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Thick Films of Viscous Fluid Coating a Plate Withdrawn from a Liquid Reservoir
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We consider the deposition of a film of viscous liquid on a flat plate being withdrawn from a bath,
experimentally and theoretically. For any plate speed U, there is a range of “thick’ film solutions whose
thickness scales like U'/? for small U. These solutions are realized for a partially wetting liquid, while for
a perfectly wetting liquid the classical Landau-Levich-Derjaguin film is observed, whose thickness scales
like U?/3. The thick film is distinguished from the Landau-Levich-Derjaguin film by a dip in its spatial
profile at the transition to the bath. We calculate the phase diagram for the existence of stationary film
solutions as well as the film profiles and find excellent agreement with experiment.
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When a solid object is pulled out of a liquid reservoir, a
thin layer of liquid is entrained by viscous drag (Fig. 1).
This principle is used widely in coating technology, where
it is known as dip coating, because it is one of the simplest
ways to deposit a thin film of liquid on a substrate [1].
According to the pioneering work of Landau and Levich
[2] and Derjaguin [3] (LLD), a film of unique thickness
hyp is selected by the speed of withdrawal U. The LLD
solution has remained the basis of coating theory for more
than 60 years, having been generalized to include the
effects of inertia [4,5], deposition on curved substrates
[6], and non-Newtonian fluids [7]. The relative size of
viscous drag and capillary retention in the film is measured
by the capillary number Ca = Un/7y, where 7 is the
viscosity and vy the surface tension. At the foot of the
film, LLD introduced the requirement that the film be
matched smoothly to a static capillary meniscus (see
Fig. 1), whose size is controlled by the capillary length
€, = \/v/pg. In the limit of small Ca, this matching yields
hiip = 0.946€¢.Ca%?, which gives the small-Ca behavior
of the LLD line in the phase diagram; cf. Fig. 2.

In this Letter, we show that at a given speed there exists
another, thicker film in addition to the LLD film (cf. Figs. 1
and 2). These new solutions do not match smoothly to the
bath but exhibit a bump at the foot of the film [cf. Fig. 1(c)].
As we will explain in more detail below, experimentally
the thick solutions are most easily produced for partially
wetting fluids just above the critical plate speed Ca; at
which a film begins to be deposited [8]. Our theoretical
analysis, however, is for the long-time limit only, in which
the plate is covered completely by a film. Any solution is
therefore characterized by a pair (i, Ca), where /i is the
thickness expressed in terms of the capillary length €., as
shown in Fig. 2.

A striking feature of the new solutions is that they cover
a continuous range of thickness £, (Fig. 2, gray area). Each
of these solutions entrains a different amount of liquid flux
q, representing the volume of liquid withdrawn from the
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bath per unit time and unit plate length. Clearly, this flux is
limited by the flow through the narrow dimple. Below, we
compute the maximum possible flux through the dimple
and show how this provides a lower bound on A (Fig. 2).
For larger Ay, draining due to gravity becomes increasingly
important, so at the upper bound (Fig. 2, dashed line) the
flux vanishes. Above the dashed line, no solutions are
possible, unless the film is alimented from above.
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FIG. 1 (color online). Fluid films being deposited on a plate
withdrawn from a bath of viscous liquid; symbols are experi-
mental measurements of the film profile at successive times.
(a) Schematic of the experiment. (b) The fluid wets the plate and
deposits a LLD film Ca = 9.27 X 1073; the solid line is the
classical LLD solution, which predicts a thickness of 57 pum.
(c) The plate is treated such that the fluid wets partially and
deposits a thick film Ca = 8.05 X 1073; the solid line is the
result of our theory fitted to the experimental thickness of
198 pm.
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FIG. 2 (color online). Phase diagram of stationary solutions in
the parameter space (i, Ca), where h; is the film thickness
expressed in €.. The dimple solutions exist in the light gray
region, but only those in the dark region actually entrain liquid
from the bath. The dotted line shows the Landau-Levich solu-
tion. The open symbols are for a partial wetting situation and the
full symbols for complete wetting; error bars are below the size
of the symbols. The two round symbols correspond to the two
measurements shown in Fig. 1. The arrows show the experimen-
tal path as the speed is slowly increased starting from the dashed
(red) line.

In our theoretical analysis we rescale all lengths by the
capillary length €.. The interface profile is analyzed using
the lubrication equation [9] for free surface flows [10]:

3

K/—l-i-ﬁ(Ca—%):O. (1)
Here h(z) is the interface thickness, k the interface curva-
ture, and ¢q the flow rate. The three terms correspond to the
capillary pressure, gravity, and viscous effects, respec-
tively. For steady solutions, considered here, g is constant
along the plate. Film solutions become asymptotically flat
(k = 0), so that the flux can be related to the film thickness
hy as

hZ
q= hf<Ca - %) 2)

Crucially, g exhibits a nonmonotonic dependence on £,
owing to gravitational draining [Fig. 3(b)]. For small &g,
the fluid velocity is uniform across the layer and equals the
plate velocity, yielding a (dimensionless) flux /4,Ca. For
larger thickness, gravity induces draining inside the film,
which can even reverse the direction of liquid transport:
q <0 corresponds to transport from the film into the
reservoir. As a consequence, the same flow rate g can be
supported by two very different thicknesses of the film.
This is why, physically, the thin “dimple” region can be
matched to the much thicker film (Fig. 3).
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FIG. 3. (a) The three asymptotic regions of the dimple solu-

tions and the scaling of the respective film thickness with Ca.
(b) The flux g as function of 4 at a fixed Ca = 107%; cf. (2). The
shaded region shows the range of thick solutions at that value of
Ca. The horizontal line illustrates that the flux through the thick
film is the same as through the thin dimple region.

The interface structure in the dimple region results from
a balance between viscosity and surface tension. To de-
scribe the profile near the dimple position z,;, we therefore
look for a similarity solution of (1):

h = Ca*3H(§), E=(z—zp/Ca’  (3)

Following LLD, this solution has the additional property
that the curvature h" remains finite in the limit of small Ca,
which we are analyzing. This ensures that (3) can be
matched to the capillary meniscus of the bath, which has
a constant curvature of /2 [11], so the boundary condition
in the limit ¢ — —o0 is H”, = /2. Defining Q =

gCa=>/3, one obtains the equation for the dimple:
3 Q
H"+ —[1—=])=0. 4
(%) )

So far, (4) is the same as for the LLD solution, but the
boundary condition toward the flat film region will be less
restrictive, so we are able to produce additional solutions.
In that region, the curvature becomes small, giving the
condition H!, = 0. In the following discussion, we will
justify this condition in more detail.

Figure 4 shows that there is a one-parameter family of
solutions H(¢), each corresponding to a different value of
Q and forming a dimple that matches the thick film to the
static bath. The case Q = 0 can be solved analytically [12],
while the others have been obtained numerically. We iden-
tified a maximum value Q.. = 1.376, above which the
boundary conditions can no longer be satisfied. Note that
the LLD film is a particular solution of (4) for which H
approaches a constant value rather than shooting back
upwards (dotted line).

The final step is to relate the flux through the dimple to
the film thickness £, at a large distance from the reservoir.
Just before (/) changes sign, it becomes small enough to
match the flux in the dimple (cf. Fig. 3). For a small enough
capillary number, (2) can be solved to give
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FIG. 4. Various solutions of (4): (a) Dimple profiles with Q =
0 (solid curve), Q..x = 1.376... (dashed curve), and the
Landau-Levich film solution for which Q = 0.946 (dotted
curve). (b) All curves have H” ,, = /2 to match the curvature
of the reservoir and HY”, = 0 to match to the film.

h = (3Ca)'/? — 10Ca?3, (5)

where Q € [0, Opax]- The dimple with Q. corresponds
to the lowest possible thickness (lower bound of gray
region in Fig. 2), while the case Q = 0 marks the upper
boundary for A, with nonnegative flux. It is worth noting
that Q = 0 is only the upper bound in the case of the dip-
coating geometry. If an injection of liquid is added at the
top of the plate, one could match much thicker films to the
bath. The structure of the films will become rather different
when the downward flow is much larger than the plate
velocity, for which the analysis crosses over to flow down a
wall at rest [13].

The similarity solution of (1) corresponding to the film
region just above the dimple is

— Cal2pf? %
h—Ca/H(Cal /6>. (©6)

In (6), the h-scale Ca'/? is dictated by the film thickness (5)
for small Ca. Thus the typical curvature 4" o Ca'/® van-
ishes in the limit Ca < 1, which establishes the boundary
condition HY, = 0 quoted above. The slopes in the dimple
and film regions, as given by (3) and (6), respectively, both
scale as Ca!/3 and can thus be matched. To establish our
central result (5), a more detailed analysis of the film
solutions (6) is not necessary.

Note that the final approach onto the flat film involves
(stationary) capillary waves on the film surface that are
exponentially damped [see Fig. 3(a)]. From the point of
view of the lubrication equation (1), these waves provide
an additional degree of freedom that is necessary to achieve
different values of flux [4,14,15]. By linearizing around the
flat film, one finds that such waves can, in principle, exist
when hp > Cal/2. As can be seen from (5), however, this
condition is not sufficient to explain the new films. Similar
dimpled solutions have also been found for Marangoni-
driven flows [16].

Experimental methods.—In our experiment, a silicon
wafer is withdrawn vertically from a bath of silicone oil
(viscosity ~m = 4.95 Pas, surface tension 7y =
0.0203 Nm™!, density p =970 kgm ™3, and molecular
size 70 nm) by a step motor. The silicon wafer is totally
wetted by the silicone oil. When coated with the fluori-
nated surfactant FC725, partial wetting conditions are
obtained. Depending on the protocol, the contact angle
lies between 48° and 55°, with an hysteresis of 5°. The
film thickness /¢ is measured by spectrometry. A reflection
probe made of a tight bundle of six illumination fibers
around one read fiber is placed at 5 mm from the plate. It
is connected to a tungsten halogen light source and to a
diffraction-grating spectrometer resolving visible and
near-infrared wavelengths. The relative resolution, limited
by the entrance slit and the size of the photosensitive
elements, is around 0.25 nm. A 3648-element linear
CCD-array detector measures the intensity as a function
of the wavelength A, averaged over 4 s. Defects of the CCD
are calibrated in the absence of film and corrected to
improve the signal-to-noise ratio. Once a film is present,
the spectrum contains oscillations of the form
cos(4mnhy/A), where n = 1.4034 is the refractive index
of silicone oil. By fitting the spectrum, the thickness 4 can
be measured to within 0.2% up to a thickness of 240 um
(cf. Fig. 5).

The spatial profile of the entrained film is measured by
placing a 200 pum wire at a distance d = 14 = 1 mm from
the silicon wafer. The mirror image of the wire (reflected in
the silicon plate) is distorted by refraction through the
liquid-vapor interface of local slope A’, making the system
equivalent to a wire placed at a distance d behind a prism of
(small) angle 2A’. At small angles, the rays are thus de-
flected by an angle 2(n — 1)4’ in the direction of steepest
slope, independent of the incident angle. Hence the mirror
image of the wire is vertically displaced by a distance
2(n — 1)dh'. The wire is imaged with a 2048 X 2048
CCD camera, fitted with a 60 mm macro lens. The position
of the wire image is determined by image intercorrelation,
achieving subpixel resolution.

We have calibrated the relation between the displace-
ment and the local interface slope by two independent
methods. First, we have replaced the oil film by optical
glass prisms (n = 1.52) of angle 1°, 2°, 3°, and 4°. We
obtain a resolution of 950 % 30 pixels per unit slope
(16.5 pixels/degree), once the index difference between
oil and glass is taken into account. Second, using the step
motor, we have determined an image resolution of
11.7 wm/pixel, which leads to 970 = 70 pixels per unit
slope. In summary, the displacement of the image of the
wire gives the local interface slope from which we recon-
struct the film profile, by integration. The constant of
integration is fixed in the flat region of the film, using the
value of hy measured by spectrometry. There are two
sources of error in the final reconstruction: an absolute
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FIG. 5. Measurement of the film thickness by spectroscopy.
The free charge carriers produced by photon absorption are
accumulated during 0.4 s, counted, and displayed as a function
of the inverse wavelength A~!. This spectrum is averaged over
100 realizations and corrected from the effect of CCD hetero-
geneities, calibrated previously. It is then split into the sum of a
smooth spectrum, characteristic of the light source, and an
oscillating spectrum, shown above (symbols). It is finally fitted
by a sine modulated in amplitude by a Gaussian envelope (solid
line). (a) LLD film at Ca = 9.75 X 102. The best fit gives h; =
61.24 nm with (formally) a statistical accuracy of 0.005 nm.
However, the reproducibility of two complete experimental runs
is only to within 0.1 nm. (b) Thick film at Ca = 8.53 X 1072,
The best fit gives iy = 214.68 nm with (formally) a statistical
accuracy of 0.05 nm and a reproducibility to within 1 nm. Thick
films are at the limit of resolution; hence, the interference pattern
is visible only in the near-infrared range of wavelengths.

uncertainty of 3% in the slope and the error from the spatial
integration of the random noise present for each point.

Finally, we return to the question of how a particular
type of film solution is realized experimentally. As shown
in Ref. [8], the front of a liquid film of partially wetting
fluid possesses a characteristic speed of recession Ca,
relative to the substrate, which is essentially set by the
contact angle. Since the flux g through the contact line is
zero, according to (2) this translates into a characteristic
film thickness h; = (3Ca,)!/2. Thus if the plate speed Ca is
marginally above Cay, the contact line moves up the plate
very slowly, and the flux through the liquid film is close to
zero: One has prepared the state (/, h} /3) at the upper end
of the thick film solutions.

If the plate speed is now slowly increased, as we did in
an experimental run shown in Fig. 2 by the arrows, one
moves horizontally into the gray region, since hy is fixed
by the motion of the contact line. As the end of the gray

region is reached, the solution falls off the region of
allowed solutions, and a LLD solution is realized instead
(cf. Fig. 2). During this transition, the dimple detaches
from the bath and moves up the plate, leaving behind the
LLD film. In effect, this is the situation described in our
earlier Letter [8]. Note that we were not able to take a
measurement right above the transition, since the LLD film
takes too long to develop. Of course, the above does not
imply that thick films can be produced only in partial
wetting situations but rather that the thickness is selected
by upstream conditions. This selection mechanism de-
serves further investigation as it would offer considerably
more flexibility in preparing thick films.

In conclusion, we have calculated a phase diagram for
film coating from a bath. At a given speed, two different
types of film solutions are possible. The novel, thick films
described here are easily realized experimentally, and ex-
periment agrees extremely well with theoretical prediction.
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