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Erosion waves: Transverse instabilities and fingering
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PACS. 83.50.Lh – Slip boundary effects (interfacial and free surface flows).
PACS. 92.40.Gc – Erosion and sedimentation; sediment transport.
PACS. 83.80.Fg – Granular solids.

Abstract. – Two laboratory scale experiments of dry and underwater avalanches of non-
cohesive granular materials are investigated. We trigger solitary waves and study the conditions
under which the front is transversally stable. We show the existence of a linear instability fol-
lowed by a coarsening dynamics and finally the onset of a fingering pattern. Due to the different
operating conditions, both experiments strongly differ by the spatial and time scales involved.
Nevertheless, the quantitative agreement between the stability diagram, the wavelengths se-
lected and the avalanche morphology suggest a common scenario for an erosion/deposition
process.

Introduction. – Avalanching processes leading to catastrophic transport of various natu-
ral materials do not only occur in the air as we know of snow avalanches, mud flows and their
catastrophic human and economical toll. Such events frequently happen below the sea level
as they take many forms from turbidity currents to thick sediment waves sliding down the
continental shelf. This is a fundamental feature shaping the submarine morphology. From the
modeling of risks point of view, important questions still remain such as to evaluate to which
extent an initial triggering event (an earthquake, an eruption, . . . ) would be responsible for a
subsequent process that might propagate or amplify over large distances as an unstable matter
wave. Unfortunately, the dynamics of such catastrophic events remains an issue so far lacking
in conceptual clarity [1,2] since i) the rheology of the flows involved in an avalanche is complex
and still not unravelled, ii) the physics of erosion/deposition mechanisms is essentially limited
to empirical descriptions based on dimensional analysis and semi-empirical formulations. Re-
cently, extensive laboratory scale experiments on dry granular materials have aimed to unify
the rheology of dense particulate flows in different geometries [3]. These flows can be organized
into two sub-classes, quasi-static creep flows characterised by an exponential-like velocity pro-
file, and dense inertial flows, whose rheology is local [4–6]. In the case of fully developed
granular flows, measurements are now sufficiently precise and reproducible to evidence depen-
dencies of the constitutive relation on microscopic granular features like rough sandy material
vs. round spherical particles [7,8]. But still, a full understanding of the flow constitutive rela-
tions would require a pertinent description of the passage between the blocked and the mobile
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Fig. 1 – (a) Experimental set-up. (b) Stability diagram: hstop is the thickness of the sediment
left after an avalanche for a given angle θ, in air (•) and in water (◦); hstart(θ) is the maximum
stable height of sediment, in air (!) and in water ("). hstart(θ) and hstop(θ) are fitted by the form
h = b ln((tan θ − µ)/δµ) where b = −2.7d, µ = 0.6 for hstop (µ = 0.65 for hstart) and δµ = 0.43
are fitting parameters (solid lines). In region I, an avalanche front cannot propagate autonomously
down the slope: the perturbation is bound to fade away when the driving stops. Avalanches triggered
in region II are stable while they exhibit a transverse instability in region III. In particular, solitary
erosion waves are evidenced when starting from the stable height hstop. (c) Front profile χ(y) obtained
after image processing by a correlation technique. (d) The corresponding correlation function C(y)
allows to define the average wavelength λ and amplitude A.

phases (the jamming transition). For instance, the onset and the dynamics of triangular-shape
avalanches was shown to be controlled essentially by the presence of a metastable substrate
and the interplay between erosion and deposition processes [9, 10]. From a theoretical point
of view, descriptions of the granular bed mobilisation have been proposed, either empirically
(“à la Saint-Venant”) [11, 12] or phenomenologically by phase field methods [13]. Avalanche
fronts flowing on solid rough substrates are transversally stable, the transverse coupling due
to gravity being essentially a stabilizing mechanism [14, 15]. But, as soon as segregation oc-
curs, for instance in the bi-disperse case, an avalanche front may exhibit a fingering pattern
explained by a pinning mechanism [16, 17]: the grains of larger size gathering in the finger
thrusts are hindering locally the avalanche front progression. In this paper, we present an
experimental study of avalanche fronts developing over an erodible granular substrate, in the
air and underwater. We demonstrate the existence of a linear transverse instability of solitary
erosion waves, although the rough grains we use exhibit a narrow polydispersity (25%).

Experiment. – The avalanching set-ups consist of a thin layer of grains deposited on a
substrate that can be tilted at a value θ (fig. 1a). The dry granular set-up is similar to the
one of Daerr et al. [9, 10]. The avalanche track is 70 cm wide and 120 cm long. The granular
medium is Fontainebleau sand of a medium size d = 300±60µm and the track bottom is made
of black velvet. For underwater avalanches, the set-up size is quite smaller. The avalanche
track is the bottom of a plexiglass tank that can be tilted up to an angle θ from a horizontal
position. The avalanche track width is 15 cm and so is the track length. The granular sediment
is an aluminum oxide powder of size either d = 30µm or 40±11µm. To avoid interparticle co-
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hesion, it is sufficient to maintain the pH value close to 4 by adequate addition of hydrochloric
acid [18]. The substrate is initially set at a horizontal position and a fixed mass of powder is
poured and suspended by vigorous stirring. A uniform sediment layer of height h then forms
within 10min. The bottom is an abraded but transparent plexiglass plate which offers the
possibility to monitor the avalanche dynamics by transparency when illuminated from below.
The profile of the avalanche front h(x, t) is obtained with a laser slicing technique and is
resolved within 30µm (0.1d) in the dry case. The front dynamics is quantitatively monitored
by image processing of the avalanche front pictures. The front line equation χ(y, t) is then
extracted (fig. 1c) and the front line auto correlation function C(y, t) = 〈χ(y + y′, t)χ(y′, t)〉y′

is computed. Then, the correlation function first maximum is identified from which we de-
fine the average wavelength λ and the amplitude A = 2

√
2C(λ) (fig. 1d). In addition, for dry

avalanches, we measure the surface velocity field using a Particle Image Velocimetry technique.

Results. – It has been shown that the stability of dry granular layers of depth h lying
on a substrate inclined at an angle θ can be simply apprehended by a diagram with two
branches [14] (fig. 1b), hstart(θ) and hstop(θ), with the following interpretation: a uniform
deposit of height h will globally loose stability if tilted above the angle θ defined by h =
hstart(θ) and the avalanching process will leave at rest a deposit of height hstop(θ). The
hstart(θ) and hstop(θ) curves diverge at an asymptotic angle limit, respectively equal to the
avalanche angle of the granular pile θa and to the repose angle θr. Between the two, a domain
of metastability for the granular deposit is present. Interestingly, the stability curves obtained
for dry (sand-velvet) and underwater (alumina-rough plexiglass) layers bear the same features
and fall apparently on the same curve when the deposited height is rescaled by d (fig. 1b).

To initiate avalanche fronts both in air and underwater, we designed a “bulldozer” tech-
nique where a plate perpendicular to the avalanche track scrapes the sediment at a constant
velocity (fig. 1a). Although our results on avalanche stability are valid in the whole metastable
region (fig. 1b), we will limit ourselves here to experiments started from a stable sediment
layer of height hstop(θ). Once an autonomous avalanche front separates from the plate, the
bulldozer driving stops. For θr < θ < θa, we always obtain transversely stable autonomous
avalanche fronts, both in the wet and dry cases. We observed that the avalanche quickly
converges toward a “shark tooth” form which then remains constant. It reminds the shape of
solitary waves found for viscous liquids falling down an incline [19,20]. Here, the solitary wave
is found to be quite insensitive of the range of scraping velocities but depends on the mass set
into motion. For this systematic study, we have kept a constant scraping velocity at about
one-third of the typical avalanche velocity va and put the minimal mass required to trigger a
solitary wave. In these conditions, for each value of the —unique— control parameter θ, there
is thus a single possible solitary erosion wave. In water, va is of the order of the Stokes velocity
∆ρ

ρw

gd2

18ν
$ 2mm/s, where

∆ρ

ρw
= 3 is the density contrast between grains and water, ν the

water kinematic viscosity and g the gravity acceleration. In the air, the propagation velocity
is of the order of

√
gd $ 5 cm/s. Figure 2(a) shows a spatio-temporal diagram obtained by

extracting subsequent vertical pixel lines and adding them together horizontally to build the
time base. We observe simultaneously the deviation of the laser spot corresponding to the
time-resolved height. In fig. 2(b), the local sediment height h and local surface velocity v
profiles are extracted for the same avalanche. The space and time origins are shifted to match
the front onset. Independently, we measured the flow rule on homogeneous steady flows and
found v/

√
gh = β(h/hstop − 1), with β = 0.8, as previously found for sand [3]. Here, this

equilibrium relation remains verified in the tail of the avalanche. Furthermore, we directly
observe the presence of a thin layer of grains flowing on a jammed substrate before stopping.
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Fig. 2 – (a) Spatio-temporal diagram done with a fast camera (125 Hz), showing the particle motion
(the slope of the streaks is the velocity) as well as the profile height (deflection of the laser sheet).
(b) Solitary erosion-wave profile δh = h − hstop (in the air) rescaled by d (dotted line) and surface
velocity profile v rescaled by

√
gd (solid line) (dry, θ = 32◦, hstop = 2.3 mm = 7.8d, region II). It can

be observed that the surface grain velocity tends at the front towards the solitary-wave velocity va.

The important issue of the existence of a static layer below the flowing one will be adressed
in a forthcoming paper. For θ > θa the neutral wavefronts are transversally unstable (fig. 3).
It is worth noticing that for the same angles, avalanches down a solid rough plate are stable
(at least in the dry case). After the initial instability, we have identified a sequence of fusion
processes increasing the spatial modulation lengths (coarsening scenario). Finally, the trans-
verse destabilization ends up as a fingering pattern. In this final stage, the flowing zones are
disconnected one from the others so that the wavelength does not evolve anymore.

In fig. 4, we display a typical time evolution of the dominant wavelength extracted from
the correlation function. In the inset, a typical fusion event is displayed to illustrate the
coarsening scenario. Because of the competition between unstable modes and the coarsening
process taking place, the identification of a generic scenario for the transverse instability is
problematic. This is the reason why, in addition to the experiments started from a flat bed

(a) (b)

Fig. 3 – Region III. Flowing part of solitary waves visualised by image difference (air, d = 300 µm,
θ = 35◦, time interval 1.1 s), starting from a flat bed (a) or from an initial bed presenting a forced
wavelength λ = 6.5 cm (b).
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Fig. 4 – Time evolution of the wavelength λ (water, d = 40 µm, θ = 37.1◦) in a single typical
realisation (•) and averaged over realisations (solid line) —the shadow zone indicates the standard
deviation. After a small plateau at the initial wavelength λ0, λ increases due to merging processes
(lower photograph) until the value λ∞ which corresponds to the formation of non-interacting fingers
(upper photograph).

we just described, we performed series of experiments starting from a modulated initial con-
dition (fig. 3). The modulation at a given wavelength is simply produced by imprinting on
the sediment surface regularly spaced thin scarifications (shallow scratches). We find that the
forced modes always fade away in region II, but on the other hand, in region III, the front
modulations amplifies exponentially for a wide band of modes. The linear regime is clearly
evidenced over one decade in amplitude (see fig. 5(a)). Non-linear effects start being visible
when the amplitude becomes centimetric. Figure 5(b) shows the dispersion relationship de-
duced from these experiments, which demonstrates the existence of an initial long-wavelength
linear instability. The parabolic fit is consistent with the theoretical prediction of [21].
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Fig. 5 – (a) Time evolution of the amplitude (air, d = 300 µm, θ = 35◦) when the initial condition is
forced at a given wavelength λ = 12 mm (◦), λ = 30 mm (#), λ = 90 mm (#) and λ = 178 mm (!).
(b) Linear growth rate σ as a function of the wave number k. The solid line is the best fit by
σ = a|k| − bk2, with a maximum growth rate of 2.5 s−1 attained at λ0 $ 4 cm. Measurement of λ0

from an undisturbed solitary wave (fig. 3) gives 3.3 cm.
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Fig. 6 – (a) Initial (•) and final (◦) wavelengths rescaled by d as a function of θ (d = 40 µm, in water).
The initial wavelength data in air ($) and water (•) coincide, as well as the final wavelength data in
air (#) and water (◦). The error bars correspond to the dispersion of the data from a realisation to
the other. As λ0 diverges at θa, we have superimposed the curve 10hstart(θ) (solid line), which is a
good approximation of λ0 to the first order. The dotted line is the best fit of the final wavelength λ∞
by the same logarithmic form as hstart(θ) or hstop(θ). (b) Initial wavelength λ0 rescaled by hstop(θ),
as a function of the plane angle θ.

For experiments both in the air and underwater performed in the unstable regime, we
extract the two characteristic wavelengths. The initial wavelength λ0 would correspond, to
the best of our experimental possibilities, to the fastest growing mode of the linear regime.
Then, the wavelength λ∞ is taken at the onset of the fingering instability. In fig. 6, we
display both wavelengths rescaled by the grains sizes: λ0/d and λ∞/d, as a function of the
inclination angle θ. The selected wavelengths are typically larger than a grain size by at
least two orders of magnitude. Note that the largest wavelengths measured are of the order
of the track width (1800d in water and 750d in air). Furthermore, in the limit of finite-size
effects and measurements uncertainties, we find that a value θ ∼= θa corresponds to a diverging
boundary for the initial wavelength λ0/d. Hence this is a signature of a zero wave number
instability with a threshold close to θa. In fig. 6b, this divergent lengthscale is rescaled by
hstop(θ) which turned out to be the correct characteristic length scale for the flow rheology.
Although the wavelength seems to scale on hstop at large angle, one can observe a growth at
least exponential close to the threshold. Let us emphasize that data obtained in the air and
underwater collapse on the same curve, once rescaled by the grain size (or hstop). In the range
of parameters where the fingering regime is reached before the end of the track, the ratio of
the final to the initial wavelength is approximately constant and equal to λ∞/λ0 $ 3.5. The
presence of a fingering instability is a quite fascinating feature of this avalanching process.
Here, the fingering front stems from the onset of localized propagating waves following the
transverse instability regime. These fingers are localized matter droplets with levees on the
side and propagating in a quasi-solitary mode and when they are fully developed, their selected
width is found to be quite sensitive to the slope ($ λ0 for both wet and dry cases).

Conclusion. – In this letter, we have investigated the dynamics of underwater and dry
granular avalanches taking place on an erodible substrate. We have identified the domain of
existence for solitary waves going down the slope without changing form. For angles larger
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than the avalanche angle, we proved the existence of a linear transverse instability which fur-
ther develops via a coarsening fusion process and finally ends up as a fingering pattern. The
scenario is a standard zero wave number instability of threshold close to θa. The existence of
solitary waves provides a new important test to models. For instance, it will be interesting to
determine their existence in Saint-Venant models that include or not a static erodible layer be-
low the avalanche. The mechanism responsible for the instability remains yet to be found but
it is clearly related to a flux of matter from the slower towards the faster moving parts of the
front. Different effects can be invoked like a gravity effect if the local slope strongly decreases
in the foremost zones, or an anisotropy of normal stresses leading to a reduced “pressure” in
the fluidized zones. A recent study based on the partial fluidization model [13] has recovered
the existence of solitary waves and the fingering instability [21], here related to a reduced
friction in the flowing zones. Further studies with other materials on different substrates are
needed to determine to which extent the instability is generic. A further challenging experi-
mental issue is to get a more focused vision on the interface separating the jammed and the
rolling phases, and its relation to the instability onset. In the final stage of the instability,
fingers appear as droplet-like solutions of the erosion/deposition process and thus look essen-
tially different from the segregation fingers reported on a rough substrate [16]. Note that their
shape is reminiscent of many natural patterns obtained in debris or mud flows [17] which also
display surprinsigly well-selected widths at values about hundreds of a typical rock size.
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