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Sand avalanches flowing down the leeward face of some desert dunes spontaneously produce a loud

sound with a characteristic vibrato around a well-defined frequency, a phenomenon called the ‘‘song of

dunes.’’ Here, we show through theory that a homogenous granular surface flow is linearly unstable

towards growing elastic waves when a localized shear band forms at the interface between the avalanche

and the static part of the dune. We unravel the nature of the acoustic amplifying mechanism at the origin of

this booming instability. The dispersion relation and the shape of the most unstable modes are computed

and compared to field measurements.
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Many desert sand dunes emit a loud and harmonious
sound as they avalanche, with large amounts of sand
sliding down their slip faces. The first reports of this
spontaneous acoustic emission in the scientific literature
date back to the 19th century [1,2]. This phenomenon has
been extensively characterized in the field and the labora-
tory [3–6], but the cause has remained mysterious [7,8].
The contradictory explanations previously proposed are
based on different dynamical mechanisms.

(i) The avalanche behaves as a quasiperiodic acoustic
source due to stick-slip motion, a series of stop and go
fronts [9,10], or to the collisions between grains [11].

(ii) The avalanche is an incoherent broadband source but
the emission frequency is selected by a resonance over
either the thickness H of the avalanche [5] or the thickness
of the dry layer at the surface of the dune [6]. The reso-
nance, which is by definition a maximum of vibration
amplitude, is due to the accumulation of energy in a
standing wave. By contrast, for a propagative mode, the
energy is radiated away from the source.

(iii) The avalanche acts as a selective acoustic amplifier
based on the stimulated emission of surface elastic waves
[4]. During the collision of grains inside the shear band
separating the avalanche from the static part of the dune,
energy is transferred from the shearing motion to elastic
deformations. Conversely, coherent elastic modes [4,12–
14] tend to synchronize grain collisions: the probability
that a collision takes place in phase with the vibration
increases linearly with the amplitude of the later.

In this Letter, we propose an alternative explanation
based on linear stability analysis of a homogeneous ava-
lanche. Because of friction, the compressibility of the
material cannot be neglected at low Mach number as it is
coupled to the shear flow [15]. We show that the friction
between the granular flow and the static part of the dune is
responsible for an exponential growth of elastic waves. The
connection between this instability and previous theoreti-
cal works published in the context of seismology [16,17]
and condensed matter physics [15] is discussed. Finally,

our predictions are tested against field measurements per-
formed during 50 controlled booming avalanches at Sidi-
Aghfinir [4] in July 2009.
Steady state.—Booming avalanches typically have a

centimeter-scale thickness. Looking at the surface of
such an avalanche from above, one observes a coherent
solidlike motion over blocks as large as few tens of centi-
meters. This indicates a shear band localization, typical of
granular flows just above the jamming transition [18].
Shear banding in booming flows has been witnessed di-
rectly in the field [6] and the lab [11]. As the shear band
thickness is on the order of few grain diameters, it is much
smaller than the acoustic wavelength at the booming fre-
quency. Here, the avalanche is thus described as a plug flow
separated from the static part of the dune by an infinitely
small frictional shear band (Fig. 1), characterized by a
constant friction coefficient � (� is the ratio of the shear
stress to the normal stress). In the steady state, the dune
slope tan� must be equal to �.
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FIG. 1 (color online). Schematic of a booming avalanche.
Elastic waves are guided along the surface and amplified by
reflections on the shear band when they propagate up the slope.
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The vibrations in the two regions (avalanche and static
part of the dune) in relative motion are described in the
framework of nonlinear elasticity. Starting from the coarse-
grained displacement field U, the strain tensor is defined as

uij ¼ 1
2 ð@Ui

@xj
þ @Uj

@xi
Þ. Assuming a nonlinear Hertzian contact

force between grains, the macroscopic elastic free energy
of an isotropic granular packing can be written in the
general form [14,19]

F ¼ E

�
2

5
B�5=2 þA�1=2u0iju

0
ij

�
; (1)

where E is the material’s Young modulus, � ¼ �TrðuijÞ is
the volumic compression, and u0ij ¼ uij þ �

3 �ij is the

traceless strain tensor. A and B are two dimensionless
elastic coefficients that characterize the material stiffness
under shear and compression, respectively. It should be
emphasized that F is not supposed to describe the stress-
strain curve obtained from a loading test, which consists of
a series of elastic loadings and of plastic events. The
derivation of the stress tensor yields

�ij ¼ @F
@uij

¼ E
ffiffiffiffi
�

p �
B��ij � 2Au0ij þ

Au2s�ij

2�

�
(2)

with the sign convention corresponding to the equation of
motion: � €U ¼ �r ��þ �g. At equilibrium, the stresses
simply balance gravity: �zz ¼ �g cos�z and �xz ¼
�g sin�z. Introducing the volumetric compression
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the strain tensor components take the form uxx ¼ 0, uzz ¼
��0, and uxz ¼ �a�0.

Disturbances.—As the system is homogeneous both in
time and along the x axis (but not in z), the solution of the
linearized equations are a superposition of modes of the
form expðikxþ i!tþ �tÞ, where k is the wave number, !
the angular frequency, and � the time growth rate. The

vertical coordinate is rescaled by the wave number, � ¼
kz. The displacement field disturbance is normalized by the
free surface position Z, U ¼ ðZUð�Þ; ZWð�ÞÞ. This gives a
normalization condition at the surface,Wð0Þ ¼ 1. To make
the equations dimensionless, we introduce the parameter �,

of dimension ½T�1L5=6�, defined by

� ¼
�
sin�

2a

�
1=6

g1=6
�
AE

�

�
1=3

: (3)

The stress tensor disturbance is written under the form

��2k2=3�Tijð�Þ. The angular frequency is rescaled as �þ
i! ¼ i�k5=6�.
The linearization of the equations of motion leads to a

set of four linear differential equations for Uð�Þ, Wð�Þ,
Txzð�Þ, and Tzzð�Þ:

U0 ¼ �iW � 6aiUþ ��1=3½ð5þ 3 B
A � a2ÞTxz � 2aTzz�

5þ 3 B
A � 3a2

W 0 ¼ ð1� 3 B
A þ 3a2ÞiUþ 2��1=3ðaTxz � TzzÞ

5þ 3 B
A � 3a2

T0
zz ¼ �2W � iTxz T0

xz ¼ �2U� iTxx with

Txx ¼
2ð�1� 6 B

A þ 6a2Þ�1=3iU
5þ 3 B

A � 3a2

þ 6aTxz þ ð�1þ 3 B
A � 3a2ÞTzz

5þ 3 B
A � 3a2

: (4)

Some boundary conditions must be imposed to close this
eigenvalue problem. The interfacial stress must vanish at
the free surface, Tzz ¼ Txz ¼ 0. Across the frictional shear
band, at � ¼ kH, the vertical displacement W and the
stress components Tzz and Txz are continuous. However,
there is a discontinuity of the tangential displacement U,
governed by the Coulomb relation Txz ¼ �Tzz. Finally,
both components of the displacement vanish exponentially
at infinity, Uð1Þ ¼ Wð1Þ ¼ 0.
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FIG. 2. Dispersion relation for � ¼ tan� ¼ 0:6, A ¼ B, and without any dissipation. The dispersion relation of the first mode in
the absence of avalanche [14] is shown in dotted lines. The presence of the shear band gives rise to two branches, and no more, shown
in solid lines � and dashed lines �. For each mode propagating upslope " with an angular frequency !> 0 and a growth rate �, there
exists a mode propagating downslope # with an angular frequency �! and a growth rate ��. (a) Relation between ! and k, both
rescaled using the avalanche thickness H. (b) Relation between � and k. (c) Relation between � and !.
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The boundary value problem is solved numerically by a
shooting method using a fourth-order Runge-Kutta
scheme. The superposition method is applied to get, for a
given value of kH and �, the solution obeying the first
three boundary conditions. We then apply the bisection
root-finding algorithm to determine the relationship be-
tween � and kH. For this, we request U and W to vanish
at a finite value of � and then let this value tend to infinity.
Because of the structure of the equations, the uncertainty in
Uð�Þ, Wð�Þ, Txzð�Þ, and Tzzð�Þ is on the order of the
numerical precision times expð�Þ. This limits in practice
the value of kH to a maximum of ’ 6.

Dispersion relation.—The dispersion relation is pre-
sented in Fig. 2 for a typical avalanche slope, � ¼ tan� ¼
0:6. As such avalanches are close to the jamming transi-
tion, the ratioB=A should be close to, but smaller than, its
critical value 1=�2 � 5=3; we have chosen here B=A ¼
1. In the absence of a shear band, there exists an infinite
series of modes guided along the surface by gravity. The
lowest mode gives rise, with a shear band, to two branches
in the dispersion relation, noted � and � [Fig. 2(a)]; higher
modes disappear. When � is positive, the mode character-
ized by ! and k, which propagates up the slope ("), grows
exponentially in time. By symmetry, there exists a mode
propagating down the slope (�!; k) that is damped with a
rate ��. Reciprocally, if � is negative, the upward prop-
agating mode decays but the downward propagating mode
(#) is amplified. As a consequence, the system is uncondi-
tionally unstable at all wave numbers. The maxima and
minima of the growth rate � are almost equally distributed
in kH. In the geometric acoustics approximation (Fig. 1),
guided modes are selected by the condition of constructive
interference between plane waves as they bounce back and
forth. As shown theoretically by [16,17], an acoustic wave
can be amplified coherently when reflected on a sliding
frictional interface. The maximum energy gain is obtained
for a particular angle of incidence. As the wave speed
depends only on z, this condition determines a single ray,
whatever the wave number. Altogether, there is a local
maximum of the growth rate periodically in kH, for each
constructive interference. The structure of the modes
shown in Fig. 3 confirms this interpretation and shows

the oscillatory behavior expected from the acoustic ray pic-
ture. In particular, the second maximum of � [Fig. 3(c)]
presents, above the frictional interface (� ¼ kH), one more
oscillation than the first maximum [Fig. 3(a)]. However,
due to the heterogeneity of the system at the scale of the
wavelength, the profiles also present nonoscillatory varia-
tions that prove the need for a normal mode calculation
using continuum mechanics.
Influence of dissipation.—To address the selection of the

most unstable wavelength, acoustic damping must be taken
into account. This damping is the result of either the
viscoelasticity of microcontacts, the linear viscous loss
due to liquid films trapped in grain surface asperities, or
to solid friction [20,21]. Although it may depend on � and
!, for simplicity we introduce a single dissipative time

scale � and model the viscous stress as � d
dt ð@F@uijÞ. The

modified equation set is deduced from (4) by replacing
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FIG. 3. (a),(b) Profiles of the displacement (U and W) for the upward propagating mode associated to the first maximum of the
growth rate ( � , H5=6!=� ’ 0:68 and H5=6�=� ’ 0:15). (c) Profile Uð�Þ for the second maximum of � ( � , H5=6!=� ’ 0:95 and
H5=6�=� ’ 0:36). (d),(e) Field measured profiles of the vibration amplitude along the x and z axis (H� 35� 10 mm), at 3 m from the
front. The first mode (a),(b) is shown in solid lines for the surface vibration amplitude jZj ¼ g cos�=!2 predicted in [4].
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FIG. 4. (a) Growth rate � as a function of kH taking dissipa-
tion into account (N ¼ 1). The branches correspond either to
upward ( " , � in solid line and � in dotted line) or downward
( # , � in dot-dashed line and � in dashed line) propagating
modes. (b) Bifurcation diagram showing the local maxima of the
growth rate (bold lines) and the marginal stability curves (thin
lines) as functions of N �6=5. The two most unstable modes are
the third (dot-dashed line) and fourth (solid line) maxima of the
branch � and propagate upward ( " ).
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�2 with �2=ð1þ j�N Þ, where N ¼ �H�5=6�. This
damping stabilizes large wavelengths and even suppresses
the instability when the dimensionless parameter N is
above a threshold value. So, for a given damping time,
there is a threshold thickness above which the avalanche is
unstable toward booming (Fig. 4). The most unstable
modes belong to the upper branch, propagate up the slope,
and have neighboring frequencies. Near the threshold, the
instability is thus convective and must lead to the spatial
amplification of a doublet (Fig. 4), whose frequencies scale
with the inverse of the dissipation time.

Field measurements.—As predicted, a threshold height
H for booming is observed in the field and the lab [5,14]; it
increases with humidity. The signals of accelerometers
placed inside or below a booming avalanche systematically
present a low frequency beating [Fig. 5(a)] which confirms
the selection of several unstable modes of similar frequen-
cies. By combining data obtained from 25 runs, we have
been able to reconstruct a vibration profile across a boom-
ing avalanche [Figs. 3(d) and 3(e)]. It presents a vibration
node at midavalanche height (like the first mode) and the
displacement amplitude turns out to drop by 1 order of
magnitudewhen crossing the interface between the flowing
and static regions. Most of the spatial profiles recorded in
the avalanche moving frame [Fig. 5(b)] show an exponen-
tial amplification of the vibration from the front to the core,
as expected for a convective instability. In contrast to the
theoretical situation, real avalanches are surrounded by a
static sand region at the surface of which elastic waves can
propagate in all directions. Even though downward prop-

agating modes are damped in the flowing zone, the fre-
quencies emitted at the rear of the avalanche are reinjected
at the front through the sides. It means that the avalanche is
unstable in time towards modes exponentially growing in
space.
Conclusion.—We have shown that the shear band sepa-

rating a booming avalanche from the static part of the dune
induces a coherent amplification of guided elastic waves.
This dynamical mechanism, demonstrated here for a par-
ticular constitutive relation, results in a linear instability,
even at low Mach number. In conclusion, we wish to
emphasize the generality of the result. As shown in
[16,17], the reflection of an elastic wave on a frictional
interface results in energy pumping from shearing motion
to coherent acoustic waves. This principle can probably be
generalized and further applied to any thick interface in-
side which the shear stress increases with pressure [15].
The novelty, here, is to investigate a waveguide whose
boundary presents such an anomalous reflection. As in a
light amplification by stimulated emission of radiation, the
combination of a cavity with an acoustic amplifier results
in a spontaneous emission of coherent waves, if the energy
loss is sufficiently low.
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[17] C. Caroli and B. Velický, Phys. Rev. E 67, 061301 (2003).
[18] G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004).
[19] Y. Jiang and M. Liu, Phys. Rev. Lett. 91, 144301 (2003).
[20] T. Baumberger, P. Berthoud, and C. Caroli, Phys. Rev. B

60, 3928 (1999).
[21] Th. Brunet, X. Jia, and P. Mills, Phys. Rev. Lett. 101,

138001 (2008).

(a)

(b)

-40

0

40

10.80.60.40.20

Ux
(µm)

t (s)

x (m)

Ux
(µm)

1

10

100

-4 -3 -2 -1 0 1

FIG. 5. (a) Typical displacement signal UxðtÞ measured with
an accelerometer placed below a booming avalanche. Note the
characteristic vibrato around a central frequency (here, f ¼
107 Hz). (b) Profile of the displacement amplitude along the
avalanche axis. The dotted line shows the best fit by the ampli-
tude equation expected for a convective instability: ‘@xUx ¼
Uxð1�U2

x=U
21Þ, with ‘ ¼ 2:1 m and U1 ¼ 130 �m.
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