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Relaxation of a dewetting contact line.
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The dynamics of receding contact lines is investigated experimentally through
controlled perturbations of a meniscus in a dip-coating experiment. We first describe
stationary menisci and their breakdown at the coating transition. Above this transition
where liquid is deposited, it is found that the dynamics of the interface can be
interpreted as a quasi-steady succession of stationary states. This provides the first
experimental access to the entire bifurcation diagram of dynamical wetting, confirming
the hydrodynamic theory developed in Part 1. In contrast to quasi-static theories based
on a dynamic contact angle, we demonstrate that the transition strongly depends on
the large-scale flow geometry. We then establish the dispersion relation for large
wavenumbers, for which we find a decay rate σ proportional to wavenumber |q|. The
speed dependence of σ is described well by hydrodynamic theory, in particular the
absence of diverging time scales at the critical point. Finally, we highlight some open
problems related to contact angle hysteresis that lead beyond the current description.

1. Introduction
Moving contact lines have been studied for more than thirty years but still constitute

an open problem in fluid mechanics. The difficulty comes from the existence of six
decades of length scale separating the macroscopic scale from the molecular scale
that become active as soon as a contact line moves, due to viscous diffusion. This
effect may be seen in the classical hydrodynamics description, where the no-slip
boundary condition leads to a divergence of viscous stresses at the contact line
(Huh & Scriven 1971; Dussan, V. & Davis 1974). Of course, this singularity can
be avoided by considering molecular physics which goes beyond hydrodynamics,
such as the description of diffuse interfaces (Pismen & Pomeau 2000), Van der
Waals interactions (Teletzke, Davis & Scriven 1988), or slip at the solid substrate
(Thompson & Robbins 1989; Ajdari et al. 1994). The latter mechanism has recently
been accessed experimentally (Schmatko, Hervet & Léger 2005; Cottin-Bizonne et al.
2005), showing that slip really does occur and is not an ad hoc quantity to validate the
hydrodynamic description. Over a large range of shear rates, the velocity vs of the layer
of liquid molecules adjacent to the wall was found to be proportional to the velocity
gradient γ̇ ,

vs = �sγ̇ , (1.1)

where �s is the slip length. According to these experiments and molecular dynamics
simulations (Thompson & Troian 1997; Barrat & Bocquet 1999), large slip lengths
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are associated with a hydrophobic behaviour. For moderately large contact angles,
the slip length is of the order of a few molecular sizes. Nevertheless, the strong viscous
dissipation induces very large interface curvatures near the contact line (Voinov 1976;
Cox 1986). This strongly curved region must be matched to the macroscopic flow,
which is particularly challenging in the dewetting case (Eggers 2004, 2005).

On the experimental side, this problem is essentially studied by examining the
macroscopic interface shape as a function of the properly rescaled contact line speed
U (e.g. see Hoffman 1975; Dussan V., Rame & Garoff 1991; Le Grand, Daerr &
Limat 2005), called the capillary number:

Ca =
ηU

γ
, (1.2)

where η and γ are viscosity and surface tension respectively. However, macroscopically
observable parameters such as the dynamic contact angle are not very sensitive in
distinguishing the microscopic contact line models. Golestanian & Raphael (2001a)
proposed that by studying perturbations of contact lines, one could discriminate
between different dissipation models at the contact line. Their analysis is based on the
elastic-like description for static contact lines (Joanny & de Gennes 1984; de Gennes
1986a): a perturbation of the contact line with wavector q induces a deformation
of the free surface over a distance 1/|q| from the contact line. This deformation
results in an elastic capillary energy proportional to |q|. The contact line returns to its
equilibrium straight configuration with a characteristic time σ −1, which in the limit
of small contact angles θ scales as

σ ∝ γ

η
θ3|q|. (1.3)

The θ3 dependence reflects the visco-capillary balance within the wedge of liquid
bounded by the solid substrate and the free surface. Ondarçuhu & Veyssié (1991)
were the first to experimentally study this dispersion relation for a static contact line
and they confirmed in particular the |q| dependence in the limit of large q . Marsh
& Cazabat (1993) examined the relaxation of a very slowly moving contact line,
distorted by an isolated chemical defect. They showed that the relaxing line profiles
can be described by functions of the form ln(y2 + c2t2), where y is the coordinate
along the contact line and c is the characteristic speed ∝ γ θ3/η. This logarithmic
shape is also a direct consequence of the particular contact line elasticity (de Gennes
1986a).

In the case of receding contact lines, the quasi-static theory by Golestanian &
Raphael (2001a) predicts that the relaxation time σ −1 increases with contact line
speed. According to their theory, this relaxation time should even diverge at the
dynamically forced wetting transition (or coating transition), i.e. when a steady
meniscus can no longer be sustained. An intriguing consequence of this is that
perturbations due to small-scale inhomogeneities of the substrate are no longer
damped at the critical point, leading to a roughening of the contact line (Golestanian
& Raphael 2003). This scenario contrasts with the dispersion relation obtained from
the full-scale hydrodynamic calculation presented in our preceding paper (Part 1,
Snoeijer et al. 2007), predicting a finite relaxation time for perturbations smaller than
the capillary length �γ =

√
γ /ρg (ρ and g denote density and acceleration due to

gravity respectively). This hydrodynamic calculation explicitly accounts for viscous
dissipation at all lengths and is thus expected to be more accurate than a quasi-static
approach, in which dissipative effects enter through an effective boundary condition.
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Figure 1. (a) Experimental set-up. A vertical plate is withdrawn at velocity Up from a bath
of liquid that does not spontaneously wet it. (b, c) Bifurcation scenario predicted in Part 1.
By numerically solving for stationary profiles at various plate velocities, we determined the
meniscus rise zcl and the corresponding bifurcation diagram zcl vs Ca = ηUp/γ . Note that the
critical velocity is attained for a finite meniscus rise.

In this paper we experimentally study the global stability and relaxation times of
a contact line in the context of a simple dip-coating experiment (figure 1). When a
vertical plate is withdrawn from a liquid bath at velocities below the dynamical wetting
transition, the contact line equilibrates at a height zcl and we study the relaxation of
well-controlled perturbations. We find that the relaxation times increase as the coating
transition is approached. However, as we have shown previously (Snoeijer et al. 2006),
the transition is not critical because relaxation times remain finite at threshold. The
full dispersion relation is established and compared quantitatively to hydrodynamic
results. Above the coating transition it is found that the upward moving contact line
evolves through a succession of quasi-steady states. We can thus, for the first time,
experimentally access the full bifurcation structure of the wetting transition, using
these transients during liquid deposition. Our experiments confirm the non-trivial
bifurcation scenario proposed in Part 1, which has been summarized in figure 1(b, c):
for increasing meniscus rise zcl, the corresponding velocity passes through a series
of maxima and minima, denoted by (i)–(iv), each corresponding to a saddle-node
bifurcation (Part 1). The maximum possible speed occurs at a well-defined value of
zcl.

The paper is organized as follows. In § 2 we describe briefly the experimental
set-up and the physico-chemical properties of the system used. The framework of
the hydrodynamic theory developed in Part 1 is briefly recalled in § 3. In § 4, we
then examine the global shape of the meniscus, essentially characterized by its height
above the liquid bath. We determine the critical velocity for meniscus stability, discuss
the different flow structures observed experimentally, and investigate the bifurcation
diagram from the transients during liquid deposition. Section 5 is devoted to the
analysis of the contact line relaxation. We first examine periodic perturbations created
by rows of defects moving through the contact line. These perturbations are shown to
decay with a rate σ proportional to the wavenumber |q|, as for a static contact line.
We also examine the q = 0 mode, i.e. the relaxation of the average meniscus height
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to its stationary position. In § 6 we show that the variation of σ with respect to the
capillary number and its behaviour near the coating transition are described well by
the hydrodynamic theory. We complete this discussion of contact line relaxation, in
§ 7, by presenting experiments on localized perturbations. We conclude by addressing
several open problems in contact line dynamics, in particularly the possible influence
of hysteresis which has not yet been studied properly.

2. Experimental set-up
The experiment simply consists of withdrawing a partially wetting plate from a

vessel filled with viscous liquid (figure 1a), at a constant velocity Up . The plate is
a 5 cm wide strip, cut from a silicon wafer (Siltronix). A thin layer of fluorinated
material is deposited on the wafer by dip coating in a solution of FC 725 (3M)
in ethyl acetate. The liquids used are polydimethylsiloxanes (PDMS, Rhodorsil 47V
series) with dynamic viscosities η ranging from 1 to 5 Pa s (the corresponding average
molecular weights range from 21 000 to 40 000), surface tension γ = 21 mN m−1 and
density ρ =980 kgm−3. The corresponding capillary length is �γ =

√
γ /ρg = 1.46 mm.

This particular physico-chemical system was chosen because high-molecular-weight
PDMS is non-volatile and its low surface tension inhibits rapid contamination of
the free surface. In addition, this allows a direct comparison with other experiments
performed with the same system in a different geometry.

PDMS is a molten polymer and it exhibits an entanglement transition at a molecular
weight around 20 000 (Rahalker et al. 1984). The flow behaviour is Newtonian up to
a critical shear rate γ̇c which decreases with the molecular weight. For the fluids used
in this study, γ̇c ≈ 104 s−1 (Lee, Polmanteer & King 1970). This critical value, above
which shear thinning is observed, should be compared to the experimental shear rates
at the macroscopic and microscopic scales. At the macroscopic scale γ̇ ≈ Up/�γ , which
never exceeds 0.1 s−1. Thus we expect a purely Newtonian behaviour of the liquid
at the scale of the capillary length. At the microscopic scale γ̇ ≈ Up/a, where a is a
molecular size of the order of 10 nm. The shear rate can thus reach 104 s−1 very close
to the contact line and a moderate decrease of the viscosity might take place (Lee
et al. 1970).

We were not able to measure directly the slip length of our system, but it can be
estimated as follows. Starting from the length of the Si–Si binding (around 0.3 nm)
and from the number of monomers (around 252 for the high-viscosity oil of η = 4.95
Pa s), we obtain the size of a molecule a � 7.5 nm (Le Grand et al. 2005). It is known
from molecular dynamics simulations that contact angles lower than 90◦, for which
the interaction between the liquid and the substrate is attractive, give rise to a slip
length of the order of 2 molecular lengths (Thompson & Troian 1997). Throughout
the paper we therefore use the value �s � 2a � 15 nm �10−5�γ when comparing to
theoretical results.

PDMS partially wets the fluorinated coating with a static contact angle that can
vary from one plate to another by about 5◦. The data presented here have been
obtained for a receding contact angle of θr = 51.5◦ and an advancing contact angle
of θa =57.1◦. Like all the plates prepared for this study, the contact angle hysteresis
is thus very low (θa − θr < 7◦), as previously obtained (Rio et al. 2005).

To induce controlled perturbations of the contact line we create wetting defects
that significantly distort the contact line as they move through the meniscus. We use
two techniques:
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(i) Controlled deposition of ink droplets on the fluorinated coating. When dried,
ink has a much higher surface energy than the fluorinated coating, and it is completely
wetted by the silicone oils.

(ii) Spin-coating a layer of photo-sensitive resin (SU-8 Microchem) on the surface
of a silicon wafer. After UV exposure through a mask the resin is harderned, leaving
cylindrical posts (200 µm wide, 100 µm high) on the wafer. The whole surface is then
coated with FC-725, as described above. With this technique, the surface wettability
is uniform and the defects are purely geometrical.

The size of the vessel containing the liquid is chosen sufficiently large (10 × 10 cm2)
to avoid any capillary interaction between the meniscus on the plate and the menisci
formed on the rim of the vessel. Also, the cross-section of the silicon wafer is 10−3

times the cross-section of the vessel, so that the liquid displacement by the wafer
hardly affects the vertical position of the free surface. When the plate moves at its
typical high velocity, 100 µms−1, the reference level in the bath is displaced only at
0.1 µms−1.

The motion of the plate is controlled within 1 µm by a motorized linear stage
(Newport Corp., linear stage M-UTM50, controller ESP300). The image of the
meniscus is recorded with a CCD camera (Basler A602f, 656 × 492 pixels, pixel size:
9.9 µm × 9.9 µm, 100 frames s−1) fitted with a macrophotography bellows and a Nikon
2.8/60 mm lens. We can thus obtain a magnification ratio of 5, in which case 1 pixel
in the image corresponds to 2 µm on the object plane.

The location of the contact line is precisely determined by a cross-correlation
procedure. The grey-level profile corresponding to the unperturbed contact line is
recorded for each experiment. This reference profile is then correlated with each
vertical line of the image. The contact line position corresponds to the location of
the correlation maximum. The location of this maximum is subsequently refined with
subpixel resolution by interpolation around the correlation peak. This procedure is
implemented as a plugin for the ImageJ software (http://rsb.info.nih.gov/ij/).

3. Hydrodynamic framework
We now briefly describe the hydrodynamic theory to which the experimental results

will be compared. We basically follow the analysis of Part 1 which is based upon the
lubrication approximation for non-inertial free-surface flows (Oron, Davis & Bankoff
1997; Hocking 2001; Eggers 2004). However, to enable a quantitative comparison
involving large contact angles, typically around 45◦, we include corrections to the
standard lubrication theory as proposed by Snoeijer (2006). The governing equations
for the interface profile h(z, y, t) then become

∂th + ∇ · (h U) = 0, (3.1)

∇κ − ez +
3(Ca ez − U)

h(h + 3�s)
F (θ) = 0, (3.2)

representing mass conservation and force balance respectively. Here, U is the depth-
averaged velocity, while κ is twice the mean curvature of the interface. The equations
have been made dimensionless using the capillary length �γ and the capillary time
η�γ /γ . The equations differ from the standard lubrication approach through a
correction factor

F (θ) =
2

3

tan θ sin2 θ

θ − cos θ sin θ
, (3.3)
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where tan θ is the local slope of the interface (Snoeijer 2006). F (θ) � 1 for θ � 1.
Refer to Part 1 for details of boundary conditions and the numerics of the linear
stability analysis.

The theory requires two input parameters characterizing the contact line: the slip
length �s , preventing a stress divergence, and a microscopic contact angle θcl. As argued
in § 2, we can use a value �s =10−5 �γ estimated from the molecular size. Macroscopic
results depend only logarithmically on the precise value of �s (Voinov 1976; Cox
1986). The microscopic contact angle is unknown a priori, but it is generally assumed
to be equal to the equilibrium angle. For hysteretic systems, the static angle can take
any value between θr and θa . Since the results are quite sensitive to this parameter,
we have produced numerical curves using three different values of θcl: receding angle
θr = 51.5◦, advancing angle θa =57.1◦ and average static angle (θa + θr )/2 = 54.3◦.

4. Steady menisci
4.1. Contact line position as a function of capillary number

When the vertical plate is at rest, the liquid rises above the bath up to a height zcl,
figure 1, determined by the capillary length and the contact angle according to the
classical relation (Landau & Lifschitz 1959)

zcl = �γ

√
2(1 − sin θ) . (4.1)

Here θ is the equilibrium contact angle (receding or advancing). This relation implies
that a perfectly wetting liquid can achieve a maximum rise of

√
2 times the capillary

length �γ .
When the plate is withdrawn with a velocity Up , so that the contact line recedes

with respect to the plate, the meniscus height increases to a new equilibrium
value. The closed circles on figure 2(a) represent experimentally observed zcl for
various Ca = ηUp/γ , showing the increase of the meniscus rise with Ca . However,
beyond a critical velocity, corresponding to a capillary number Ca∗, the meniscus
no longer equilibrates but rises indefinitely. This is the signature of the dynamically
forced wetting transition: in our experiments, steady menisci cannot exist beyond
Ca∗ ≈ 9.1 × 10−3.

The dependence of zcl on Ca can be compared to the predictions of hydrodynamic
theory. As mentioned in § 3, the numerical curves are quite sensitive to the boundary
condition of the microscopic contact angle, θcl. In figure 2(a) we therefore present
numerical curves obtained using θcl = θr , θcl = θa and θcl = (θa +θr )/2. The experimental
points for zcl(Ca) lie between the curves obtained with θr and the average static angle.
It should be noted that, while we can measure the relative contact line motion with
a precision of a few microns, it is much more difficult to obtain the reference level of
the liquid bath, inducing uncertainty in the static angles.

There is an important discrepancy in the precise location of the transition: for
all model parameters, the hydrodynamic theory predicts that the transition occurs
when the meniscus reaches zcl =

√
2�γ , the height attained by a perfectly wetting

liquid (Part 1; Eggers 2004). We denote this theoretical maximum velocity as the
critical point, with a critical capillary number Cac. In the experiments, entrainment
has already occurred at zcl ≈ 1.1�γ , from which we infer that Ca∗ <Cac. Below we
discuss how the experimental Ca∗ is related to the long time evolution of the contact
line during liquid deposition.
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Figure 2. (a) Meniscus rise zcl normalized by capillary length �γ as a function of the plate
capillary number Ca . •, Steady solutions, determined experimentally as a function of Ca .
◦, Rescaled meniscus rise zcl(t) as a function of the contact line relative capillary number

C̃a(t) = η(Up − żcl(t))/γ , for Ca = 9.8 × 10−3 (see text). Lines: predictions from hydrodynamic
theory, with microscopic contact angle θcl = θr (dotted), θcl = (θa+θr )/2 (solid), θcl = θa (dashed).
(b) Rescaled contact line velocity at long time ż∞, as a function of the capillary number Ca .
Each point corresponds to an average over several experiments. The error bars indicate the
typical variation of the measured quantity from one experiment to the other. The solid line
is a phenomenological fit of the form: ηż∞/γ = c1 + c2(Ca − Ca∗)3. c1 is a residual ascending
velocity present even below the threshold.

These results can be represented in terms of the apparent contact angle, θapp, defined
from zcl using (4.1),

θapp = arcsin

(
1 − 1

2

[
zcl

�γ

]2
)

. (4.2)

As expected, this apparent contact angle decreases when the plate velocity is increased
(squares, figure 3a). However, θapp is far from zero at the coating transition, since

zcl remains well below the theoretical maximum of
√

2�γ . Interestingly, our data
for θapp can be directly compared with dynamic angle measurements for the same
physico-chemical system, but for a different geometry, namely droplets sliding down
an inclined plane (Rio et al. 2005). Figure 3 shows that the two sets of data for
a receding contact line are very similar, suggesting that the dynamic contact angle
has some universal features. One should be careful, however, since Rio et al. (2005)
measure the actual slope of the interface at a fixed distance from the contact line,
while definition (4.2) represents an apparent slope when extrapolating static profiles.

While the behaviour of the dynamic contact angle appears to be robust with respect
to the large-scale geometry, the threshold Ca for the dynamical wetting transition is far
from universal. In the experiments on sliding drops performed with the same substrate
and liquids, the rear of the drop assumes a conical shape such that receding contact
lines move at a constant normal velocity (Podgorski, Flesselles & Limat 2001; Rio
et al. 2005). The corresponding critical capillary number is Cad =5.7 × 10−3, which is
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Figure 3. (a) �, Apparent contact angle θapp, defined from (4.2) as a function of capillary
number for PDMS on fluorinated glass or silicon. �, �, �, Data from Rio et al. (2005) obtained
for drops sliding on an inclined plane. Vertical lines indicate threshold capillary numbers Cad

for the drop experiment, Ca> ‘corner’ dewetting flow on vertical plate (see text), Ca∗ for the
wetting transition in the plate geometry. The solid line is the result of the hydrodynamic theory
for (θa + θr )/2, shifted down by 2.8◦. It is mostly used as a guide for the eye but shows that
the prediction is within the experimental error of the absolute position of the contact line. (b)
Triangular liquid film observed when the dewetting lines originating at the wafer edges meet.
(c) Overall shape of the liquid film well above the coating transition. Most of the analysis
pertains to the horizontal contact line at the top of the film.

substantially lower than Ca∗ = 9.1 × 10−3. Yet another case of inclined contact lines
gives a third different value. When the plate is pulled out at Ca >Ca∗ the contact
line becomes entrained and a film is deposited. However, while the central part of
the contact line remains horizontal, no liquid entrainment occurs at the edges of the
wafer. As can be seen from figure 3(c), this causes the contact line near the edges to
incline at a well-defined angle, forming a trapezoidal shape. The sharp kinks bounding
the central part move inwards during entrainment and eventually meet (figure 3b).
The receding speed of the lateral lines was found to be Ca> =7.5 × 10−3, and thus
differs from both Ca∗ and Cad . This shows that the threshold for contact line stability
is not universal but depends on the details of the large-scale geometry of the flow.
We stress that apart from the reported value of Ca>, all experimental results in this
paper concern the central, horizontal region.

4.2. Experimental determination of Ca∗

The dynamical evolution from a steady meniscus towards liquid deposition provides
crucial information on the wetting transition. Figure 4(a) shows the time evolution
of the meniscus height zcl(t) after setting the plate velocity at a constant value
at t = 0. When Ca <Ca∗, zcl relaxes exponentially to a nearly flat plateau. Note
that we systematically observe a very slow upwards drift at a rescaled velocity
ηż∞/γ ∼ 2 × · 10−5, which is three orders of magnitude smaller than typical capillary
numbers. Above Ca∗, the exponential relaxation is followed by a moderate rise and
finally a much steeper rise corresponding to the development of the capillary ridge.
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Figure 4. (a) Meniscus height zcl rescaled by the capillary length as a function of time,
rescaled by the capillary time for Ca =9.7 × 10−3 (�), Ca = 10.2 × 10−3 (�), Ca = 10.7 × 10−3

(�), Ca =11.2×10−3 (•) and Ca = 11.5×10−3 (�). (b) Same data plotted as zcl(t) as a function

of the contact line relative capillary number C̃a = η(Up − żcl(t))/γ . Solid line: steady solutions
of the multi-scale hydrodynamic model.

Figure 2(b) shows that there is a well-defined point at which the contact line velocity
exceeds the ‘noise’ level, which allows identification of the coating transition.

For Ca >Ca∗, liquid is entrained by the plate. As can be seen from the photograph
of figure 3(c), the interface dynamics is not trivial: immediately behind the contact
line we observe the formation of a capillary ridge. We have found experimentally
that this structure travels exactly at a speed Ca∗, suggesting that the threshold of
entrainment is determined by properties of the ridge (Snoeijer et al. (2006)). In fact,
the ridge consists of two flat films that are connected through a capillary shock.
The boundary conditions at the contact line select a film thickness h ∝ �γ Ca∗1/2,
which is much thicker than the film connected to the bath, obeying the classical
Landau–Levich scaling h ∝ �γ Ca2/3 (Landau & Levich 1942). As explained in detail
in Snoeijer et al. (2006), this mismatch then gives rise to the shock.

The picture that emerges is thus that, experimentally, liquid deposition occurs
whenever the ridge can nucleate, even though stationary linearly stable meniscus
solutions in principle exist between Ca∗ and Cac. We believe that this avoidance of
critical behaviour is due to intrinsic noise in the experiment: contact angle hysteresis
is a manifestation of microscopic inhomogeneity, an effect that is not treated in the
model. The observation that Cac is sensitive to minor changes in the microscopic
θcl, and the presence of contact line drift even below the transition support this
interpretation.

4.3. Quasi-steady dynamics: bifurcation diagram

We now argue that transient states during liquid deposition provide access to the
full bifurcation structure of the wetting transition. We follow the horizontal part of
the contact line, away from the edges (figure 3c). As can be seen from figure 4(a),
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the contact line motion first slows down as it passes close to a steady-state solution,
and subsequently accelerates towards an asymptotic speed. Similar behaviour was
observed in simulations by Jacqmin (2004). The dynamical evolution towards liquid

deposition can be recast in the plane (zcl, C̃a), where C̃a is the capillary number based
on the relative velocity between plate and contact line, Up − żcl. Figure 4(b) represents

parametric plots of zcl(t) and C̃a(t), for different plate velocities. Surprisingly, all
data points for various Ca follow a single master curve. In addition, these points
accurately follow the hydrodynamic prediction for the equilibrated values of zcl

versus Ca (solid line). We stress that this correspondence is far from trivial, since the
theory considers stationary rather than dynamical interface profiles. It thus seems that,
experimentally, the interface evolves along these stationary solutions during liquid
deposition. Roughly speaking, one can identify (i) a stable branch (dzcl/dCa > 0)
on which all the steady menisci are located, (ii) an unstable branch (dzcl/dCa < 0)
where no steady menisci can exist, but where the we observe transients, and (iii)
a vertical branch at Ca = Ca∗ corresponding to the velocity of the capillary ridge.
The hydrodynamic theory predicts a slightly more complex structure with small
oscillations around the vertical asymptote, which cannot be resolved experimentally.

In addition to this correspondence, the data from the upward moving menisci can
be compared to the values of zcl for steady menisci obtained at Ca < Ca∗ (open circles,
figure 2a). The two data sets coincide, providing further evidence that transient states
are similar in nature to the steady interface profiles.

These experimental findings show that the unsteady motion of the interface during
liquid deposition can be inferred quantitatively from the steady-state solutions. This
strongly suggests that the dynamics proceeds through a succession of steady states,
which we refer to as a quasi-steady behaviour. Other evidence for such quasi-steady
behaviour was found for q =0 perturbations (Part 1), and thus it seems to be a robust
feature of the long-wavelength dynamics. Experimentally, the critical point (with a
vertical tangent on the zcl(Ca) curve) is never reached through stationary menisci.
However, the transients during liquid deposition follow the complete bifurcation
curve, and therefore provide an indirect measurement of Cac. The critical capillary
number is found here to be 11.1 × 10−3, a slightly larger value than predicted by the
hydrodynamic theory.

5. Dispersion relation
Having discussed the dynamics of unperturbed menisci we can address

perturbations of the contact line. As originally suggested by Golestanian & Raphael
(2001a, b), these should provide a sensitive experimental probe of small-scale dynamics.
In this section we consider two types of perturbations on the contact line: (i) spatially
periodic perturbations with rows of equally spaced defects (finite wavenumber |q|),
(ii) a global vertical shift of the meniscus (q = 0). We first describe the experimental
protocols, while the experimental findings results are discussed in the following section.

5.1. Periodic defects

To assess the dispersion relation, σ versus q , as a function of the contact line speed, we
performed systematic experiments with periodically spaced defects. A horizontal row
of defects is created on the solid plate, as described in § 2. When this row of defects
moves through the meniscus, it entrains drops of silicone oil out of the bath. As the
defects move away from the meniscus, the threads connecting the drops to the bath
pinch off leaving a few satellite droplets (figure 5a). Immediately after the release from
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Figure 5. (a) Pictures showing the evolution of the contact line initially perturbed at wave-
length λ= 400 µm by chemical defects on the plate. 	t = 0.4 s. (b) Extracted profiles.

the defects, the contact line has a spatially periodic perturbation with sharp peaks,
which decay quickly leaving a smoother almost sinusoidal perturbation. The spacing
between defects is well below the capillary length, λ= 400 µm or 600 µm, corresponding
to |q|�γ ≈ 23 and 15 respectively. As a consequence, the gravitational energy involved
in the meniscus deformation is much smaller than the interfacial energy.

The precise location of the contact line is determined as described in § 2 and the
relaxation is analysed over a horizontal range spanning two defects (see figure 5b).
Even though the defects are identical and evenly spaced, the liquid thread pinch-off
generically does not occur simultaneously on all defects. For example, figure 5(a)
shows the pinch-off from four defects: on the top photograph, the rightmost liquid
thread is clearly wider than the middle ones. It will thus break slightly later. In the
middle photograph, the corresponding peak is sharper and higher. Even after the
decay of the highest spatial modes, there is still a small difference between peak
amplitudes (figure 5a, bottom photograph). For this reason it is impossible to fit the
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Figure 6. (a) Fit of the contact line profile (�) by a single mode of wavelength λ= 400 µm
(dotted line) and by the sum of three modes, λ= 400 µm, λ= 200 µm and λ= 133 µm (solid
line). (b) Corresponding residual (z − zfit) curves.

whole experimental curve with a single function and we choose to fit the curve in
parts, considering only two defects at the same time (figure 5b).

To analyse the relaxation, the experimental profiles are fitted by the sum of three
modes

zfit = a0 + a1 cos(q0(y − ϕ)) + a2 cos(2q0(y − ϕ)) + a3 cos(3q0(y − ϕ))

where q0 = 2π/λ is the wavenumber corresponding to the spacing λ between defects.
It can be seen on figure 6 that a single cosine function does not fit the experimental
curves correctly while the three-mode fit gives an accurate description: for a total
amplitude of 15 µm, the difference between the experimental points and the three-mode
fit is less than 0.5 µm. We thus obtain the dynamics of three different wavenumbers
in a single experiment. This procedure allows a very precise determination of the
amplitude (figure 7a), with a resolution exceeding the camera resolution. This is due
to the averaging procedure which is implied by the fit over hundreds of data points.

For the three modes used in the fitting function, the amplitude decays exponentially
as e−σ t (figure 7a), with a decay rate σ proportional to the wavenumber (mode 2
decays twice as fast as mode 1 and mode 3 three times faster than mode 1). As we
will show below (figure 9a), the data derived from the relaxation of the perturbation
from multiple defects indeed display a linear relation between the relaxation rate σ

and the wavenumber |q|, within experimental error, as anticipated in (1.3).

5.2. ‘Zero mode’ relaxation

The experiments with regularly spaced defects provide data only in the long-
wavenumber limit |q|�γ � 1. But, we can obtain information on the small-wavector
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Figure 7. (a) Amplitude of contact line deformation as a function of time for periodic
perturbations. Open circles λ= 400 µm, filled circles λ= 200 µm. The dotted lines are
exponentials. (b) Dimensionless relaxation rate as a function of capillary number at different
wavelengths (defects with 600 µm spacing: λ= 600 µm (�), λ= 300 µm (�), λ= 200 µm (�);
defects with 400 µm spacing: λ= 400 µm (�); λ= 200 µm (�); λ= 133 µm (�). The solid line is
the prediction of the multiscale hydrodynamic model with θcl = (θa + θr )/2.

limit q → 0 simply by considering the relaxation of the meniscus height zcl towards
its steady value. Again, the amplitude of perturbation decays exponentially with time
(figure 8a). We fit the curves zcl(t) for Ca <Ca∗ (as shown on figure 4a) by a function:
zfit = (zcl + ż∞t)[1 − e−σ t ], in which we account for the long-term drift of the contact
line through the term ż∞t . We thus obtain the relaxation rate σ of the q = 0 mode as
a function of the capillary number.

6. Dimensionless relaxation rates and their evolution with Ca

We now analyse the experimentally measured relaxation rate, σ , as a function of
q and Ca . In order to compare this experimental dispersion relation to theoretical
predictions, we define dimensionless relaxation rates with different scalings in the
limits |q| �γ � 1 and |q|�γ � 1.

6.1. Short wavelengths: |q|�γ � 1

Gravity plays no role in the large-wavenumber limit, so the only length scale in
the problem is provided by the wavelength of the perturbation. Hence, we expect
the relaxation rate to scale with the imposed deformation |q| and the characteristic
capillary velocity γ /η (de Gennes 1986a). We therefore introduce the dimensionless
relaxation rate σ∞(Ca):

σ =
γ

η
|q| σ∞(Ca), (6.1)

where the subscript ∞ refers to the limit q�γ → ∞ (see also Part 1).
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Figure 8. (a) Amplitude of contact line perturbation as a function of time for the ‘zero’ mode
λ → ∞. (b) Dimensionless relaxation rate for the zero mode as a function of capillary number.
The data have been obtained with the same plate. The error bars indicate the typical variation
from one experiment to the other. The lines are the prediction of the multiscale hydrodynamic
model for θcl = θr (dotted line), (θr + θa)/2 (solid line), θa (dashed line).

The quasi-static theory for contact lines predicts σ∞ in terms of the apparent contact
angle θapp and its dependence on Ca (Golestanian & Raphael 2003)

σ∞ = −θ

(
dθapp

dCa

)−1

, (6.2)

which is the small-angle limit of a more general expression. For all models of θapp(Ca)
(such as Cox 1986; Voinov 1976; de Gennes 1986b; Blake, Coninck & D’Ortuna
1995), σ∞ is found to decay almost linearly with Ca , and vanishes at the critical
capillary number for entrainment. This implies a diverging relaxation time σ −1, a
direct consequence of the diverging slope dθapp/dCa at the critical point. The slope of
the curve σ∞(Ca) varies from to −2 to −4, depending on the model used (Golestanian
& Raphael 2001a).

If we examine our experimental data (figure 7b), we can see that σ∞ indeed decreases
almost linearly from Ca = 0 to Ca =Ca∗, the location of the coating transition. But,
this decreasing trend persists beyond Ca∗ when we consider the data points obtained
during the transition. As we have shown in § 4, the transients during liquid deposition
quasi-steadily follow the bifurcation curve so we can effectively probe the contact line
dynamics up to the critical point Cac. The experiments clearly show that σ∞ does not
go to zero between Ca∗ and Cac. This experimental result is in disagreement with the
quasi-static theories.

If, however, the viscous dissipation is accounted for in a hydrodynamic calculation,
We recovers non-zero value of σ∞ at the critical point (Part 1). The prediction of
hydrodynamic theory is represented by the solid line in figure 7(b), where we took
the microscopic contact angle as θcl = (θa + θr )/2. It correctly describes the variation
of σ∞ over the whole range of capillary numbers, including the non-zero value at the
critical point. Note that the solid line displays a sudden divergence near Cac, which is
due to a breakdown of the linear scaling σq ∝ |q| at criticality. This subtle effect is not
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Figure 9. (a) Normalized relaxation rate as a function of the wavenumber rescaled by the
capillary length. (b) Ratio of the relaxation rate of large-wavenumber modes to zero mode
rescaled by q�γ , i.e. σ∞/σ0. Each point corresponds to an average over several measurements.
The error bars indicate the variance around the average. The hydrodynamic theory is presented
by a solid line (θcl = (θa + θr )/2).

observed in the experiments, for which the scaling with |q| holds within experimental
error.

6.2. Long wavelengths: |q|�γ � 1

In the small-wavenumber limit, the energy of deformation is dominated by gravity
and the relevant length scale is no longer provided by the wavelength, but the capillary
length �γ instead (Nikolayev & Beysens 2003). We therefore define the dimensionless
relaxation rate σ0(Ca) as

σ =
γ

η�γ

σ0(Ca) . (6.3)

The quasi-static theory predicts a dependence with Ca of the form

σ0 = �γ

(
dzcl

dCa

)−1

, (6.4)

which was found in excellent agreement with the hydrodynamic calculation of Part 1.
This relaxation is based on the idea that all transients with q = 0 effectively obey
a quasi-steady dynamics governed by a universal curve zcl(Ca), a concept that we
discussed already in § 4. The critical point is again associated to a divergence of the
slope dzcl/dCa , leading to a zero value of σ0 at Cac. In our experiments, we can only
measure the relaxation towards a steady meniscus, i.e. when Ca remains smaller than
Ca∗. Within this limit, the model accounts reasonably well for the variation of σ0.

To close this section, let us compare the values of σ∞ and σ0, by plotting their ratio
in figure 9b as a function of Ca . We find a very good agreement with hydrodynamic
theory (solid line). The ratio diverges at Cac since σ0 → 0 at Cac, not accessible
experimentally, while σ∞ remains finite.
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7. Localized perturbation and Green’s function
Having confirmed the scaling σ ∝ |q| for short wavelengths, we can further

investigate this “anomalous elasticity” of moving contact lines (Joanny & de Gennes
1984; de Gennes 1986a; Golestanian & Raphael 2001b). An interesting consequence
of this dispersion relation is that the corresponding Green’s function is a Lorentzian:
a localized perturbation of the contact line, created by a single defect passing across
the interface, should decay self-similarly according to a Lorentzian profile. The width
(amplitude) is expected to increase (decrease) linearly in time.

Suppose that, at time 0, the contact line deformation is described by a Lorentzian
of width w0 and area A:

z(y, 0) =
A

πw0

1

1 + y2/w2
0

, (7.1)

with a peak amplitude A/πw0. Its Fourier transform is

ẑq(0) =
A√
2π

exp(−|q|w0) . (7.2)

Using (6.1), we obtain the Fourier transform after relaxation during a time t as

ẑq(t) = e−σ t ẑq(0) =
A√
2π

exp

(
−|q|

[
w0 +

γ σ∞

η
t

])
, (7.3)

which can be inverted to

z(y, t) =
A

πw(t)

1

1 + y2/w(t)2
, (7.4)

where the width is increasing linearly in time:

w(t) = w0 +
γ σ∞

η
t . (7.5)

Experimentally, we thus create a very localized perturbation that should quickly
evolve into a Lorentzian shape. The time evolution of the perturbation created by a
single defect is shown on figure 10. In this experiment, the contact line speed is slightly
below the critical speed. Immediately after depinning from the defect, the contact line
is sharply peaked and cannot be fitted accurately by a Lorentzian (figure 10b). After
a few seconds, the modes corresponding to large wavenumbers are damped and the
deformation is very well approximated by a Lorentzian (for comparison we show a
Gaussian fit in figure 10c, dotted line). It is also worth noting that a logarithmic
shape resulting from a localized force applied on the contact line (de Gennes 1986a)
cannot describe properly the experimental profiles.

The convergence to a Lorentzian shape is further shown by the rescaling of the
experimental profiles z(y, t), since (7.4) predicts z(y, t)w(t)π/A(t) = f [y/w(t)]. As
expected, the shapes of the rescaled curves nicely collapse onto a master curve, shown
on figure 11(a). Moreover, after the first few seconds during which the shape evolves
into a Lorentzian, the computed width increases linearly with time (figure 11b).
The spreading velocity of (7.5), σ∞γ /η, was found to be 17 µms−1 in this example,
corresponding to a dimensionless rate σ∞ ≈ 8.4 × 10−4. This value was obtained at
Up = 140 µms−1 with 1 Pa s oil, i.e. at Ca = 7 × 10−3, very near the coating transition.
The relaxation rate is indeed close to the lowest values observed with the periodic
defects when Ca is between Ca∗ and Cac. Finally, the area under the fitting curve A is
found to be constant, again after the initial decay of the transient modes (figure 11c).
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Figure 10. (a) Time evolution of the contact line initially perturbed by a single chemical
defect 	t = 2.5 s, at Ca = 7 × 10−3. (b) Residual of the fit of the contact line by a Lorentzian,
just after depinning (t =0.625 s). (c) Residual of the fit of the contact line by a Lorentzian
(solid line) and by a Gaussian (dotted line) at time t =5 s.

8. Conclusion
We have measured the relaxation of a receding contact line, by considering

perturbations in the limit of both small and large wavelengths with respect to
the capillary length �γ . This provides crucial information on the dynamics of contact
lines and the nature of the dynamical wetting transition. As expected from the
quasi-static theory by Golestanian & Raphael (2001a) the moving contact line
retains the particular elasticity already found for static lines, namely a relaxation
rate proportional to the wavenumber |q|, in the limit |q|�γ � 1. However, their
crucial prediction of diverging time scales at the dynamical wetting transition is not
confirmed experimentally. The initial interpretation for this was that the critical point
is completely avoided through the nucleation of a capillary ridge (Snoeijer et al.
(2006)). However, we have argued that the present experiments do explore the critical
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Figure 11. (a) Rescaled contact line profiles (from figure 10a) showing the self-similar
behaviour. (b) Time evolution of the width derived from the fit. (c) Time evolution of the area
A under each curve.

point through transients during liquid deposition: the interface profiles quasi-steadily
proceed through stationary states, including the critical point. However there is no
evidence for a diverging relaxation time for perturbations of |q|�γ � 1, which were
found to decay on a very rapid time scale even at criticality (figure 7b).

These findings are consistent with the hydrodynamic calculation put forward in
Part 1, in which we explicitly treat viscous effects at all length scales. There we showed
that the critical point is described by a standard saddle-node bifurcation, for which
σ = 0 only for q = 0, but not for finite wave perturbations. This demonstrates that
a true hydrodynamic description is crucial to unravel the dynamics of contact lines.
Another conclusion of Part 1 was that stationary menisci obey a rather surprising
bifurcation diagram, that is characterized by two distinct capillary numbers, Ca∗

and Cac. The experimentally observed transient states towards liquid deposition were
found to exhibit the same structure (figure 4b).

There is, however, an important feature missing in the hydrodynamic description.
Experimentally, the coating transition occurs at Ca∗, while in theory solutions are
linearly stable up to Cac. Sedev & Petrov (1991) studied the coating transition for
small siliconized glass rods pulled out of a bath of water–glycerin mixture. Within
their experimental uncertainty, they found that liquid deposition occurs when the
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meniscus height is very close to its maximum value, with corresponding values of θapp

ranging from 2◦ to 13◦. This is in contradiction with our results. It should be noted
that their substrates exhibit a large variation of static contact angle (from 70◦ to 86◦)
and the magnitude of hysteresis is not reported. Another important difference with
Sedev & Petrov (1991) is the presence of the wafer edges in our experiment. As can
be seen on figure 3, oblique contact lines originate at the edges when the threshold
velocity Ca∗ is exceeded and we cannot exclude the possibility that this perturbation
might affect the coating transition. It is thus not yet clear if the discrepancy with our
results is due to the strong interface curvature in the third dimension, to hysteresis
effects or to edge effects.

A crucial step would be to incorporate substrate inhomogeneities into the theory.
Golestanian & Raphael (2003) discussed the influence of fluctuations of surface energy
(directly correlated to hysteresis) on the stability diagram for the wetting transition.
They also predict, consistent with their quasi-static theory for smooth substrates, a
roughening of the contact line at the coating transition since perturbations imposed
by substrate heterogeneities should no longer relax. Our experimental and theoretical
findings suggest a rather different scenario at the wetting transition, and underline
the need for a hydrodynamic description incorporating hysteresis.

Experimentally, it is extremely difficult to eliminate hysteresis on solid substrates.
There have been attempts to use nanostructured surfaces: for example, Semal et al.
(2000) used mixed alkanethiol monolayers to create composite surfaces with an
hysteresis for alcane droplets varying from 2◦ to 7◦. They interpreted their results of
droplet spreading (measuring an apparent contact angle as a function of time) in terms
of the molecular kinetic theory of Blake (Blake & Haynes (1969)). They obtained
a friction coefficient for the contact line which was correlated with the average
composition of the thiol monolayer. As we have shown, dynamic characteristics near
transitions are much more sensitive tests than quantities like apparent contact angles
which are, furthermore, ambiguously defined. It will thus be interesting to perform
experiments similar to those presented here, on substrates of viscous liquids to try to
eliminate the hysteresis completely, or on nano-patterned solid substrates to try to
vary the hysteresis continuously.

We wish to thank Elie Raphael who initially suggested this experiment. We also
thank Jose Bico, Jens Eggers and Laurent Limat for fruitful discussions and Patrice
Jenffer and David Renard for technical assistance. J.H. S. acknowledges financial
support from Marie Curie European Fellowships FP6 (MEIF-CT2003-502006, MEIF-
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