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Abstract – Based on a large set of experiments and numerical simulations, it has been recently
shown (GDR MiDi (collective work), Eur. Phys. J. E, 14 (2004) 341) that dense granular flows
are well described by a local rheology: the ratio of the shear stress τ to the normal stress
P is an increasing function of the properly rescaled shear rate I. We propose a mean field
model for this quasi-local constitutive relation and the phase diagram of granular matter, based
on the motion of single spherical grain on an array of identical grains. The model recovers a
“solid-liquid” transition that is controlled by potential trapping, as well as a subcritical “liquid-
gas” transition governed by the restitution coefficient. The system presents a “triple point”
above which the grain directly leaves the static equilibrium to enter the gaseous regime. In
the liquid regime, the relation between force and velocity is found to be almost independent
of the microscopic parameters, friction and restitution coefficient. The dynamics is dominated by
potential trapping and leads to a constitutive relation of the form τ/P = µd+ δµ exp (−Id/I), in
close agreement with experimental and numerical results. This rheology is only quasi-local as the
inertial number is redefined, introducing the effective number of grains N involved in a collision:
I = γ̇

√Nm/Pd.

Copyright c© EPLA, 2007

Granular matter can behave like a solid, a liquid or
a gas. The basic problem is to derive the constitutive
relations for each of the phases, starting from the dyna-
mical mechanisms at the scale of the grain. In the
last decade, there has been a strong effort to extend
the methods developed in the 19th century for contin-
uous media to granular matter: anisotropic elasticity
for the static equilibrium (solid phase), non-newtonian
hydrodynamics for dense flows (liquid phase) and kinetic
theory when the grains are strongly agitated (gaseous
phase). In the present paper, we focus on the liquid
phase, in particular on the transitions from solid to
liquid and from liquid to gas. As shown in a recent collec-
tive paper [1], dense granular flows can be organized into
two sub-classes. Under quasi-static flow conditions, the
shear deformations can become strongly localized in orga-
nized regions of space (e.g. shear bands). In other situa-
tions, the shear is distributed over the whole flow range,
and in this case the observed rheology is approximately
governed by local laws [2]: the shear stress τ rescaled by
the normal stress P is a function of the properly rescaled

shear rate γ̇:

τ

P
= µI(I) with I =

γ̇√
Pd/m

, (1)

where m is the mass of the grains and d their diameter
(see [3] for the extension to 3D). This constitutive relation
can be interpreted either as a shear rate dependent friction
or as a pressure-dependent viscosity. It is said to be local
as the stress at a given place is a function of the shear
rate at that place only. This property is directly related to
the transmission of momentum among grains: the rheology
is purely local, quasi-local or fully non-locally depending
on whether the momentum lost by a grain in a collision
is transmitted to the grain below it, to a small region
of grains around it, or directly to the solid pile through
a force chain [4]. Importantly, the generic prediction of
kinetic theory is a decrease of µI with agitation (with I)
[5]. On the contrary, measurements show an increase of
µI with I, meaning that long-term contacts cannot be
neglected in the “liquid” regime. As no collective effect
is involved in a purely local rheology, we propose here an
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Fig. 1: (a) Schematic of the system. (b) Motion of a grain
slightly pushed at initial time for µ= 0.15 (top), µ= 0.4
(middle) and µ= 0.7 (bottom). (c) Schemtaic showing the
relation between the packing fraction and the position: φ=
π

6r cos θ
. (d) Schematic of the grain at the threshold shear stress

µ= µs = tan(π/6).

analysis of momentum exchanges at the scale of a single
grain and show that the correct shape of the law µI(I)
can be recovered from a purely mechanical analysis. We
then propose a discussion of non-local effects in extended
granular flows.

Theoretical set-up. – The motion of a single grain
on an inclined bumpy line has already been investigated
in different contexts [6–9]. Here, we formulate the problem
in a general framework, considering a single grain driven
by a tangential force τd2 and pushed back to contact by
a normal force Pd2 (fig. 1a). The situation of the inclined
bumpy line (fig. 1b) is recovered as a particular case for
which P =mg cosα/d2 and τ =mg sinα/d2, where α is
the inclination angle. For simplicity we do not investigate
any dependence on the mean number of contacts. All the
quantities are rescaled by P , m and d so that the system
is controlled by a single non-dimensional parameter, the
rescaled shear stress µ= τ/P . Depending on µ, three
different regimes are observed (fig. 1b). At low shear
stress (µ< µd), the grain always gets trapped in static
equilibrium (solid phase). For µd <µ<µ∞, the grain
remains almost permanently in contact with the rough
plane and makes periodic collisions dissipating the energy
brought by the driving stress τ (liquid phase). At large
shear stress (µ> µ∞), the particle motion accelerates and
never reaches a steady state: the grain makes higher and
higher bounces (gaseous phase). Even though this system
is very simple, it thus presents the prominent features of
certain granular systems [6,9].
The spherical grains that form the rough line are

assumed to be in contact. The equations of motion are

derived in polar coordinates (r, θ) centred on the closest
grain (fig. 1). Introducing the unit vector �uθ pointing
along the direction θ, the grain position is r �uθ and its
instantaneous velocity is ṙ �uθ + r θ̇ �uθ+π/2. Ω is the angular
velocity of the grain around its diameter and j represents
the moment of inertia (equal to 1/20 for the spherical grain
considered here). The force at the contact point —when it
exists— is decomposed into a radial component N�uθ and
a tangential component T�uθ+π/2, so that the equations of
motion read

rθ̈ = T − 2ṙθ̇+sin θ+µ cos θ,
r̈ = N + rθ̇2− cos θ+µ sin θ, (2)

Ω̇ = −T/(2j).

The contact force is assumed to follow a Coulomb law
of friction coefficient f : i) if the grain flies, N = T = 0;
ii) if it rolls without sliding, 0< |T |< fN and Ω= 2θ̇;
iii) if it slides, |T |= fN and T opposes the sliding
velocity (θ̇−Ω/2). Rolling friction is assumed to be
negligible, compared to the effect of collisions. We assume
that the collisions (r= 1 and ṙ < 0) are inelastic and
take a time δt negligible compared to the time between
collisions. Introducing the restitution coefficient e, the
normal velocity ṙ+ after the collision is equal to −eṙ−.
The superscript (+) and (−) refer to the quantity after
and before the collision respectively. The normal force
is thus given by Nδt= ṙ+− ṙ− =−(1+ e)ṙ− and the
change of the angular velocities by θ̇+ = θ̇−+Tδt and
Ω+ =Ω−−Tδt/2j. We assume that the same friction
law can be applied during the collision, i.e. that |Tδt|=
max(fNδt, |θ̇−−Ω−/2|). Note that we only treat binary
collisions: if the grain is rolling on another grain when the
collision occurs, only the collided grain is assumed to exert
diverging forces.

Phase diagram. – For given microscopic parameters
(e and f), we characterize the state of the system by the
rescaled shear stress µ, by the packing fraction Φ (fig. 1c)
and by a coarse grained velocity v(t), defined as the inverse
of the time τ(t) needed to make a displacement by d:

[r sinθ]
t+τ/2
t−τ/2 = 1. The phase diagram is shown on fig. 2

for the reference case: e= 0 and f = 0. By definition, the
solid state 1© is along the line v= 0: the grain can remain
trapped between neighbouring grains below it for µ< µs
(fig. 1c) while above µs, it spontaneously starts rolling. If
the grain initially at rest is pushed with sufficient energy to
escape from potential trapping, its velocity increases and
quickly saturates to an asymptotic value (liquid branch
3©). The solid and liquid states are thus separated by the
unstable branch 2© for which the grain is also static, but
right on top of the grain underneath it (at tan θ=−µ). As
v is still null, the unstable branch collapses on the stable
one in the (v, µ) plane, but they differ by the packing
fraction Φ (fig. 2b).
The cut-off of the liquid branch 3© at the dynamical

friction coefficient µd directly originates in the fact that
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Fig. 2: (a) Phase diagram in the (v,µ)-plane, for e= 0 and
f = 0. The branches separating the different states correspond
to macroscopic steady states i.e. to periodic solutions of eq. (2):
1© the grain is at rest between neighbouring grains below it.
2© the grain is on top of the grain underneath. 3© the grain is
rolling down the line. 4© the grain flies from bump to bump and
takes off immediately after each collision. The unstable branch
2© separates the solid from the liquid state and the unstable
branch 4© the liquid from the gaseous state. The dashed and
dotted lines corresponds to the analytical approximations of
the branches 3© (eq. (3)) and 4© (eq. (4)) (b) Phase diagram
in the (Φ,µ)-plane.

the grain has to jump energy gaps (associated to the pres-
sure P ) to move along the line. Close to a maximum of
potential energy, the mechanical energy can be generi-
cally written under the non-dimensional form E = ẋ2−x2,
where x is the coordinate. So the time needed to get over
it and cover a unit distance is

τ =

∫
dx

|ẋ| =
∫

dx√
E+x2

=
[
sinh−1(x/

√
E)
]
∼−1
2
lnE.

The energy is governed by the equilibrium between the
driving force (proportional to µ) and the dissipation
induced by collisions (proportional to the kinetic energy).
It follows that the kinetic energy just after a collision is

proportional to µ. At the threshold µ= µd, this kinetic
energy is just sufficient to escape from the potential trap
(E = 0). So the mechanical energy E is proportional to
µ−µd. Close to the threshold, v thus behaves as

v=
1

τ
=

Id

ln
(
δµ
µ−µd

) . (3)

Figure 2 (dashed line) shows that this asymptotic
behaviour remains close to the exact relation, deter-
mined numerically, in almost the whole liquid regime.
This unusual logarithmic bifurcation comes from the
localisation of energy dissipation during collisions. An
overdamped dynamics, like that observed when grains are
flowing in a viscous liquid, leads instead to a standard
saddle node bifurcation (v∝√µ−µd). Figure 3a-c shows
the dependence of the parameters Id and µd with e
and f . The liquid branch 3© turns out to be almost
independent of e and f . This essentially means that the
dissipation of the radial kinetic energy after a collision
takes place during a time small compared to the period τ .
In other words, the collision is effectively fully inelastic,
even for a non-zero restitution coefficient e. The macro-
scopic friction µd very slightly decreases when the micro-
scopic friction f increases from 10−2 to 10−1 (fig. 3a).
This surprising behaviour comes from the absence of
rotation at low friction, which reduces the restitution of
energy during collisions. As a conclusion, the solid-liquid
transition essentially depends on geometrical effects,
namely on µs.
Above the third friction coefficient µ∞, the grain no

longer reaches a steady state: it takes off the bumpy
line and bounces higher and higher, making less and less
collisions and thus dissipating less and less energy. As
shown on fig. 3b, the liquid-gas transition is controlled
by the restitution coefficient e. The maximum friction
coefficient µ∞ decreases with e up to � 0.75, at which
the domain of existence of the liquid state disappears.
Above this “triple point”, the grain directly goes from the
static to the accelerated regime. Surprisingly, this liquid-
gas transition is subcritical: if sufficient energy is initially
given, the grain motion can also become accelerated below
µ∞. The liquid and gaseous states are thus separated by
an unstable branch 4© that corresponds to the periodic
motion of a grain bouncing from bump to bump. Solving
the energy balance between driving and dissipation under
the requirement that the trajectory is composed by a
succession of identical parabolic flights of unit length, we
get the macroscopic velocity

v=

√
(1+µ2)(1− e)
2(µ− f)(1+ e) (4)

shown on fig. 2 (dotted line).

Constitutive relation. – We define the effective
friction µI exerted on the grain by the neighbouring grains
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Fig. 3: Dependence of the solid-liquid (◦ µd) and liquid-gas (� µ∞) transition points as a function (a) of the contact friction f
(for e= 0) and (b) of the restitution coefficient e (for f = 0.25). (c) Dependence of Id and I∞ on the restitution coefficient e.
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Fig. 4: (a) Friction µI = µ− v̇ as a function of the rescaled
velocity v. The solid line is derived from the periodic solutions
shown in fig. 2. The symbols are measurements during tran-
sient motion for µ= 0.15 (�), µ= 0.30 (◦) and µ= 0.45 (�).
(b) Ensemble average of the grain acceleration in the gaseous
regime as a function of µ (◦). The solid line corresponds to the
best fit by eq. (5), with a constant µI equal to µg � 0.32.

below it from the macroscopic momentum equation:

v̇= µ−µI . (5)

An important question is to determine whether the grain
velocity v is sufficient to characterise µI . Assuming that
it is indeed the case, µI(v) can be determined from the
steady-state solutions (v̇= 0) shown on fig. 2. For each
value of µ, we get the value of v for which µI(v) = µ
(solid line on fig. 4). Alternatively, µI can be determined
by measuring both the acceleration v̇ and the velocity
v during the transients. The symbols on fig. 4 show the
different measurements of µI = µ− v̇ as a function of
v extracted from the numerical integration of (2). The
different measurements collapse on a single curve in the
dense liquid regime, for moderate v, which means that

the velocity v is sufficient to describe the “macroscopic”
state of the system. Inverting eq. (3), we find the generic
behaviour in the liquid state µI(v) = µd+ δµ exp (−Id/v).
This ceases to be valid when approaching to the maximum
stable velocity I∞, i.e. close to the liquid-gas transition.
While the positions at which collisions occur are deter-

ministic at small v, they become random when the grain
makes large hops i.e. they no more depend only on the
grain velocity. As the impact angle controls the loss of
momentum in collisions, the measurements of µI are scat-
tered in the gaseous regime (fig. 4). As a consequence, we
have performed an ensemble averaging over initial condi-
tions to measure the effective friction. Figure 4b shows
that µI tends toward a constant independent of v and
µ in the accelerated regime (1� v). Things get more
complicated around the liquid-gas transition (v� 1) as the
grain trajectory is neither completely determined by v nor
completely chaotic: µI both depends on µ and v (symbols
on fig. 4). To summarize, a friction law µI(v) is recovered
in the whole liquid regime, but also in the transition zone
if µ is sufficiently close to µ∞. In the gaseous regime, µI
tends toward a constant µg smaller than µ∞. This results
from a loss of momentum per collision proportional to γ̇
and a collision rate decreasing as Pd/mγ̇.

From a single grain to an avalanche. – Our aim
is now to use these results to provide an interpretation
of observations and measurements performed in extended
granular flows. Let us first assume that the rheology is
local. This means i) that the velocity fluctuations induced
by the potential wells are not correlated in space, and
ii) that the momentum is exchanged through first neigh-
bors. Expressing the relative velocity between grains in
contact as v� γ̇d, we predict a constitutive relation of the
form

µI = µd+ δµ exp (−Id/I) . (6)

Figure 5 shows that this prediction agrees remarkably
well with existing measurements [1], both in the inclined
plane [10] and in the plane shear [2] configurations. In
particular, the present model predicts an increase of µI
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Fig. 5: (a) Comparison of the effective friction µI as a function
of I in the plane shear (2D numerical simulation ◦) and the
inclined plane (experiment in 3D with 500µm glass beads on
a rough plane made of 500µm (�) and 1300µm (�) beads),
after [1] fig. 8. The solid lines are the best fits by eq. (6).
(b) Avalanche front visualized in a channel experiment, 30mm
in width (d= 250µm). The flowing layer appears in black
and the static pile in gray. The transverse scale is 4 times
the longitudinal one. Just at the wetting front, we predict a
selection of the solid-liquid interface slope to µd = tanαd and
of the free surface slope to µ∞ = tanα∞.

with I while kinetic theory predicts a decrease of friction
with agitation. This is simply due to the different roles
played by velocity fluctuations in the liquid and gaseous
regime. At low I, the fluctuations are slaved to the average
motion through the potential landscape: as the collision
rate increases as γ̇, the effective friction µI increases with
I. At high I, the kinetic theory becomes valid and µI
decreases with I. Interestingly, these arguments can be
extended to other out-of-equilibrium systems, for instance
a Lennard-Jones fluid at zero temperature. In that case,
the potential trapping is not only induced by the external
pressure but also by cohesion.
In the single grain model, the solid-liquid and liquid-

gas phase transitions are controlled by the tangential-to-
normal stress ratio µ and both transitions are hysteretic.
The solid-liquid transition mainly depends on geometri-
cal effects —encoded here into µs— with sub-dominant
dependence on f and e. The liquid-gas transition, on the
other hand, mostly depends on the restitution coefficient
e. Both transitions are observed in spatially extended
systems like the inclined plane geometry. In particular,
the subcritical feature of the liquid-gas transition has
been demonstrated experimentally at moderate angles but
large injection velocity [11]. By definition, avalanche fronts
are places at which phase transitions occur. During its
formation, a wetting front such as shown on figure 5
tends to steepen, as the grains velocity increases with
height (γ̇ > 0). When the front slope reaches µ∞, the
surface grains get ejected and form a small gaseous layer
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Fig. 6: Non-local effects. (a) Dynamical friction µd(h) as a
function of the static friction µs(h) for a granular layer of
thickness h on an inclined plane; (◦) 500µm glass beads on a
rough plane made of the same beads; (•) 300µm Fontainebleau
sand on velvet. (b) Schematic of a shear band below a plug flow.
(c) Schematic of a granular chain during a collision.

down-slope the front. We thus predict the selection of the
avalanche front slope with respect to horizontal to be µ∞,
while the slope of the solid liquid interface reaches µd.
The experimental measurements performed in the inclined
plane geometry [10] are clearly consistent with this predic-
tion. This selection of contact angle is reminiscent of
the wetting of a substrate by a liquid. It pushes further
the close analogy between the cohesion of condensed
matter and the inelasticity of dry granular matter, yet
non-cohesive.

Non-local effects. – Three observations evidence the
existence of non-local effects in granular flows [1,12]. i) The
dynamical friction depends on the granular layer thickness
in the inclined plane geometry. The only interpretation
given so far relates this effect to the diffusion of granular
temperature, in the framework of kinetic theory [4].
However, the static friction µs —the slope at which
motion starts— depends on the thickness in the same way.
The mechanical model presented here suggests another
interpretation based on potential trapping. As in the single
grain problem, a grain in the bulk of a flow has to overcome
energy barriers but the potential landscape in which it
moves can be slightly different from that imposed at the
boundary. As µs precisely characterizes the energy gap,
the model predicts that µd should be proportional to
µs [9]. Experimental data reasonably follows this relation
(fig. 6), both for glass beads and for sand. This non-local
effect can be integrated into eq. (6) through a dependence
of the parameter µs with the distance to the boundary.
ii) It has been observed experimentally and numerically
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that the shear rate γ̇ does not vanish at the free surface
of gravity-driven flows while the shear stress should, in
standard continuum mechanics. As mentioned earlier, the
grains flowing at the surface are submitted to their own
weight, i.e. to a trapping potential P = ρgd. This simply
means that the standard hydrostatic pressure P = ρg(h−
z)cosα needs to be replaced by P = ρg(h− z+ d)cosα,
when using a continuum description. iii) At small I, one
often observes the formation of shear bands that cannot be
explained by a local rheology. Shear localisation is often
observed in confined geometries [1]. Having in mind the
dynamical mechanisms discussed here, this observation
can receive a simple interpretation. Consider for instance
the shear cell sketched on fig. 6b, in which a velocity
difference is imposed at two plates distant from D.
Due to the grains elasticity, the confinement induces an
extra-stress that adds to the mean pressure P , making
the potential wells deeper. If a linear velocity profile
is selected, all grains move with respect to the others,
leading to a typical grain deformation proportional to d.
If the shear localizes over few grain diameters, the grain
deformation is proportional to d2/D. If the confinement-
induced stress is comparable to P , the energy gap may be
smaller if the shear localises. As a conclusion, the rheology
can become non-local as soon as the pressure —and thus
the trapping potential— is not imposed.
Can we predict the strain-stress relation in the shear

zone? Let us consider the simple situation described in
fig. 6c in which momentum is exchanged along a single
granular chain of length 2N during collisions. N can be
thought of as the length over which the direction of contact
θi between the grains labelled i and i+1 decorrelates.
The kinetic energy T of the system in the centre-of-mass
reference frame is T = αi,j cos(θi− θj)θ̇iθ̇j , with αi,j =
min(i, j)− ij/2N . Then consider that the grain labelled
N +1, which was previously rolling on the grain shown in
white in fig. 6c, collides with grain N . One easily shows [5]
that the exchange of momentum during the collision is
governed by

2N−1∑
i=1

αin cos(θi− θn)(θ̇+i − θ̇−i ) =−
2αNnµs√
1+µ2s

sin(θn)θ̇
−
N ,

where θ̇−i and θ̇
+
i are the angular velocities just before

and after the collision, respectively. Assuming that the
angles θi are randomly distributed in some narrow interval
around 0, except the angle between colliding grains θN =
tan−1(µs), the previous equation gives, once averaged

over the possible configurations:
∑
i αin < (θ̇

+
i − θ̇−i )>∝

−αNN θ̇−N . The contribution to the shear stress τi of the
collisions between the grains N and N +1 is the colli-
sion rate � γ̇N times the momentum flux during one
collision: 2τi− τi+1− τi−1 ∝

∑
N
[
γ̇ (θ̇+i − θ̇−i )

]
N
. Invert-

ing the relation, we get that the contribution of collisions
to the shear stress, N γ̇N θ̇−N , is N times larger than for a
single grain. This result can be inferred in a less formal
way: if N grains are moving coherently the exchange of
momentum during a collision is equivalent to that of a
single grain having an effective mass Nm.
Interestingly, if θi becomes correlated over the whole

pile (which is possibly the case close to the jamming
transition), N becomes determined by the distance to the
free surface: as shown in [5], an almost linear velocity
profile is then observed. This is precisely the behavior
obtained in numerical simulations [1].

∗ ∗ ∗

I thank J. Snoeijer, O. Pouliquen and P. Claudin
for their critical reading of the manuscript. This study was
supported by an ACI Jeunes Chercheurs.

REFERENCES

[1] GDR MiDi (collective work), Eur. Phys. J. E, 14 (2004)
341.

[2] da Cruz F., Emam S., Prochnow M., Roux J.-N. and
Chevoir F., Phys. Rev. E, 72 (2005) 21309.

[3] Jop P., Forterre Y. and Pouliquen O., Nature, 441
(2006) 727.

[4] Pouliquen O., to be published in Annu. Rev. Fluid
Mech. (2007).

[5] Andreotti B. and Douady S., Phys. Rev. E, 63 (2001)
031305.

[6] Ristow G. H., Riguidel F. X. and Bideau D., J. Phys.
I, 4 (1994) 1161.

[7] Dippel S., Batrouni G. G. andWolf D. E., Phys. Rev.
E, 54 (1996) 6845.

[8] Ancey C., Evesque P. and Coussot P., J. Phys. I, 6
(1996) 725.

[9] Quartier L., Andreotti B., Douady S. and Daerr
A., Phys. Rev. E, 62 (2000) 8299.

[10] Pouliquen O., Phys. Fluids, 11 (1999) 542; 1956.
[11] Johnson P. C., Nott P. and Jackson R., J. Fluid

Mech., 210 (1990) 501.
[12] Deboeuf S., Lajeunesse E., Dauchot O. and

Andreotti B., Phys. Rev. Lett., 97 (2006) 158303.

34001-p6


