the same expression as above, but replace
the grain velocity~up by the relative velocity~up �~u. This is rigorous
given the condition that the fluid should not present any intrinsic
fluctuation. However, the hydrodynamical forces result from not
only the fluctuations induced by the grain, but also those due to
the flow turbulence. Very few results exist on the forces felt by
one grain whose size would be in the inertial range of a turbulent
flow. A number of examples are described in Appendix A.

3.3. Contact forces and collisions

In this subsection, we describe the forces exerted by two grains
in contact as well as collisions between grains (Fig. 5). In particular,
we address the microscopic and geometrical contributions to the
macroscopic laws of solid friction. We also describe the physics
at work during the collision of two grains. In the context of aeolian
transport, this section is particularly relevant for the description of
a granular bed, as well as the collision of grains on the bed.

3.3.1. Hertz elastic contact
Let us first consider the normal force ~N resulting from the over-

lap 2d of two spherical grains in contact (Fig. 5a). This force results
from the elastic repulsion inside the contact zone. For geometrical
reasons, this zone has a radius a ’

ffiffiffiffiffiffi
dd
p

. The strain generated by
this compression is on the order of d/a, so that the force is

N ’ Ed/a 	 a2, where E is the Young modulus. The exact derivation
of the sphere–sphere contact (Johnson, 1985; Landau and Lifchitz,
1990) gives:

N ¼ E
ffiffiffi
d
p

3 1� m2
p

� � d3=2; ð18Þ

where mp is the Poisson coefficient of the material the spheres are
made of. Note that this force is non-linear with respect to the over-
lap: the contact becomes harder as one pushes more.

3.3.2. Solid friction laws
Two touching grains also exhibit a tangential force coming from

the friction of the surfaces in contact. The macroscopic laws con-
trolling the friction between two solids have been formalized by
Amontons (1699) and Coulomb (1773) as follows (see Fig. 6a for
notations). Starting from rest, the norm of the tangential reaction
have to reach the value j~RT j ¼ lsj~RNj to initiate the motion. ls is
called the static friction coefficient between the two solids. If there
is no motion, ~RT is undetermined and only the inequality
j~RT j 6 lsj~RNj holds. Once the block moves, the friction force is ori-
ented in the direction opposed to that of the motion and its norm
is j~RT j ¼ ldj~RNj, where ld < ls is now the dynamic friction coeffi-
cient. The coefficients ls and ld are phenomenological constants
that depend on the nature of the materials in contact. Typical val-
ues are 1 > ls > ld > 0.1. For convenience, one can use alternative
friction angles a defined as tana = l.

The Amontons–Coulomb law is particularly simple and robust
and is widely used for practical purposes. Its microscopic origin
has been elucidated by Bowden and Tabor (1950). Furthermore,
as shown in Fig. 6b, most solid surfaces are not smooth but have
microscopic roughness, and the contact between two solids takes
place at the level of the largest asperities. The real surface of con-
tact, Areal, is thus much smaller than the apparent, macroscopic
one, Aapparent. The stress at the level of the micro-contact is larger
than the macroscopic stress by a factor Areal/Aapparent, which is typ-
ically around 103. The normal stress is so large that the material
deforms plastically until it reaches the hardness of the material
H. Then, the real contact surface becomes directly proportional to
the normal load: HAreal ¼ j~RNj. The macroscopic friction law can
then be explained by the rheology of the material in the micro-con-
tacts. Sliding of the micro-contacts under shear occurs when the
tangential stress j~RT j=Areal exceeds the yield stress rY of the mate-
rial. Finally, by combining the two relations, a microscopic friction
coefficient is determined by l = rY/H.

3.3.3. Effective friction of granular matter
Granular assemblies also follow solid friction laws. However,

this behavior takes place at a much larger scale than the contact
between grains. The effective friction coefficient results both from
the friction in the microscopic contact asperities discussed above,
and from the geometrical tangle of the grains. Consider the simple
granular packing of Fig. 7b. In this case, the upper grain can be set

Fig. 6. (a) Schematics of Amontons–Coulomb’s laws of friction. (b) Transmission
electron microscopy picture of the interface between two blocks of epoxy resin
(photo credit: Ronsin). Contacts appear in black. Scale bar: 100 lm.

Fig. 5. (a) Elastic contact between two spheres of diameter d, pushed one against
the other by a distance 2d. The strain is localized over the gray zone of size a. (b)
Inelastic collision between two spheres approaching at velocities ~v1 and ~v2.
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into motion if it moves over the neighboring grain. This is formally
similar to the sliding of a block along a solid plane inclined at an
angle ag, which reflects the geometry of the packing. The resulting
horizontal force for the onset of motion is T = lN, now with

l ¼ tanðaþ agÞ; ð19Þ

a is the friction angle at the scale of contact. The geometrical con-
tribution to the effective friction is fundamental as it explains the
Coulomb-like behavior observed numerically for frictionless
particles.

This provides the basic explanation for the angle of repose of a
sand heap (Fig. 7a). The pile is stable as long as its slope is small
enough to prevent gravity forces to reach this criterion. Above
the threshold, an avalanche nucleates that flows down the pile
(Douady et al., 1999; Quartier et al., 2000). In practice, the mea-
surement of the avalanche slip-face angle with respect to the
horizontal provides an easy and precise approximation of the effec-
tive friction coefficient. Typical values for aeolian sand are
ls ’ tan(34�) and ld ’ tan(30�).

3.3.4. Collisions of two elastic particles
When two elastic spheres collide each other, their kinetic en-

ergy is converted into elastic energy in the vicinity of the contact.
The collision time tc scales as d/v, where v is the normal impact
velocity and d the contact deformation (Fig. 5a). Hertz’s law is still
valid during the collision if the impact velocity v is much smaller
than the propagation speed of elastic waves inside the grain,

c /
ffiffiffiffiffiffiffiffiffiffiffi
E=qp

q
. Under this assumption

tc /
d
c

c
v

� �1=5
: ð20Þ

This collision time is typically on the order of a microsecond for
sand grains.

3.3.5. Restitution coefficient
Real collisions are not perfectly elastic and the impact is even-

tually dissipative. The inelasticity coefficient, also called the energy
restitution coefficient, is defined as

v 0 ¼ �ev ; ð21Þ

where v and v0 are the velocities before and after the shock. e is al-
ways smaller than unity and depends on the material properties as
well as on impact velocities. This physical energy loss can originate
in various ways. For instance, in the case of plastic dissipation in the
contact area, Johnson (1985) has derived the following scaling law

e � H
E

� �1=2 qpv2

H

 !�1=8

/ v�1=4; ð22Þ

which has been approximately verified for metallic beads at moder-
ate impact velocities.

3.3.6. Viscous loss in the fluid
The fluid characteristics also affect collisions between particles.

In the context of this aeolian review, the following considerations
are important for addressing transport in other atmospheres (e.g.
Mars, Venus or Titan). Gondret et al. (1999, 2002) have performed
experiments in which spherical beads rebound on a planar solid in-
side fluids of different densities and viscosities. They have shown
the existence of a transition between a regime in which the bead
rebounds after the collision and a regime in which the bead re-
mains glued on the plane. These experiments show that the dimen-
sionless parameter controlling the transition is the Stokes number
St, which characterizes the ratio of the grain inertia and the viscous
force.

Fig. 8 shows that the measurements e(St) collapse on a single
curve. The restitution coefficient is null below a threshold Stokes
number equal to several units. Above this threshold, it increases
and tends to a constant at large St. An estimation of the Stokes
number for Mars, Venus and Titan environments show that St is
greater than several thousand in all these cases, i.e. in the asymp-
totic regime of the curve displayed in Fig. 8.

3.4. Discrete element numerical simulations for sand transport

Models and numerical simulations provide a useful tool to
investigate the properties of aeolian transport. Various simulation
techniques and basic equations have been introduced, and
assumptions made. Based on the ideas of Owen (1964), Anderson
and Hallet (1986), Anderson and Haff (1988, 1991), Werner
(1990), McEwan and Willetts (1991, 1993), Rasmussen and Soren-
sen (2008), Kok and Renno (2009), and Creyssels et al. (2009) –
among others – have solved a simplified hydrodynamic model that

Fig. 7. (a) Photograph of a sand avalanche at the surface of a sand pile. Avalanches nucleate when the slope is locally larger than the static friction coefficient ls. They stop
when the slope has reached the dynamic friction coefficient. (b) Schematic showing the angle ag of the direction along which the upper grain starts moving when T is large
enough. (c) The effective friction results from the microscopic friction coefficient and from the packing geometry.
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Fig. 8. Restitution coefficient e, normalized by its value edry measured without
interstitial fluid, as a function of the Stokes number St. Beads and fluids of different
natures are used (after Gondret et al. (2002)).
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neglects the turbulent fluctuations (see Section 2). They have also
approximated the interactions between the saltating grains and
the bed by the so-called splash function, calibrated through single
grain collision experiments or simulations performed in the ab-
sence of wind (Anderson and Haff, 1988; Rioual et al., 2000; Ammi
et al., 2009), or dense saltation (McEwan et al., 1992). Alternatively,
Almeida et al. (2008) recently modeled saltation considering more
complete aerodynamic relationships and explicitly accounting for
wind fluctuations. However, the splash process i.e. the ability of
the grains in motion to expel other grains from the bed, was ne-
glected. In particular, the balance between erosion and deposition
was replaced by the maximization of the sediment flux with re-
spect to the number of grains released per unit surface and unit
time.

For this review, we have performed simulations based on dis-
crete elements (so-called ‘molecular dynamics’ simulations). By
contrast to previous approaches, it allows us to resolve simulta-
neously the motion of the grains and their interactions, taking
the fluid flow into account. No splash function is therefore re-
quired. We follow all trajectories of typically several thousands
of grains, solving Newton’s law at each time step, which makes
necessary calculation of all forces acting on the grains, as described
in the previous sub-sections. In our simulations, grains in contact
interact through elastic and frictional forces. A constant restitution
coefficient is used when two grains collide – mid-air grain colli-
sions (Sørensen and McEwan, 1996) are treated in the same way
as those involving the grains on the bed. Forces exerted by the fluid
on the grains are restricted to drag forces, with a drag coefficient
function of the particle Reynolds number (see expression (17)).
Solving the full fluid dynamics simultaneously to the grain motion
is computationally too expensive. We have thus used the Reynolds
averaged equations governing the mean flow properties, with a
Prandtl-like mixing length approach for the turbulence closure.
We account for the feed back of the grains on the fluid by a
momentum balance (see Section 6.2). Finally, the equations gov-
erning the velocity ~up and the angular velocity ~xp of a given parti-
cle p, whose mass is mp, moment of inertia is Ip, and has Np

neighbors, are

mp@t~up ¼ mp~g þ
XNp

c¼1

~f pc þ~Fp
d; ð23Þ

Ip@t~xp ¼
XNp

c¼1

~rpc 	~f pc: ð24Þ

~g is the gravity acceleration vector,~f pc is the contact force at contact
c,~rpc is the radius vector in the contact direction and ~Fp

d is the drag
force.

The equations of motion coupled with the simplified fluid
dynamics are then solved for spherical grains until a steady state
is reached. Although the real grain shape is not actually spherical,
this necessary simplification does not change the fundamental
mechanisms behind sediment transport and with we are able to
reproduce the aeolian transport phenomenology and related scal-
ing laws. The result of our simulations is used in the following sec-
tions to complement the available experimental data.

4. Continuum description of aeolian transport

In this section, we present a framework describing erosion and
transport in a unified way. We first define the interface that sepa-
rates the granular bed from the fluid, and introduce the sediment
fluxes that quantify mass exchange through and along it. We then
consider steady homogeneous transport, which allows us to define
the saturated flux. Finally, we propose a simple description of the
saturation transient.

4.1. Interface between the sand bed and the fluid

One can think of two possible definitions of the interface sepa-
rating the granular bed from the fluid. A first possibility is to intro-
duce the surface fs below which grains are static, and above which
they move (Fig. 9a). Within a good approximation, the velocity of
the wind vanishes at fs. Another option is to consider the fictitious
bed surface f one would obtain after all moving grains have been
deposited on the bottom, forming a homogeneously packed bed
(Fig. 9b). Describing the system in a continuous manner by the vol-
ume fraction /, this interface reads

f ¼
Z 1

�1

/
/b

dz; ð25Þ

where /b is the packing fraction of the bed. In the context of aeolian
transport, the difference between f and fs is small. We shall then as-
sume in the rest of the paper that they coincide.

4.2. Flux and mass conservation

Particle transportation can be quantified by two different fluxes.
The first type, denoted by q, counts the grains that cross, per unit
time, a surface of unit width transverse to the transport direction,
which extends from the bed to infinity (Fig. 10a). Defining the
mean particle velocity h~upi, we can write

~q ¼
Z

/
/b
h~upidz: ð26Þ

Note that with this definition, q is a volumetric flux i.e. a volume of
grains (at the bed packing fraction) per unit time and unit length. Its
dimension is that of a diffusion coefficient (m2/s). One can equiva-
lently define a mass flux ~qm ¼ qp/b~q. Using the effective interface
f and the flux q, the mass conservation equation – the so-called Ex-
ner equation – then reads

@f
@t
¼ �~r 
~q: ð27Þ

By contrast, the ascending flux u" (resp. descending flux u;)
counts the volume of grains (again at the bed packing fraction) that
crosses a unit horizontal surface from below (resp. from above), see
Fig. 10b. These volumetric fluxes have the dimension of velocity (m/
s). The balance between erosion and deposition, which governs the
bed evolution, reads

@fs

@t
¼ u# �u": ð28Þ

The difference u; � u" is then the velocity of the bed surface.

Fig. 9. The two definitions of the interface between the granular bed and the fluid.
(a) Interface fs between moving and static grains. (b) Effective interface f, defined
after all moving grains are (virtually) deposited on the bed, at the same packing
fraction /b.
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4.3. Saturated flux

Let us consider an infinite flat granular bed subjected to a
homogeneous turbulent wind in a statistically steady state. The
transport and flow eventually reach an equilibrium state due to
the negative feed back of the grains on the flow, which is character-
ized by the so-called saturated flux q = qsat. ‘Equilibrium’ is used
here to infer a ‘steady homogeneous state’ differing from the ther-
modynamical definition, where the saturated state is out of equi-
librium, because energy is being injected continuously by the
wind in the transport layer. As the sand flux is spatially homoge-
neous, there is no net erosion nor deposition of grains:
u = u; = u". As pointed out by Jensen and Sørensen (1982, 1986),
the ratio qsat/u can be interpreted as the mean hop length
(Fig. 10c). As discussed in Section 2, the saturated flux qsat is a func-
tion of the shear velocity u⁄ defined at the proper time and length
scales.

The transport law qsat(u⁄) must usually be calibrated experi-
mentally. For example, in the field, this can be achieved by using
dunes or superimposed undulations as perfect sand traps, while
the wind velocity must be measured close to the bed. In a wind
tunnel, this is achieved through the challenging task of obtaining
both a homogeneous flow and a saturated transport, and measur-
ing the sand flux (White and Mounla, 1991). For this, vertical sam-
plers are normally used, designed to minimize the disturbances of
the trap on the wind (Zingg, 1953; Goosens et al., 2000). Using such
samplers, one needs to pay attention to the fact that most trans-
port takes place within the first two centimeters above the ground.
Besides, as demonstrated in Rasmussen and Mikkelsen (1991), ver-
tical samplers can underestimate the total flux, due to erosion un-
der the trap and to the passage of ripples. An alternative to sand
traps is to measure the erosion rate along the axis of the wind tun-
nel and to integrate it in space to get the flux.

There has been a great effort to obtain experimentally (Chepil
and Milne, 1939; Bagnold, 1941; Zingg, 1953; Williams, 1964;
Svasek and Terwindt, 1974; Nickling, 1978; White, 1979; Jones
and Willetts, 1979; Willetts et al., 1982; Rasmussen and Mikkelsen,
1991; Greeley et al., 1996) using both wind tunnels and atmo-
spheric flows in the field to determine the relationship between
the saturated flux over a flat sand bed and the shear velocity u⁄.
The transport law qsat(u⁄) presents very robust features, as exem-
plified in Fig. 11. The saturated flux is an increasing function of
the shear velocity u⁄, it vanishes below a threshold shear velocity
ud and it decreases with the grain diameter. It is difficult to go be-
yond these basic observations on the basis of experimental rela-
tions qsat(u⁄) only. Most models effectively provide an equally
good fit of the data and there is a huge dispersion of measurements
in the literature. One of the most complete wind tunnel measure-
ments were performed by Iversen and Rasmussen (1999) using
sand of different sizes (in the range 100–600 lm) and a large range
of shear velocities (up to 1 m/s or about five times uth). As shown in
Andreotti (2004) and Durán and Herrmann (2006), the proper way
to test the scaling behavior from this data is to rescale the flux and
to plot qsat=u2

� as a function of u⁄ (Fig. 12). Depending on the series

of data, qsat=u2
� is observed to increase or decrease with u⁄ for large

winds. No systematic trend with the grain diameter was observed
once the flux was rescaled. In the first approximation, one can
therefore conclude from Iversen and Rasmussen (1999) that the
saturated flux scales as qsat / u2

� � u2
d . The same behavior is also

found in wind tunnel experiments by Creyssels et al. (2009),
exploring shear velocities up to three times the threshold value
ud. Interestingly, Ho et al. (2011) have shown that, for the same
experimental conditions as those of Creyssels et al. (2009), the
sand flux is proportional to u3

� in the case of saltation over a rigid
non erodible bed.

Numerical simulations (Werner, 1990; Andreotti, 2004; Almei-
da et al., 2008; Kok and Renno, 2009; Creyssels et al., 2009 and
ours) provide a useful complement for the calibration of the satu-
rated flux in the absence of shear stress fluctuations. They show
that the saturated flux varies linearly with u2

� for shear velocities
up to four times ud (see Fig. 13 for a typical example). However,
for shear velocities well above the threshold – say, above 5ud,
which is a condition difficult to achieve in a wind tunnel – we have
found that the saturated flux starts to scale as u3

� (Fig. 13).

4.4. Saturation length

We consider now a situation for which the flow is not homoge-
neous in space or time, e.g. the wind over an undulating topogra-
phy. The saturation process described above does not occur
instantaneously: the flux q follows the saturated flux correspond-
ing to the local basal shear stress, with a space lag (Bagnold,
1941; Sauermann et al., 2001) or a time lag (Anderson and Haff,
1988, 1991). One can account for this delay by a first order

Fig. 10. Schematics for (a) the horizontal flux ~q and (b) the ascending u" and descending u; vertical fluxes. (c) In steady homogeneous state, vertical fluxes are equal
u" = u; = u. Considering a single type of trajectory of hop length a, the horizontal and vertical fluxes are related to each other by q = au.
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Fig. 11. Wind tunnel measurements of the mass flux as function of the wind
velocity at the center of the tunnel for different grain sizes. Data from Dong et al.
(2003).
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relaxation differential equation (Andreotti et al., 2002a,b), which
results from the linearization around the saturated state:

Tsat
@q
@t
þ Lsat

@q
@x
¼ qsat � q; ð29Þ

where Tsat and Lsat are the saturation time and length.
These two quantities can be considered separately in two pure

situations. The first one is that of a uniform flat sand bed subjected
to a sudden change in wind velocity. The flux is then homogeneous
in space, but relaxes in time towards the new saturated flux qsat

after the change. The second situation consists of a steady wind
over a sand bed which extends in the half-space x > 0 only. The up-
stream (x < 0) region is non erodible, but of same hydrodynamical
roughness. The sand flux is null at the bed entrance (x = 0). It

increases further downstream, and eventually relaxes exponen-
tially towards qsat over a characteristic length Lsat. Measurements
of the saturation length based on this experimental geometry are
presented in Section 5.2.

The saturation time Tsat is generally much smaller than the typ-
ical evolution time scale of the bed, so that, as far as geomorphol-
ogy problems are concerned, it can be neglected. Hydrodynamics
and sediment transport can thus considered and treated as if the
bed was fixed. Finally, this formalism emphasizes the fact that nei-
ther the flux q nor the erosion rate @th are functions of the shear
velocity u⁄. Regardless of the wind velocity magnitude, if q is above
qsat it must decrease, leading to sand deposition, while, if q is below
qsat it must increase, leading to erosion of the sand bed. Below the
transport threshold, the saturated flux is null so that deposition
must occur. However, above the threshold, erosion or deposition
takes place depending on the gradient of u⁄.

The description of the saturation transient by a first order relax-
ation equation has been successfully applied to the description of
dune formation by Andreotti et al. (2002b), Elbelrhiti et al.
(2005), Valance and Langlois (2005), Charru (2006), Claudin and
Andreotti (2006), and Fourrière et al. (2010). Fig. 14 shows a visual
interpretation of the saturation length in that case. Due to aerody-
namic effects, the maximum of the basal shear stress is located up-
wind of the crest of a small proto-dune, at a distance proportional
to the wavelength. The saturated flux thus presents a maximum at
the same place. However, the maximum of the actual sand flux q is
reached at a distance Lsat downwind of this point. Finally, the evo-
lution of the bump depends on the position of the flux maximum
with respect to the crest. In Fig. 14, the crest is located in the depo-
sition zone so that the proto-dune grows.

In three dimensions, the sand flux is not a scalar but a two com-
ponents vector ~q ¼ ðqx; qyÞ. The saturated flux is then aligned with
the basal shear stress~s ¼ qf u2

�~ek (ek is the unit vector parallel to the
shear stress). The saturation equation can then be generalized as

Tsat
@~q
@t
þ Lsat ~ek 
 ~r

� �
~q ¼ qsat~ek �~q; ð30Þ

which traduces the fact that both the flux and the direction of trans-
port are lagged.

5. Static and dynamic thresholds

A fluid flow can only entrain grains from a sand bed when the
velocity exceeds a threshold. In this section, we introduce the
Shields number, which is the dimensionless number traditionally
used to describe the onset of transport. We also describe the influ-
ence of the bed slope and cohesion on this threshold. The static
threshold, which originates from the direct entrainment of the
grains by the fluid, must not be confused with the dynamic
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Fig. 12. Wind tunnel measurement of the dimensionless saturated flux (Iversen
and Rasmussen, 1999) for d = 242 lm. The flux is normalized by u2

� in order to show
the asymptotic behavior. The solid curve corresponds to a flux proportional to
u2
� � u2
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Fig. 13. Dimensionless saturated flux obtained from our numerical simulations of
aeolian transport. Note the two asymptotic behaviors of the saturated flux:
proportional to u2

� � u2
d close to the threshold (solid line) and to u3

� well above it
(dashed line).

erosion

wind

deposition

Fig. 14. Schematic of the streamlines above a low amplitude undulation on the
surface of the sand bed. The maximum shear velocity is located at a distance
upwind from the crest (maximum of f) proportional to the wavelength k. The sand
flux maximum is located at a distance Lsat downwind. It separates the erosion zone
from the deposition zone.
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threshold, above which saltation can be sustained by the impacts
of the grains on the bed. The latter is specific to an aeolian situa-
tion, while the physics of the static threshold is the same in any
fluid (air and water specifically). The dynamic threshold is typically
lower than the static one and is thus more relevant in aeolian
transport. Nevertheless, the concepts introduced in this section,
as well as the scaling laws regarding slope and cohesion effects,
are useful for the understanding and the description of aeolian
transport.

5.1. The Shields number

Let us consider a spherical grain trapped in the hole between its
two fixed neighbors (Fig. 15b). This grain is subjected to a drag
force Fd from the flow above it. We assume for the moment that
cohesion is negligible, so that contact friction is the only interac-
tion between the grains. The considered grain looses static equilib-
rium when Fd balances weight minus buoyancy P � p/6(qp � qf)

gd3, times the effective friction coefficient l discussed in Section
3.3.3. The quantitative criterion for onset of motion is then the ra-
tio Fd/(qp � qf)gd3.

In order to obtain the threshold value of this ratio, it is necessary
to relate the drag force to the aerodynamic control parameters. From
a dimensional analysis, the force exerted by the fluid on a flat surface
of the size of a grain is proportional to sd2, where s is the shear stress
at the fluid/grain interface. The relevant dimensionless number is
then the so-called Shields number defined as

H ¼ s
ðqp � qf Þgd

¼
qf u2

�

ðqp � qf Þgd
: ð31Þ

This suggests that the onset of grain motion is controlled by a
threshold Shields number Hs / l, i.e. independent of the grain size,
as well as the density and the nature of the fluid. In Fig. 15a, we
show this Shields number as a function of the grain size for fluids
of different viscosities, in laminar and turbulent flow regimes.
One can see that Hs is fairly constant for large grains but gets larger
for smaller d. Moreover, the value of the threshold Shields number
is 10 times smaller than the effective friction coefficient l. This
means that the grains that move first receive 10 times more
momentum per unit time than an average grain of the surface. In
other words, when motion starts, only a small fraction of grains at
the surface get entrained. This suggests that the relation between
the drag force Fd exerted on those grains and the basal shear stress
s is not straightforward.

The problem may be solved using dimensional analysis. One
first assumes that the grains are sufficiently large not to be sensi-
tive to cohesion. The fluid to grain density ratio only appears in
front of gravity. Thus, using the fluid kinematic viscosity m, a single
characteristic length-scale can be built: the viscous diameter:

dm ¼
qp

qf
� 1

 !�1=3

m2=3g�1=3; ð32Þ

which corresponds to the grain size for which inertia, gravity and
viscosity are of the same order of magnitude. The threshold Shields
number should thus depend on the ratio d/dm, only. Fig. 15 shows
that experimental values of the threshold obtained in liquids of dif-
ferent viscosities collapse on a master curve Hs(d/dm). However, the
threshold Shields number for aeolian transport is much smaller,
which points to a different origin. Aeolian transport can be sus-
tained even below the minimal wind for which grains can be
entrained.

5.2. Static threshold

Before modeling this dynamic threshold, let us discuss further
the static one. We will focus on the grain configuration shown in
Fig. 15, aiming to relate ~Fd to s, and to understand the shape of
the relation Hs(d/dm).

5.2.1. Viscous regime
In a Newtonian fluid at small Reynolds number, the viscous

stress reads: s = g@ux/@z. Assuming that the velocity profile is lin-
ear close to the sand bed (ux = (s/g)z), the effective flow velocity
u around the grain can be approximated by that at the height
z = d/2:

u � sd
2g

: ð33Þ

One can roughly estimate that only the upper part of the grain is sub-
mitted to the viscous stress. The resulting drag force is equal to
Fd � (3/2)pgdu, which can also be written as Fd � (3p/4)sd2 according
to (33). At the threshold, this force balances friction exactly
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Fig. 15. (a) Static and dynamic threshold Shields numbers Hs and Hd as a function
of the grain size d rescaled by the viscous diameter dm = (qp/qf � 1)�1/3m2/3g�1/3.
White symbols (�) correspond to the static threshold, obtained from subaqueous
measurements by Fernandez Luque and van Beek (1976) and collected by Yalin and
Karahan (1979). Black symbols (j) correspond to the dynamic threshold obtained
from aeolian measurements performed by Chepil (1945a,b,c) and Hsu (1971). Inset:
schematics showing the mechanical origin of the transport threshold at the grain
scale. (b) Dynamic threshold shear velocity as a function of the grain diameter for
aeolian transport. Measurements performed by Chepil (1945a,b,c) and Hsu (1971)
(�) and by Rasmussen et al. (1996) (h). Solid and dotted lines show the predictions
of the model developed here, when cohesion is taken into account.
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p
6
lðqp � qf Þgd3 � 3p

4
ssd

2
; ð34Þ

where ss is the threshold shear stress. This relation predicts a
threshold Shields number constant and equal to

Hs �
2
9
l: ð35Þ

This estimate leads to a threshold Shields number around 0.14 for
rough grains, which is consistent with experimental data.

5.2.2. Turbulent regime
In the turbulent limit, the velocity profile above the sand bed is

logarithmic and one still assumes that the flow velocity around the
grain is the fluid velocity at z = d/2. For simplicity, we only consider
a turbulent drag force on the upper part of the grain so that the
equilibrium now reads:

p
6
lðqp � qf Þgd3 � p

16
C1qf ðusÞ2d2 � pC1

16j2 ln2 d
2z0

� �
ssd

2
; ð36Þ

where l is the effective friction coefficient and ud the fluid velocity
at the threshold. The threshold Shields number is thus constant in
the turbulent regime and equal to

Hs ¼
8lj2

3C1ln2 d=ð2z0Þð Þ
: ð37Þ

The typical value’0.04 measured in liquids can be recovered with a
typical roughness z0 ’ d/30 and a drag coefficient C1 = 1/2 (for
spheres).

5.2.3. Crossover between the viscous and turbulent regimes
It is interesting to establish an expression valid in both the vis-

cous and turbulent regimes. We introduce the rescaled velocity
around the grain as

S ¼
qf u2

ðqp � qf Þgd
: ð38Þ

As discussed in Section 3.1, the drag force can be written under the
form p

16 d2Cdqf U
2, where the drag coefficient Cd ¼ ½C1=2

1 þ sR�1=2�2

depends on the grain-based Reynolds number R ¼ Ud=m. For natu-
ral sand grains, the constants are C1 ’ 1 and s ’ 5 (Ferguson and
Church, 2004). From these expressions, one gets the equation on
the rescaled velocity, Ss

ðC1SsÞ1=2 þ s
dm

d

� �3=4

S1=4
s ¼ 8l

3

� �1=2

; ð39Þ

which solves into

Ss ¼
1

16C2
1

s2 dm

d

� �3=2

þ 8
2lC1

3

� �1=2
 !1=2

� s
dm

d

� �3=4
2
4

3
5

4

: ð40Þ

To get the critical Shields number, one has to link Ss to the fluid
stress. For this, one assumes that the viscous stress and the Rey-
nolds stress can be added

s ¼ 2g
d

uþ
qf j2

ln2 d=ð2z0Þð Þ
u2: ð41Þ

One obtains the threshold Shields number

Hs ¼ 2
dm

d

� �3=2

S1=2
s þ j2

ln2 d=ð2z0Þð Þ
Ss: ð42Þ

Fig. 15 shows the comparison of this model with experimental data
obtained in liquids. Note that measurements of the static threshold
performed in the air (Willetts et al., 1991) are in fact very close to

the dynamic threshold discussed below. The agreement is good in
comparison to the simplicity of the description. In particular, it ex-
plains the drop of the Shields number by a factor of five between the
viscous and the turbulent regimes. The drag force is more efficient
in the turbulent regime than in the Stokes regime. Moreover, for a
given stress, the fluid velocity around the surface grains is larger
in the turbulent than in the viscous regime. The transition from
one regime to the other occurs for grains of diameters d � s4/3(2
lC1)�1/3dm ’ 200 lm. So, most of aeolian grains are precisely in
the transition zone between viscous and turbulent regimes.

5.3. Dynamic threshold

We have seen that the static transport threshold is rarely ob-
served in aeolian transport. Even below this threshold, transport
can occur and reach a statistical steady state. As there are both tur-
bulent fluctuations and disorder at the surface of the bed, the
emphasis should not be understanding the initiation of transport
but instead examining the minimal wind for which a non-zero flux
can be sustained. This second threshold is called the dynamic
threshold. To measure it in practice, one extrapolates to zero the
curve relating the sediment flux to the shear velocity. It is thus de-
fined in a much more precise way than the static threshold, for
which a somewhat arbitrary criterion for the onset of particle mo-
tion has to be chosen.

The key aspect of aeolian transport explaining this dynamic
threshold is the ability of grains in saltation to eject other grains. This
process, called splash, is a statistical process, with a wide distribu-
tion of velocities and angles. If transport is in a steady state, the dis-
tribution of grain velocities is stationary with respect to the splash
process. On average, each saltating grain produces a single saltating
grain during a collision with the bed, either by rebound or by ejec-
tion. Of course, in this average, the fact that low energy grains have
a high probability to stop is balanced by the increased role of ejection
of new grains by high energy impacts. One can formally define the
replacement capacity as the average number of saltating grains pro-
duced per collision. If the replacement capacity is larger than 1, the
bed is eroded; if it is smaller than 1, there is deposition of sand. At
saturation, the replacement capacity is exactly 1.

At equilibrium, the fluid shear stress is below the static thresh-
old. The grains at the surface are thus trapped by a force larger than
the hydrodynamic drag. The resistive force to overcome is equal to:

p
6
lðqp � qf Þgd3 1� H

Hs

� �
: ð43Þ

The replacement capacity of an impacting grain of velocity up is
determined by its kinetic energy compared to the work of this resis-
tive force over a displacement d. The non-dimensional number con-
trolling the replacement capacity is thus:

qpðupÞ2

ðqp � qf Þgd 1� H
Hs

� � : ð44Þ

As the particle velocities up scales on the wind shear velocity u⁄, one
infers that the overall replacement capacity is unity for a dynamic
Shields number Hd given by

Hd ¼ b
qf

qp
1�Hd

Hs

� �
; ð45Þ

where b is a numerical constant. Inverting the relation, one gets:

Hd ¼
Hs

1þ qp

aqf
Hs

: ð46Þ

As a consequence, for a small density ratio qp/qf, the dynamic
threshold is almost equal to the static threshold. Conversely, in
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the limit of infinite density ratio (aeolian case), the dynamic thresh-
old is much smaller than the static threshold (Hd ? bqf/qp).

5.4. Influence of the bed slope

We now consider a sand bed with a slope tana in the direction
of the flow (Fig. 16a). If this slope is upward, a stronger flow is re-
quired to move the grains. Conversely, the threshold is lower if the
slope is downward (Fernandez Luque and van Beek, 1976; Iversen
and Rasmussen, 1994; Rasmussen et al., 1996). In this case, the
tangential force on a grain is modified as Fd � Psina, while the nor-
mal force is Pcosa. As a consequence the static threshold is reached
when Fd � Psina = lPcosa. This condition is written as

HsðaÞ ¼ Hsð0Þ cos aþ sin a
l

� �
: ð47Þ

For the dynamic threshold Hd, one can follow the same reasoning
from the previous section. An inclined bed modifies the non-dimen-
sional number controlling the replacement capacity (Eq. (44)) as

qpðupÞ2

ðqp � qf Þg cos aþ sin a
l

� �
d 1� H

HsðaÞ

� � : ð48Þ

The slope modifies the particle velocity by a small factor propor-
tional to the ratio of the particle vertical and the horizontal velocity
times sina. As this ratio is very small in saltation, the particle veloc-
ity is only weakly affected by the slope. This leads to the modify dy-
namic threshold

HdðaÞ ¼ Hdð0Þ cos aþ sin a
l

� �
: ð49Þ

As expected, the bed slope has the same influence in both static and
dynamic thresholds. This relationship is fairly well verified. This ef-
fect is however a bit weaker than expected, with a friction coeffi-
cient slightly larger than the avalanche slope (Fig. 16b).

5.5. Influence of cohesion

The threshold is larger in the presence of an additional cohesive
force between the grains. Cohesion is more important for smaller
grains. A realistic computation of cohesion can be achieved under
the assumption that contacts between grains are made of many
micro-asperities (Fig. 6). Whether these micro-contacts are in an
elastic or plastic state, the scaling and transport threshold laws
are essentially the same, and can be expressed as:

Hth ¼ H1th 1þ 3
2

dm

d

� �5=3
" #

; ð50Þ

with dm / (c/M)3/5[E/(qsg)]2/5, where E is the grain Young modulus
and where M is the grain hardness (or M = E if the contacts are
not plastified), and c is the surface tension of the material they
are made of, cf. Claudin and Andreotti (2006). This cohesive term
is responsible for increasing the threshold at small d (Fig. 15a).

6. Saturated transport

Following the seminal work of Bagnold (1941), several attempts
to model the steady or saturated transport from fundamental prin-
ciples have been proposed (Kawamura, 1951; Owen, 1964; Kind,
1976; Lettau and Lettau, 1978; Jensen and Sørensen, 1986; Ungar
and Haff, 1987; Anderson and Haff, 1988; McEwan and Willetts,
1993; Spies and McEwan, 2000; Sauermann et al., 2001; Sørensen,
2004; Andreotti, 2004; Creyssels et al., 2009). An important objec-
tive of these works is to provide a macroscopic transport law relat-
ing the saturated flux to the shear velocity based on microscopic
and empirical inputs. In this section, we also aim to provide scaling
laws, not only for the saturated flux, but also for other quantities
like the transport roughness and the particle volume fraction. We
show how to develop a consistent description of sand transport
from the properties of the fluid and the particles within and above
the transport layer. Interestingly, we evidence a crossover from a
low-velocity regime (typically for u⁄/ud < 4) where qsat scales like
u2
� as predicted in the model of Ungar and Haff (1987), to a high-

velocity Bagnold-like regime, where qsat / u3
� .

6.1. Negative feedback of particles on the flow

6.1.1. Qualitative description
Steady transport of sand by wind flow is the result of several

processes. The grains in motion are accelerated by the drag force
exerted by the flow. When the moving grains collide with the
bed, they may rebound and/or eject other particles (splash), which,
due to irregularities on the surface, can jump high enough to feel
the wind and be themselves accelerated (Fig. 17a). These grains
in motion form a transport layer, whose thickness is related to
the hop height of the grains, see the visualization of grain trajecto-
ries in Fig. 17b. This transfer of momentum from the flow to the
grains results in a negative feedback on the wind velocity, which
is reduced in the transport layer.

As discussed above for the dynamic threshold (Section 5.3), the
condition for a steady transport is that the replacement capacity is
exactly one. In mechanical terms, this means that saturation corre-
sponds to the point where the negative feedback of transport on
the flow has reduced the wind shear velocity to the dynamical
threshold ud. We present below two pieces of evidence of such a
feedback.

6.1.2. Particle density profile
In the saturated state, aeolian transport is characterized by a

diffuse layer above the bed. This layer can be seen in Fig. 17, that
visualizes the typical trajectory of particles flying above aeolian
ripples. Quantitatively, the distribution of grains in this layer has
been measured for different wind intensities (White, 1982; Nami-
kas, 2003; Liu and Dong, 2004; Rasmussen and Sorensen, 2008;
Creyssels et al., 2009). The vertical profiles of the volume fraction
/(z) decreases exponentially with altitude (Fig. 18), which corre-
sponds to a maxwellian (i.e. Gaussian) distribution of vertical
velocities out of the bed. This supports the gas picture for the
grains in the transport layer.

1

0
-30 -20 -10 0 10 20 30

Fig. 16. (a) Schematics for the dependence of the threshold Shields numbers Hs and
Hd on the bed slope a. (b) Variation of the threshold with the bed angle a. Black
symbols correspond to the static threshold, obtained from subaqueous measure-
ments by Fernandez Luque and van Beek (1976) (j) and Dey (2003) (N) with
natural sand grains. White symbols (}) correspond to the dynamic threshold
obtained from aeolian measurements performed by Hardisty and Whitehouse
(1988). Solid line: proposed model. Dotted line: approximate expression cosa + -
sina/l, with l = tan35�.
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Importantly, these measurements show that the characteristic
height over which the volume fraction decreases, which is a mea-
sure of the typical height of the transport layer, is independent of
the wind shear velocity over the measured range (Fig. 18). Jensen
and Sørensen (1986) also found that the probability distribution
of the jump height does not depend on the wind shear velocity
(over the experimental range). Therefore, the mechanism responsi-
ble for the saturation of the transport inside this transport layer,
close to the bed, should also be independent of the wind shear
velocity. This is direct evidence of the negative feedback induced
by sediment transport on the flow. In contrast, Ho et al. (2011)
have provided experimental evidence that in the case of saltation
over a rigid (i.e. non erodible) bed, the thickness of the transport
layer is much larger (several tens of centimeters) and varies signif-
icantly with u⁄, meaning that in this much more dilute situation,
there is almost no feed back of the moving grains on the flow.

6.1.3. Aerodynamic roughness length
Another direct indication of the negative feedback of grains on

the flow comes from measurements of the aerodynamic roughness
zs above the transport layer. In the presence of sediment transport,
the roughness length of the logarithmic wind velocity profile far
above the bed is not related to the geometrical roughness (of the or-
der of the grain diameter d), nor to the size of the viscous sub-layer

(proportional to�m/u⁄). Instead, it depends on the details of the sal-
tation process, in particular, grain trajectories and vertical distribu-
tions. This is the picture suggested by the experimental findings (see
Fig. 19) that shows a consistent increase of the aerodynamic rough-
ness with the wind shear velocity (Sherman, 1992; Sherman and
Farrell, 2008). The apparent increment of the surface roughness is
due to the larger amount of momentum extracted from the flow
by the sediment transport, which effectively leads to an upward shift
of the height at which the wind velocity tends to zero.

6.2. Shear stress partition

Following the ideas Owen (1964), one can divide the overall
shear stress, which is the flux of horizontal momentum through
a horizontal surface, into two contributions: the momentum flux
due to the fluid turbulent fluctuations and the momentum flux car-
ried by the particles. In a steady homogeneous state, the shear
stress should not depend on height. In other words, the momen-
tum flux is conserved. We consider average grain trajectories tak-
ing off the bed with a velocity hup

"i, and coming back to it with hup
#i

after a hop of length a. This balance can be written as

s � qf u
2
� ¼ sb þ qp/bu up

#

D E
� up

"

D E� �

¼ sb þ qp/b

hup
#i � up

"

D E� �
a

q: ð51Þ

This formula can also be found (with different notation) in Sørensen
(2004). The left hand side term is the shear stress applied far above
the bed, i.e. in the region where the flow is undisturbed by the pres-
ence of transport. It must equal the sum of the basal shear stress
and the momentum flux due to ascending and descending grains.
At saturation, erosion balances deposition so that the replacement
capacity is equal to one. As a consequence, the basal shear stress
reaches it threshold value sd ¼ qf u

2
d , so that one can write the sat-

urated flux as

qsat ¼
qf u2

� � u2
d

� �
a

qp/b up
#

D E
� up

"

D E� � ð52Þ

(Sørensen, 2004). In order to go beyond this expression, one needs
to estimate the hop length a and the velocities up

# and up
" , i.e. to ex-

plore the properties of transport at the scale of the grain.

Fig. 17. (a) Grains ejected after a high energy collision (numerical simulations). (b) Visualization of the trajectories of the grains flying over aeolian ripples.
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Fig. 18. Wind tunnel measurements of the vertical profiles of the volume fraction /
(z) of the grains in saltation for different shear velocities u⁄. In the explored range of
shear velocities the volume fraction decreases exponentially with a characteristic
height of about 10 mm, independently of the shear velocity. Data from Creyssels
et al. (2009).
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6.3. Grain trajectories

From numerical modeling we can compute the grain trajecto-
ries in the steady state, and extract several quantities of interest
very close to the bed, where direct measurement is extremely dif-
ficult. In Figs. 20 and 21, the horizontal and vertical components of
the particle velocity up and wp are displayed for different winds.
Note that these figures show the distribution of velocities of grains
at a given height, while most experimentalists measure the distri-
bution of velocities of grains crossing a given height. The latter is
obtained from the former by multiplying by the particle vertical
velocity. These data show that the upward velocity distribution
(positive values of wp), which results from the splash, is indepen-
dent of the wind shear velocity. Namikas (2003) and Rasmussen
and Sorensen (2008) have shown that a constant vertical launch
velocity can be reproduced by field and wind tunnel measure-
ments. In contrast, the negative part of the velocity distribution
(downward velocities) exhibits tails that do not collapse for differ-
ent values of u⁄. This results from the effect of the vertical drag
force, which is larger for stronger winds. The horizontal velocity

distributions, whether associated to an ascending (up
") or descend-

ing (up
#) motion, have similar shapes close to the bed, with a data

collapse independent of u⁄ at small velocities, and split tails, which
is consistent with grain velocity measurements by Rasmussen and
Sorensen (2008).

Wind and particle velocity profiles are displayed in Figs. 22
and 23. They both show a lower zone in which the profiles are
independent of the shear velocity, and an upper region where
the velocities scale with u⁄. This lower zone can be interpreted
as the transport layer, as wind reduction resulting from the neg-
ative feedback of transport on the flow precisely takes place in
this zone. On the contrary, in the upper region, the wind is
undisturbed by the presence of moving grains. The transition be-
tween these two zones has been named the ‘focal’ point or re-
gion by Bagnold (1941), as it corresponds to the altitude at
which all velocity profiles converge. It has been experimentally
measured by Zingg (1953), Chepil (1945a,b,c), Horikawa and
Shen (1960), Willetts (1983), Rasmussen and Sorensen (2008),
and Creyssels et al. (2009) for wind profiles, and Liu and Dong
(2004), Rasmussen and Sorensen (2008), and Creyssels et al.
(2009) for particle profiles.

6.4. The transport layer and roughness length

We can now characterize in more detail the properties of this
transport layer. Its thickness, which is also the vertical location
of the focal point Hf, can be estimated as the typical altitude
reached by the grains moving within this layer. In the transport
layer, the average upward particle velocity hwp

"i is independent of
u⁄ (Fig. 20) and scales with the threshold ud. One then obtains
the scaling law: Hf / u2

d=g. Neglecting the tails of the distributions
in Fig. 21, one can similarly express the velocity at the focal point
as Uf / ud.

Wind tunnel data of Iversen and Rasmussen (1999) can be used
to extract measurements at the level of this transport layer
(Fig. 24). These experiments have been performed with grain
diameters d ranging from 100 to 600 lm. The wind velocity at
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Fig. 19. (a) Measured aerodynamic roughness length zs above the transport layer
(Rasmussen et al., 1996). (b) Normalized aerodynamic roughness gzs=u2

d as function
of the relative shear velocity for different density ratios: qp/qf = 500 (s), 1000 (�)
and 2000 (N) (data from numerical simulations). In both cases, the line corresponds
to the analytical approximation given in the text (Eq. (53)).
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Fig. 20. Distribution of grain vertical velocities at a height z/d = 5 (inside the
transport layer) for different shear velocities: u⁄/ud = 2.94 (	), 4.41 (h), 5.88 (s) and
7.35 (M) (from numerical simulations). Positive values denote upward velocities
and negative values downward ones. Upward velocities, resulting from the splash,
are independent of the shear velocity. By contrast, downward velocities increase
with the wind strength as a direct effect of the vertical wind drag force.
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the focal point Uf is found to scale with the shear velocity threshold
ud. As shown in Section 5, the scaling with d is more complicated,
due to the cross-over between viscous and turbulent regimes. The
focal height Hf is found on the order of a centimeter. It varies
roughly linearly with the grain diameter d.

Above the transport layer, the undisturbed wind velocity profile
should be logarithmic, but with an aerodynamic roughness that
depends on the presence of transport: u(z) = (u⁄/j)ln(z/zs). An
expression of this transport roughness length zs can be obtained
by writing the continuity of the velocity profile at the focal point,
i.e. Uf = (u⁄/j)ln(Hf/zs), which can be rearranged to

zs ¼ Hf exp �jUf

u�

� �
: ð53Þ

As shown in Fig. 19, this relationship can reproduce both experi-
mental and numerical results. As expected, zs is an increasing func-
tion of u⁄. Other expressions (power laws) have been proposed in
the literature, e.g. by Owen (1964) or Raupach et al. (1991) that also
fit the experimental data, in particular at large shear velocities
(Sherman, 1992; Sherman and Farrell, 2008) (see also Shao (2000,
Chapter 6)). However, close to the threshold, the focal point

argument gives a much better approximation (Andreotti, 2004;
Durán and Herrmann, 2006).

6.5. Flux and volume fraction scaling laws

The fact that, at saturation, the wind is reduced to its threshold
in the transport layer independently of the above shear velocity
leads to simple scaling laws for the sand fluxes usat and qsat, as well
as for the particle volume fraction /sat. Assuming that all grain
velocities scale with ud, we can write that sb ¼ sd ¼ qf u

2
d and that

ðhup
#i � hu

p
"iÞ / ud, so that we get from Eq. (51) that
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Fig. 21. Distribution of grains horizontal velocities at height z/d = 5 (inside the
transport layer) for different shear velocities: u⁄/ud = 2.94 (	), 4.41 (h), 5.88 (s)
and 7.35 (M) (from numerical simulations). (a) ejection (or rebound) velocity up

"
and (b) impact velocity up

# . Impact velocities are typically larger than ejection
ones. Note the tail of fast grains whose velocities increase with the wind
strength.
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Fig. 22. Vertical profile of the rescaled wind velocity u=
ffiffiffiffiffiffi
gd

p
for different shear

velocities: u⁄/ud = 1.03 (full line), 1.84 (long-dashed line), 2.94 (dashed line), 4.42
(dotted line), 5.88 (dot-dashed line) (from numerical simulations). Note the focal
point at z ’ 15d.

 0  10  20  30  40  50  60  70  80

transport layer101

100

102

Fig. 23. Vertical profile of the rescaled mean particle velocity up=
ffiffiffiffiffiffi
gd

p
for different

shear velocities: u⁄/ud = 1.17 (+), 1.47 (	), 2.94 (⁄), 4.41 (h) and 5.88 (j) (from
numerical simulations). Inside the transport layer z < Hf � 15d the average grain
velocity is independent of the wind strength. Above it, the grain velocity increases
with u⁄.
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u /
qf u2

� � u2
d

� �
qpðhu

p
#i � hu

p
"iÞ
/ gd

ud
H�Hdð Þ: ð54Þ

This expression is reproduced by numerical data, as shown in
Fig. 25. Under the same assumption, the average hop length within
the transport layer scales as a ’ u2

d=g, so that the relation qsat = ausat

(Section 4) leads to

qsat / udd H�Hdð Þ: ð55Þ

The particle volume fraction close to the bed is related to the
vertical flux by /b ¼ u=hwp

"i. Using hwp
"i / ud, the volume fraction

vertical profile can be scaled as

/ðzÞ / gd
u2

d

H�Hdð Þ: ð56Þ

This linear scaling with the Shields number difference has been re-
ported by Creyssels et al. (2009). In Fig. 26 we show the collapse of
the profiles of /(z), once rescaled by (H �Hd), obtained from our
numerical simulations.

The observed exponential decrease with height suggests a max-
wellian distribution of the vertical velocities of the fastest grains. In
particular, the characteristic decay length of the exponential pro-
file scales with the width of the distribution of vertical velocities
(see Fig. 20): hwp2

" i � hw
p
"i

2 � hwp
"i

2 and thus with the mean grain
hop height hwp

"i
2=g � u2

d=g, which is by definition the transport
layer height.

6.6. Bagnold-like regime

The results presented so far are basically those that can be de-
rived from the Ungar and Haff approach, which is valid under the
assumption that all grain velocities scale with the threshold ud.
This assumption is correct if u⁄ is not too large in comparison to
ud. At large shear velocities, the fast grains above the transport
layer, whose velocities scale with u⁄ (Nalpanis et al., 1993), effec-
tively give a significant contribution to the transport, so that the

behavior of the flux with the Shields number is changed to a Bag-
nold-like scaling:

qsat / u�d H�Hdð Þ / udd
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H=Hd

p
H�Hdð Þ: ð57Þ

Several empirical or semi-empirical expressions for the saturated
flux have been proposed in the literature (Bagnold, 1941; Zingg,
1953; Kawamura, 1951; Owen, 1964; Lettau and Lettau, 1978;
White, 1979; Sørensen, 1991; Sauermann et al., 2001), which all
scale to u3

� at large wind shear velocities. In Fig. 27, we display
numerical measurements of the saturated flux as a function of the
Shields number, up to values where we can see the transition be-
tween the two different limits discussed here, i.e. the two different
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Fig. 24. Experimental data extracted from wind tunnel experiments of Iversen and
Rasmussen (1999). Wind velocity at the focal point Uf as a function of the threshold
shear velocity ud. Inlets: scaling of ud and of the altitude of the focal point Hf with
the grain diameter d.
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Fig. 25. Rescaled vertical flux as function of H �Hth (numerical simulations).
Solid-line shows the fit by Eq. (54).
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Fig. 26. Vertical profiles of the rescaled volume fraction //(H �Hth) for different
shear velocities: u⁄/ud = 2.2 (+), 2.94 (	), 3.67 (⁄), 4.41 (h) and 5.14 (s) (from
numerical simulations). Notice the exponential behavior (solid line) at large height
with a roughly constant characteristic height.
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scalings. Note that, in practice, the transition to the Bagnold-like re-
gime occurs at winds u⁄/ud ’ 4, i.e. larger than ordinary natural field
conditions.

In order to provide a more fundamental understanding of this
regime, one should go beyond a modeling based on a unique rep-
resentative type of moving particles, as in the Ungar and Haff pic-
ture. Let us then consider two populations of grains in saltation.
The first population has trajectories beneath the transport layer,
referred to as ‘saltons-bottom’ (subscript ‘bot’). The second popula-
tion, with trajectories above the transport layer, and thus velocities
increasing with u⁄, are referred to as ‘saltons-top’ (subscript ‘top’).
These two populations are not independent: because at saturation,
the average impact velocity, which controls the replacement
capacity, must be maintained, one can write the balance

up
#

D E
¼ nbot up

#

D E
bot
þ ntop up

#

D E
top
/ ud: ð58Þ

In this expression, nbot and ntop = 1 � nbot are the fractions of ‘sal-
tons-bottom’ and ‘saltons-top’ in the total number of grains in sal-
tation, and hup

#ibot and hup
#itop, their average impact velocity,

respectively. As saltons-bottom move in the transport layer, we
have hup

#ibot � ud. The estimate of hup
#itop is more subtle. Saltons-

top have a velocity up
top scaling with u⁄ for most of their trajectory,

but once they enter the transport layer, they are slowed down be-
cause of a drag force. Their impact velocity can be computed assum-
ing a constant drag coefficient, as

up
top � up

#

D E
top
¼

up
top � u

� �2
=u0

1þ up
top � u

� �
=u0

; ð59Þ

where u ’ ud is the average wind velocity in the transport layer, and
u0 a reference velocity coming from the drag equation (u0 ’ ud/Hd).
From this expression, one can see that if u⁄ is close to the threshold
ud, the difference between up

top and hup
#itop is quadratic in u⁄ � ud,

whereas this difference is linear in u⁄ for u⁄� ud.
Recalling that the saturated flux is equal to au, where the scal-

ing of u with respect to the shear stress and the particle velocities
is given in Eq. (54), one must express the hop length a. It is the

product of the hop time by the average velocity. The hop time is re-
lated to hwp

"i, and thus independent of u⁄, i.e. proportional to ud/g.
Average velocities over the whole grain trajectory can be approxi-
mated by those at the top of it, where the grains spends most of the
time. Thus, the average velocity is hupi 
 nbotu

p
bot þ ntopup

top, where
up

bot and up
top denote the saltons-bottom and saltons-top velocities

are the top of their trajectories, respectively. For the saltons-bot-
tom, the difference between the average and the impact velocity
is negligible as both scale with ud, but for saltons-top it is given
by Eq. (59). Therefore, subtracting the average velocity from the
average impact velocity (Eq. (58)) and substituting Eq. (59), gives
an estimate of the average velocity. We then get,

a ’ ud=g up
#

D E
þ ntop

ðup
top � uÞ2=u0

1þ ðup
top � uÞ=u0

 ! !
: ð60Þ

In the limit of large shear velocities (u⁄� ud) we have up
top � u and

the expression qsat / a (H �Hd)gd/ud gives the scaling law (57).
Close to the threshold up

top � u and Ungar and Haff scaling is recov-
ered as the quadratic correction tends to zero (Fig. 27).

7. Saturation length

Here we discuss in more details the saturation length intro-
duced in Section (4.4). We first report direct as well as indirect
measurements of Lsat, and then present theoretical arguments to
understand the origin and the scaling of this quantity.

7.1. Experimental evidence

Let us consider a sand bed in the half space x P 0, over which
wind is blown (sketch in Fig. 28, see also Section 4.4). Upstream
of the bed entrance x = 0, the bed is non-erodible, but with a sim-
ilar roughness. In wind tunnel controlled experiments (Andreotti
et al., 2010) the longitudinal profiles of the flux q(x) have been ob-
tained with and without an input flux at the upstream bed en-
trance (Fig. 28). In both cases, the sediment transport increases
downstream and further saturates to the same value qsat. The evo-
lution of q can be divided into two phases: a first increase followed
by a relaxation phase toward equilibrium. The initial phase is
linked to ejection of grains, each saltating grain ejecting a few
other grains when it collides with the bed. This results in an expo-
nential increase of the flux (dotted line in Fig. 28). This regime is a
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Fig. 27. Rescaled saturated flux obtained from numerical simulations, as a function
of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H=Hd

p
¼ u�=ud . Close to the dynamic threshold, the mean velocity of the

transported particles up / qsat/(H �Hd) does not depend on the rescaled shear
velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H=Hd

p
, as predicted in the Ungar and Haff model. Far above the threshold,

on the other hand, there is a Bagnold-like regime where the mean velocity increases
linearly with the shear velocity.
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Fig. 28. Spatial variation of the sediment flux over a flat sand bed for u⁄ = 0.33 m/
s ’ 1.5uth, with (M) or without (�) an input flux. The grain size is d = 120 lm. Solid
lines: best exponential fit around the saturated state. Dotted lines: initial
exponential increase. Inset: sketch of the experiments. The sand bed starts at
x = 0. L1/4 is the length needed before the flux q reaches qsat/4 (from Andreotti et al.
(2010)).
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priori not taken into account in Eq. (29), which aims to describe the
relaxation close to the saturated state. To determine the saturation
length, we have thus analyzed the zone where the flux is larger
than one fourth of its saturated value qsat. The solid lines in
Fig. 28 show the best fit by an exponential law of the form
qsat½1� e�ðx�x0Þ=Lsat �, which is the solution of Eq. (29). This forms
indicates the magnitude of three parameters: the saturated flux
qsat, the saturation length Lsat and the position x = L1/4 at which
the flux reaches the value qsat/4.

For different wind strengths, the initial stage, where the flux in-
creases exponentially, is noticeable for weak wind and becomes al-
most invisible at large wind. This means that the ejection of new
sand grains becomes more and more efficient as the flow velocity
increases. In contrast, the neighborhood of the saturation is
remarkably insensitive to u⁄. These qualitative observations are
made quantitative by measuring both the length of the initial stage
L1/4 and the saturation length Lsat. One observes in Fig. 29 that L1/4

diverges at the threshold and decreases very rapidly with u⁄. In
contrast, the saturation length Lsat is independent of u⁄, within er-
ror bars. Its average is approximately 55 cm, for sand grains of
diameter d = 120 ± 40 lm from the Hostun quarry, with a standard
deviation of 10 cm.

It is worth emphasizing the difference between the saturation
length Lsat and the fetch distance usually defined in the literature
(Gilette et al., 1996). Looking at Fig. 28, one could say that, the
transport takes between 1 and 2 meters to saturate i.e. to reach a
significant fraction of the saturated flux. However, this includes
the initial ejection stage, of length L1/4 plus a part of the exponen-
tial relaxation to equilibrium. Lsat characterizes the final stage of
the relaxation, which is the only one relevant for dune formation.
We have effectively estimated that the sand flux over real dunes
is always within 20% of its saturated value. Note finally that Lsat

is much shorter than the apparent fetch distance (typically 40 cm
for Fig. 28).

Another way to measure the saturation length is based on the
wavelength at which dunes form by instability. The theoretical
prediction of the wavelength at which dunes emerge from a flat
sand bed has been progressively refined since the first linear stabil-
ity analysis of Andreotti et al. (2002b). It is based on two separate
stages. First, one needs to perform the hydrodynamical calculation
of the turbulent velocity field around obstacles of small amplitude
(Jackson and Hunt, 1975; Hunt et al., 1988; Richards, 1980). One

extracts from this heavy calculations the components of the basal
shear stress in phase and in quadrature with the elevation profile,
as a function of the ratio of the wavelength k to the aerodynamic
roughness z0. The most recent and detailed calculation has been
performed by Fourrière et al. (2010). In particular, the robustness
of the results with respect to turbulence modeling has been sys-
tematically tested. Second, one needs to describe the sand trans-
port around the saturated state, and this is where the saturation
length is important. The outcome of the linear stability analysis
of such a model gives the relation between the wavelength of
the most unstable mode, the saturation length, and the other
parameters. It follows that the prediction of this emerging wave-
length is essentially governed by Lsat and not sensitive to the for-
mula used for the relationship between the saturated flux and
the basal shear velocity.

Barchan flanks provide a good place to see the emergence of the
dune instability, as shown in Fig. 30a. The topography as well of
the flux is modulated at a wavelength typically around 20 m
(Fig. 30b) (Elbelrhiti et al., 2005). Inverting the theoretical relation
relating this wavelength to Lsat, one can then deduce the saturation
length in an indirect way. Other similar data, corresponding to var-
ious wind velocities, have been used by Andreotti et al. (2010).
Fig. 30 shows that this independent determination of Lsat agrees
with the direct one, once rescaled: Lsat is around 2(qs/qf)d, within
a 50% dispersion.
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Fig. 29. Direct measurements of the saturation length Lsat and of the ejection length
L1/4 as a function of the wind shear velocity u⁄, rescaled by the threshold ud. By
definition, L1/4 is the length needed before the flux q reaches qsat/4; Lsat is the
relaxation length close to the saturated state. The solid lines are, respectively, the
best fit by a constant and by a power law diverging at the threshold. Data from
Andreotti et al. (2010).
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Fig. 30. (a) Waves on the flanks of a barchan dune. The saturation length Lsat can be
calculated indirectly from the relative amplitude dh of this waves and the
perturbation they induce on the flux dq (b). (c) Saturation length Lsat, rescaled by
the drag length qs/qfd, as a function of the wind shear velocity u⁄, rescaled by the
threshold uth. Direct measurements, performed in a wind tunnel (�) and in the field
(M), are compared to those determined from the initial dune wavelength (storms:
(q) and slipfaceless dunes (�)).

262 O. Durán et al. / Aeolian Research 3 (2011) 243–270



Author's personal copy

7.2. Modeling the saturation length

To understand the origin of the saturation length for aeolian
transport, it can noticed that the flux can be written as the product
of a density of transported grains and a speed. Therefore, two
mechanisms may limit saturation. First, the grains must be acceler-
ated until they reach the speed of flow. Second, the erosion of the
bed must increase the number of transported grains up to its sat-
urated value. To describe the first mechanism, we consider the hor-
izontal movement of a single grain accelerated by the wind
turbulent drag force:

dup

dt
¼ 3

4
Cdqf

qpd
ðu� upÞ2: ð61Þ

Assuming a constant drag coefficient for simplicity, this equation
can be integrated analytically, and this shows that the relaxation
of the particle velocity to fluid velocity occurs over a length which
varies as

Lsat �
qp

Cdqf
d; ð62Þ

with a proportionality factor of order 2 (Andreotti et al., 2002a;
Andreotti, 2004).

Let us study now the second mechanism related to transient
saturation of the number of grains, assuming that the grains
instantaneously reach the flow speed. Consider for instance the
case in Fig. 28 where the sand bed starts at x = 0. After the first
grain is ejected, it flies, collides with the bed and eject others
grains. These are themselves accelerated by the wind, collide with
the ground and activate other grains. This amplification can be de-
scribed by a replacement capacity NC. It is a function of the average
grain impact velocity, which is itself a function, via the grain trajec-
tories, of the wind speed in the transport layer. For simplicity, one
can write NC as a function of the basal stress sb. Thus at each jump
of length a, the number of grains transported is multiplied by
NCðsbÞ : qðxþ aÞ ¼ qðxÞNC. In the continuous limit, this relationship
becomes

a
dq
dx
¼ ðNCðsbÞ � 1Þq: ð63Þ

The characteristic length of the first regime of exponential growth is
then a=ðNCðsbÞ � 1Þ. In the initial phase of amplification, there are
only a few grains in motion so that sb is simply equal to the unper-
turbed wind shear stress s.

Now consider the final phase of the transient saturation, when
the flow has almost reached its saturated value. The basal stress is
then close to the threshold stress sd. One can expand NC and the
evolution of the flow is then governed by the equation

a
dq
dx
’ qsat

dNC
ds

				
sd

ðsb � sdÞ: ð64Þ

Notice that sb and q are related one to each other (Eq. (51)). For the
first order of sb � sd, this relationship is expressed as

sb � sd

s� sd
¼ qsat � q

qsat
: ð65Þ

After substituting in Eq. (64), we can then obtain the relaxation
length of the number of grains transported in the vicinity of the sat-
urated state

Lsat �
a

dNC
ds

			
sd

ðs� sdÞ
; ð66Þ

which diverges at the threshold of transport and tends rapidly to 0
at high wind (Sauermann et al., 2001).

The saturation length is given as a first approximation by the
largest of the two lengths of relaxation that we have calculated
above. The spatial relaxation of the flux is thus limited by erosion
immediately above the threshold, then very quickly by the inertia
of the grains. We can then conclude that as soon as one leaves the
immediate vicinity of the threshold, the saturation length is pro-
portional to the density ratio between the grains and the surround-
ing fluid times the diameter of the grains (Fig. 29).

8. Some open issues on aeolian transport

In this article, we have reviewed the dynamical mechanisms
controlling aeolian transport at the scale of the grain and at the
scale of the transport layer. We have drawn a coherent picture of
the saturated transport and the saturation transient. In this last
section, we highlight several issues that we consider to be impor-
tant and are requiring further research.

8.1. Experimental issues

One of specific problems in the research on aeolian transport is
the difficulty to transpose controlled wind tunnel experiments to
field behavior. In Section 2, we discussed in detail the difference
between the aerodynamics in these two situations, which arises
from the very different integral turbulent time-scales: in the
wind-tunnel, it coincides with the transport time-scale while in
the field, it is 103 times larger. The complete understanding of aeo-
lian transport remains spoiled by this issue and there is a need for a
convergence of these two situations.

In wind tunnels, most measurements are performed after the
sand bed has had time to self-organize, i.e. to form ripples, to pres-
ent size segregation, etc. To confirm the theoretical ideas presented
here, there is a need for data even better than those reported in the
literature. In particular, to test more finely the scaling laws with re-
spect to the grain diameter and to the wind speed, transport should
be characterized under ideal conditions, using a completely flat
bed of quasi mono-disperse rounded particles.

The main controversy on aeolian transport in the field is related
to time and space fluctuations of sediment flux. If the nature of the
turbulent fluctuations play a minor role, as assumed here, then the
flux averaged at the scale of seconds (the transport time scale) on a
homogeneous sand bed should be directly related to the wind
velocity measured just above the transport layer (and averaged
over the same time-scale). The major experimental difficulty to
perform this test is to measure the flow velocity at a few centime-
ters above the sand bed and the transport layer.

8.2. Turbulent fluctuations

An alternative approach is to consider that sand transport is
strongly influenced by turbulent fluctuations (Baas and Sherman,
2005; Leenders et al., 2005; Baas, 2008). It has been proposed in
subaqueous transport studies that erosion is associated with sedi-
ment ejection and sweep (Cellino, 1998; LeLouvetel-Poilly et al.,
2009). In the case of saltation, the naive image of coherent struc-
tures embedded in the turbulent background and which would en-
train grain can be tested by means of resolving sediment flux
fluctuations Baas (2004) and Van Boxel et al. (2004) as well as tur-
bulence at the scale of the transport layer. It would then be possi-
ble to quantify the possible correlations between the sand flux and
the turbulent fluctuations.

Another possible role of turbulent fluctuations is to induce ran-
domness in the drag force exerted by the fluid on the particles.
When the order of magnitude of this force is larger than gravity,
saltation is replaced by turbulent suspension (Cierco et al., 2008).
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The nature of this transition – Is it progressive or sudden, when the
wind strength is increased? – is still uncertain, along with the
influence of fluctuations on the saturated flux (Anderson et al.,
1991). One of the expected outcomes of this approach to turbulent
suspension is the divergence of the saturation length (Claudin
et al., 2011).

Turbulent fluctuations have a significant effect in the presence
of gradients along the direction transverse to wind velocity, for in-
stance along the flanks of dunes. When the flow is not homoge-
neous anymore, a transverse component of the saltation flux will
be present. In the turbulent regime, the trajectory of the grains
are effectively erratic, due to wind turbulent fluctuations. In be-
tween two collisions with the bed, the grains are randomly de-
flected in the transverse direction with an average angle b
around the mean direction of the wind. According to our own field
measurements, b is approximately equal to 20�. Along the trans-
verse direction, the grains thus follow a random walk with a mean
free path l � ba, where a is the average hop length.

Consider a flow with a speed along the x axis whose magnitude
depends on the transverse direction y. Higher wind velocities im-
ply more saltating grains. Thus, the net transverse flux qy is propor-
tional to qx(y � 1/2) � qx(y + 1/2), as more grains will travel from
the region of large concentration (larger flux) to the region of
low concentration (smaller flux). This analysis leads to a scaling
law connecting qy to qx and to the average hop length a of the type:

qy ¼ �ba
@qx

@y
: ð67Þ

The mass conservation Eq. (27) in the case of an almost parallel flow
but transversally heterogeneous, thus reads

@f
@t
þ @qx

@x
¼ ba

@2qx

@y2 : ð68Þ

This expression can be easily adapted to a three dimensional situa-
tion. Let us emphasize that the term on the right hand side is purely
a turbulent effect and does not result from the surface slope. Its
presence has an influence on the shape of dunes as it introduces a
coupling transverse to the wind. In particular, such an effect pro-
vides a simple, but not unique, explanation of the crescentic shape
of barchan dunes (Kroy et al., 2005). Alternative explanations are

based on a different phenomenology for the coupling between lon-
gitudinal and transversal flows. Instead they consider the transver-
sal deformation of the wind, and thus the flux, due to the three
dimensional topography, and/or the effect of gravity on lateral flows
due to the inclination of the bed (Hersen et al., 2004; Schwämmle
and Herrmann, 2005). The latter still requires further research.

8.3. Influence of bed slope on the saturated flux

In Section 5.4, the effect of a longitudinal bed slope on the trans-
port threshold was discussed: it increases on upward slopes as
stronger flows are needed to dislodge a grain, while it decreases
on downward slopes due to the opposite effect. Following the same
reasoning, as suggested by the relation between the saturated flux
and the transport threshold, qsat must increase/decrease on down-
ward/upward slopes. However, empirical evidence from wind tun-
nel measurements (Iversen and Rasmussen, 1999) show that the
full extend of this modification is not captured by the direct substi-
tution of the flat bed transport threshold Hd(0) with the modify
one Hd(a). The empirical data is effectively consistent with a fur-
ther substitution of the gravity acceleration g by g(cosa + sina/l)
which gives a modified saturated flux of the form:

qsatðaÞ cos aþ sin a
l

� �
¼ udðaÞdðH�HdðaÞÞf ðHÞ; ð69Þ

where f is a function of the Shields number. As shown in Section 6.5,
f is constant in the Ungar and Haff regime, while in the Bagnold’s
regime f /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H=HdðaÞ

p
.

Based on their experimental results, Iversen and Rasmussen
(1999) have introduced the above scaling for the flux through a
Bagnold-like argument, based on a picture valid for subaqueous
bed load transport. However, in the context of aeolian transport,
where the most important contribution to the flux comes from
grains in saltation, the extra multiplicative term (cosa + sina/l)
applied to qsat is not well understood. The fact that this extra terms
involves the effective friction coefficient l introduced for the dy-
namic threshold Hd(a) is puzzling, since the processes are funda-
mentally different: the modification of the threshold comes from
the force balance on a grain resting at the bed, while the modifica-
tion of the flux is related to the trajectories of flying grains.
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Fig. 31. (a) Measured wavelength k of elementary dunes, formed by linear instability, as a function of the grain to fluid density ratio multiplied by the grain size. (b) Measured
wavelength k as a function of the rescaled wind velocity, for aeolian dunes composed by 180 lm grains.
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A tentative explanation for the origin of this scaling can be
found in the different behavior of saltating grains, which follow
the wind, and grains in reptation, which are more sensitive to
the bed slope (Howard, 1977; Andreotti, 2004; Hersen et al.,
2004). Assuming that both fluxes are proportional, the saltation
flux would have an equivalent form qsat(cosa + sina/lR) (see Eq.
(69)), where lR is a dimensionless constant characterizing the ef-
fect of gravity on reptons (Hersen et al., 2004). It sounds plausible
that lR is given by the inverse friction coefficient l�1 as in Eq. (69).
Further study is needed to understand in detail the influence of a
longitudinal and a transverse slope on transport.

8.4. Aeolian transport on Mars

The martian atmosphere is composed of CO2 at low density qf

between 1.510�2 and 510�2 kg/m3. The photographs taken by the
rovers mostly show a bi-disperse material: large spheres of milli-
metric scale, composed of hematite (qp = 5270 kg/m3) and small
basalt grains (qp = 3010 kg/m3) with iron coating between 60 and
110 lm (Andreotti and Claudin, 2007). The rough estimates of

grain size on dunes, based on thermal diffusion, overestimate this
observation by a factor of two (Fenton, 2003; Fenton and Mellon,
2006; Fergason et al., 2006; Jerolmack et al., 2006). Assuming that
the grains transported have a size comparable to those on Earth or
smaller, the main difference between saltation on Mars and on
Earth is the density ratio qp/qf.

On Earth, qp/qf is around 2.2 	 103, the static threshold Shields
number is around 0.03 and the dynamic threshold Shields number
around 0.01. Using Eq. (46), one obtains a value for the coefficient
b of approximately 30. On Mars, where the density ratio is around
1.6 	 105, the static threshold Shields number should be similar.
However, the collision process is not sensitive to the fluid density.
Using again Eq. (46), one obtains a dynamic threshold Shields num-
ber around 2 	 10�4. In other words, the actual threshold velocity on
Mars would be only’1.4 times larger than on Earth. Further studies
are required to investigate the details of planetary transport.

The main issue is the different scaling laws with the density ratio
qp/qf. It has been shown that the wavelength at which dunes form
scales on qp/qf (Hersen et al., 2002; Claudin and Andreotti, 2006)
(see Fig. 31). They are thus 80 times larger on Mars than on Earth,

Fig. 32. Grain, ripples and dunes on Mars. (a) Microscope photograph of the sand on a Martian ripple. (b) Microscope photograph showing the mixing of small grains and
hematite spherules ‘blueberries’, characteristic of the soil seen by the two rovers. (c) Aeolian ripple on Mars, characteristic of transport in saltation. A strong difference of
composition between the soil covered by blueberries and the ripple can be observed. (d) Aeolian shadow dunes on Mars, characteristic of transport in saltation. These shadow
dunes behind stones are clearly evidencing that small grains are transported in saltation, but not the hematite blueberries. (e) Extended zone of Aeolian ripples in a small
scale impact crater. Blueberries may be seen at the bottom left of the picture, showing that the ripples are composed of small grains. (f) Aerial view of Kaiser crater elementary
dunes.
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where kilometer scale giant dunes result from pattern coarsening
and not from a linear instability (Andreotti et al., 2009). On the other
hand, from previous arguments (see Section 5.3), the threshold
velocity ud is almost independent on qp/qf so that the transport layer
is expected to remain at centimeter scale. Recent numerical simula-
tions of Mars transport by Kok (2010) confirm this analysis. Other

models based on a maximum principle rather than a balance be-
tween erosion and deposition have suggested that, on the contrary,
saltation is ‘giant’ on Mars i.e. with all the lengths multiplied byqp/qf

(Almeida et al., 2008). Future work is required to discriminate
between these possibilities (see Fig. 32).

8.5. Aeolian ripples

The formation of aeolian ripples is intimately related to sand
transport. It is widely accepted that they emerge due to the
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Fig. 34. Typical grain size distribution of an aeolian dune in the Atlantic Sahara.
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Fig. 35. Wind tunnel measurement of the spatial growth of the mass flux by a
strong wind (22 m/s in the center of the wind tunnel). Data from Dong et al. (2004).
The linear regression is shown as a reference.
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collision of saltons on the bed and the resulting motion of reptons
(Anderson, 1987, 1990; Terzidis et al., 1998; Prigozhin, 1999;
Csahók et al., 2000; Yizhaq et al., 2004). Therefore, they provide a
unique way to test models against observations. As they are much
larger than the saltation layer and as they form and move with a
much larger time-scale, they are easy to measure. In the Ungar
and Haff regime, the characteristics of the grain population that
dominate transport (trajectories and velocities) is independent of
u⁄. This suggests that the growth rate of aeolian ripples must in-
crease with u⁄ as the impacting flux increases. However, one ex-
pects the length at which aeolian ripples form to be independent
of u⁄. This is not what controlled field and wind tunnel experi-
ments performed by Andreotti et al. (2006) show: the wavelength
at which ripples form actually increases linearly with u⁄ (see
Fig. 33 for a summary of ripple scalings). This strongly suggests
that a fundamental ingredient is missing in the existing models
of ripples instability. Further studies will have to revisit aeolian
transport and instability mechanisms to explain this discrepancy.

8.6. Polydisperse sand beds, aeolian sieving and mega-ripples

In contrast to subaqueous bedforms, aeolian dunes are usually
composed of quasi-monodisperse sand (Fig. 34). The processes by
which this so-called aeolian sieving takes place are currently not
understood nor modeled. They may still be important in some sit-
uations, and in particular by strong wind. Fig. 35 shows a wind tun-
nel measurement of the saturation transient performed at a shear
velocity u⁄ more than three times larger than the threshold ud.
Even with a 16 m long wind tunnel, the flux does not saturate
(Shao and Raupach, 1992; Gilette et al., 1996), while 2 m are suffi-
cient at lower wind velocities. We have ourselves observed such
unusual fetch distances, in similar conditions, associated with a
change of sand bed composition: a larger and larger fraction of
large grains was observed as a function of the distance to the wind
tunnel entrance. Another possible origin of this apparent increase
of the saturation length Lsat would be the transition from saltation
to suspension (Claudin et al., 2011). Many dunes are covered in
surface by coarse grains which form either chiflones or mega-rip-
ples, depending on the fraction of the surface covered (Fig. 36).
As there is no real understanding of the segregation processes,
these structures have not received any correct explanation so far.
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Appendix A. Aerodynamical forces in unsteady heterogeneous
flows

In this appendix, we discuss in more detail some of the aerody-
namical forces that act on grains in unsteady heterogeneous flows.
These forces are in addition to the drag force, which is usually the
only one considered for simplicity.

A.1. Archimedes force

The Archimedes force results from the stress which would have
been exerted on the particle, if the particle had been a fluid. To
compute it, one does not take into account the disturbances of
the flow induced by the particle. The force is thus the integral over
the surface of the fluid stress ~FArchimedes ¼

H
r~dS, where rij is the

undisturbed fluid stress tensor. This expression can be rewritten
as an integral over the volume of the particle

R
divrdV , which

can be estimated using the equations of motion of the fluid.

qf
d~u
dt
¼ qf~g þ divr: ðA:1Þ

The Archimedes force ~FArchimedes is thus equal to

~FArchimedes ’
p
6

qf d
3 d~u

dt
�~g

� �
; ðA:2Þ

where, in first approximation, the quantities are evaluated for the
undisturbed flow, at the center of the grain. In the case of the grain
falling in a fluid at rest, the effect of the undisturbed flow reduces to
the buoyancy force. When particles and fluid do not have the same
density, the acceleration term makes the grain not to follow the
main flow direction. Consider the important example of a vortex in-
side a turbulent flow. The rotating fluid is locally at equilibrium be-
tween the centrifugal force and the pressure gradient. A grain
denser than the fluid, passing through the vortex core, is submitted
to a centrifugal force larger than the displaced fluid but at the same
pressure gradient. It is thus ejected from the vortex zone. This effect
explains the dust devil phenomenon: mini-tornadoes of convective
origin are surrounded by a tube of dust. Another consequence is
that a turbulent flow cannot mix dense particles effectively (Bec
et al., 2007, 2010). Rotation-free regions therefore have a higher
concentration of particles than the average value.

Fig. 36. Patterns due to segregation between coarse and fine grains. (a) When coarse grains do not cover the sand bed surface, they collect into ‘chiflones’ which are crescent
shape structures aligned along the wind direction. (b) When coarse grains cover the surface, they form mega-ripples, which present simultaneous patterns at different length-
scales.
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A.2. Added-mass force

A second contribution to the hydrodynamical force is applied
due to the relative acceleration between the fluid and the particle.
For example, when a particle accelerates in an immobile fluid, the
instantaneous force at time t is not the force previously computed
for the steady motion of velocity~upðtÞ. A further force is required to
accelerate the fluid around the particle. This additional mass force
reads (Brennen, 1982).

~Faddedmass ’
p
12

qf d
3 d~up

dt
� d~u

dt

� �
: ðA:3Þ

The particle had an effective mass

meffective ’
p
6

qp þ
1
2
qf

� �
d3 ðA:4Þ

and the displaced fluid an effective mass p
4 qf d

3. Hence the name
‘added mass’ for this inertial effect.

A.3. Basset force

The third effect (Basset force) results from the delay between
the time at which a particle changes its relative velocity with re-
spect to the fluid, and the time at which the force changes. At
the linear order, one can describe it by a time transfer function

~FBasset ¼
Z
KðsÞd

~Fd

dt
ðt � sÞds: ðA:5Þ

The convolution kernel KðsÞ is a dimensionless function. At low
Reynolds number, the boundary layer is viscous so that the delay
results from the diffusion of momentum between the surface of
the grain and the flow. Dimensionally, the kernel is thus a function
of d=ð

ffiffiffiffiffiffi
ms
p
Þ. The rigorous calculation at low Reynolds number gives a

kernel reflecting long time correlations:

KðsÞ ¼ 1
2
ffiffiffiffi
p
p dffiffiffiffiffiffi

ms
p : ðA:6Þ

At high Reynolds number, the boundary layer is turbulent so that
the delay results from the momentum convection time. The kernel
is then a function of d=ðj~up �~ujsÞ. In the cross-over between these
asymptotic regimes, the grain emits an unsteady wake composed
of vortices, so that, the Basset correction cannot be written as a time
independent transfer function.

A.4. Magnus force

For a homogeneous flow, when a grain is nonetheless moving at
the velocity~up but rotates at the angular velocity ~X, a force perpen-
dicular to ~up and to ~X appears, which reads

~Fm ¼
p
8

Cmqf d3~X ^ ð~up �~uÞ; ðA:7Þ

where Cm is a constant. This so-called Magnus force can simply be
interpreted as a pressure balance around the grain. Let us consider
the frame of reference which moves with the grain at the velocity~up

(Fig. A.37). When the grain rotates at the velocity ~X, the fluid veloc-
ity is increased on one side and decreased on the other. The Ber-
noulli relation shows that a higher (resp. lower) velocity leads to
a lower (resp. higher) pressure. The Magnus force results from this
asymmetry of the pressure field. At low Reynolds number, Cm can be
approximated using asymptotic matching techniques, which give
Cm ’ 1 (Rubinows and Keller, 1961). Note that the lift force is to a
large degree determined by asymmetries in the position of or in
the fluctuations of the separation line, and this depends consider-
ably on the irregular shape of sand grains. Therefore, formulae for

spheres must be applied to natural sand grains with some care.
White and Schulz (1977) have investigated the magnitude of the
Magnus force on aeolian saltons.

A.5. Equation of motion

In summary, the equation of motion for a sphere at low particle
Reynolds number, in a flow which does not vary at scale d reads
(Mordant and Pinton, 2000)

qp þ
1
2
qf

� �
d~up

dt
¼ ðqp � qf Þ~g þ

3
2
qf

d~u
dt
þ 3

4
CdðRÞqf

	 j
~u�~upjð~u�~upÞ

d
þ 6~FBasset

pd3 þ 3
4

Cmqf
~X

^ ð~up �~uÞ; ðA:8Þ

where the left side and the first two terms on the right side result
from the grain acceleration, from Archimedes force and from the
added mass force. The other terms are the drag force, the Basset
force and the Magnus force. Note that for the sake of simplicity,
most aeolian models only consider the hydrodynamic drag force.

A.6. Force in a shear flow

Let us finally consider the case of a flow inside which the veloc-
ity field varies at the scale of the diameter d (Matas et al., 2004). In
the first order, the force is modified by the velocity gradient. In the
case of a shear flow of shear rate x, a lift force has been calculated
by Saffman at low Reynolds number

~Fs ¼ asqf d2 ffiffiffiffiffiffiffi
mx
p

~up; ðA:9Þ

with as ’ 1.61 for a sphere. This force results, like the Magnus force,
from the asymmetry of the pressure field induced by the grain rota-
tion. It is an inertial effect which vanishes at zero Reynolds number.

At high Reynolds number, the lift force does not depend on vis-
cosity anymore. Dimensionally, one can write an expression very
similar to Magnus force,

~Fs ¼
p
6

Cmqf d3~x ^ ð~up �~uÞ; ðA:10Þ

where ~x ¼ ~r^~u is the fluid vorticity and CL the lift coefficient.
Bagnold (1974) and Willetts and Murray (1981) investigated the
magnitude of this force experimentally and Owen (1964) theoreti-
cally. According to Moraga et al. (1999), the lift coefficient is a func-
tion of the Reynolds numberRs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xdj~up �~uj

p
d=m. BelowRs � 102,

the lift coefficient is controlled by the pressure asymmetry and is
positive. The best fit to experimental data gives a lift coefficient
equal to CL ’ 0.12. Measurements performed by analyzing the

Fig. A.37. Streamlines around a sphere rotating at the angular velocity X, in the
frame of reference of the particle. ~Fm is the Magnus lift force.
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motion of bubbles in turbulent pipe flow give CL ’ 0.25 (T, 2010).
These values are smaller than expected from inviscid calculations
(CL = 0.5), which ignore wake effects. Above Rs � 102, the lift coeffi-
cient is controlled by vortex shedding and is negative. Around
Rs � 103, the experimental data of Moraga et al. (1999) give a lift
force coefficient around CL ’ � 0.17. Using these values, one finds
that the lift force exerted on grains close to the sand bed is at least
10 times smaller than the drag force. This does not preclude larger
values of CL for the grains at rest at the surface of this bed.

The higher order term comes from the velocity field curvature.
Expanding the velocity field with respect to the velocity at the cen-
ter of the sphere, a correction to the Stokes flow, called the Faxén
force, can be applied, which depends on the velocity Laplacian:

~Ff ¼
1
8
pqf md3D~u: ðA:11Þ
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