Studying Burgers’ models to investigate the physical meaning
of the alignments statistically observed in turbulence
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The alignments between the vorticity, the vortex stretching vector, the pressure Hessian
eigenvectors and the strain rate eigenvectors are computed and discussed in the case of the Burgers’
vortex and the Burgers’ layer. It is shown that the main physical properties of these models can be
deduced from these alignments. Following this example, the alignments between these vectors in
turbulent flows are interpreted as dominated by stretched, coherent and locally quasi-bidimensional
regions. This induces a new and safer classification for the strain rate and the pressure Hessian
eigenvalues. ©1997 American Institute of Physid$1070-663197)02803-1

I. INTRODUCTION Dw;
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The complexity of turbulence has induced many differ-

ent approa_c_hes to th? problem. In pamcul_ar, two CompleWherezZ is the stretching induction vectof ;= —1II; ;o))

mentary visions dominate turbulence studies. On the one . _ .2 :
- . - andII the pressure Hessiadl{ j=4;;P). It must be noted

hand, theglobal approachis linked to the unpredictability, that Eqs(1) and(2) are formall Ysimiii’;\r However. while the

the quasi-random aspect and the disorder of turbulent flows a y ' ’

and is thus essentially based on statistics. On the other han¥P"€X stretching vectow is a local quantity is non-local

the direct observation of coherent structures, bottS!"CE the pressure Hessian can only be obtained by solving
numerically—® since Siggi4 and experimentally by Douady "€ Poisson equation:
et al,’ has suggested an altemative approach, focused on AP=TI;, = (02— a?)/2, 3)
coherent structures and thus linked to the coherent and or-
dered part of turbulent flows. Suckstructural approacthas WhereUZEZUfj and w?=w?. One can find further details
for example been followed by Jimenetal” who studied in  in Okhitani et al® who studied, in an Eulerian case, the role
numerical simulations some of the characteristieslius and of the pressure Hessiall in non-local processes. Under-
Reynolds numberof the strong vortices embedded in the standing the physics of vorticity stretching and stretching
turbulent flow. induction directly from Eqs(1) and(2) is quite difficult. A

In this sense, a statistic on the angle between two dygood way of getting some information on these processes is
namical vectors is relevant to the global approach. Amonghus to study the alignments between the dynamical vectors
these statistics, we are interested in those involving the vednvolved in these equationso{ W and ¢). Sincew is con-
tors linked to the vorticity and the stretching dynamics. Westrycted ons and w, and  on II and w, the alignments

will thus first make a short theoretical presentation of thes%etween the vorticityf) and the eigenvectors of andIT are

m;erestlng dynamical vectors, before_ recalling the results Obé\lso interesting. In particular they indicate which parts of the
tained by several authors on their alignments.

An al . he d o £ 1 . ¢ strain and the pressure Hessian are active. There are unfor-
.n alternatlve to the gscnptpn ot Tlows in te.rrr.ls 0 tunately only two of these alignments well established in
velocity v and pressure gradiefiavier—Stokes equatioms  |aporatory and numerical turbulence experiments. The align-
to use the velocity derl_vatl_ves which ref_lect the_local SUUCent between the vorticity and the strain rate eigenvectors
ture of the flow. Considering the velocity grad|§nt ensor, - s been first studied by Ashuegtal® numerically and later
one_ (acan+aco)r}ztr:rc“tj tht(i]?/ortirgfte _Of sé)traanhi::ehnsorby Tsinoberet all° experimentally. The alignment between
gz;rl;be Irlggarél()ald 25 tWo basic Ioca?/a)l;;ri;i%gsjvk the vorticity & and the stretching vectav has been investi-
For an incompressible fluid governed by Navier—Stokeé(;?;ei(ill bi)rll TNS:v?gre—eétz(i)II.(es:nsier):]rsjle;!c:;nttjrkizllgntc):i S‘?Elgr]gnis
equations, we find the vorticity equation, ) ) . ) '
however one numerical simulation by Nomura and Post
Do where the statistics of the angles between the vorticity and
D—t'zatwi+uj&jwi=wi+ vAw;, (1)  the pressure Hessian eigenvectors are computed.
To summarize the results obtained in these studies, there

wherew is the vortex stretching vectom{ = o, jw;). This is a tendency for alignment between the vorticityand the

vector, which corresponds to the action of the strain on thdtérmediate eigenvectar, of the rate of strain tensar,
vorticity, is the source term of Eql). Rather than the strain and betweenw and the vortex stretching vectar in turbu-
equation, let us consider the evolution of the vortex stretchlent flows. Moreover, Nomura and PYsfound a trend for
ing vector: alignment betweem and the smallest pressure Hessian ei-
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genvectorms, this tendency becoming strong for high vor- Il. ALIGNMENTS STUDY
ticity regions. These results have led to some important cona. Burgers’ layer and vortex

clusions. First, the vorticity stretching, closely linked to the : :
y 9 y Both Burgers’ models are exact solutions of Navier—

positiveness of the enstrophy generating termw, isone of  gygkes equations. The velocity field of the Burgers’ vortex is
the predominant processes involved in turbulence. Secongypressed in cylindrical coordinatesbeing the radial coor-
this gives experimental evidence that a great degree of catinate andz the axial coordinate. For the Burgers’ layer, the
herence is locally present in turbulent flows. field is expressed in Cartesian coordinates, with by conven-
The aim of this paper is to propose a physical interpretion y for the compressive axig, for the stretching axis and
tation of these results. In order to improve the physicalx for the layer direction axis. The main difference between
meaning of making statistics on the angles between thedéese two models, apart from the geometry, is the spatial
vectors, we choose to first compute them on a simple exdistribution ofo” andw?. In the layer,0® andw? are mixed
ample whose physical content is well known. This procedurdVhile in the yortex,wz is concentrated in the core and is
has been initiated by Shtilmaet al! who compared the mostly distributed on a tubular region around the core.

alignments obtained in a direct numerical simulation to thosé‘Inked to this property, there is a slight pressure maximum
in the center of the layer, due to the stretching part of the

obtained with its random counterpart having the same ENCT%ow and there is a depression near the core of the vortex, if
spectrum. We thus choose another extreme case which, e Reynolds number is not too small ’

the contrary, corresponds to a strongly structured flow. Since e velocity field depends on three non-independent pa-
the structures embedded in turbulent flows are generally dgzmeters: the maximal vorticity, (e.g., the vorticity at the
scribed as tubes or layers of high vorticity, we choose amongyrigin), the stretchingy= 0} 0] | w?=d,v, which is uni-

the available models describing these structures, the Burgerfsrm, and the size of the core. The link between these pa-
vortex and Burgers’ layét which have the advantage of rameters comes from the dynamics of these solutions. The
being simple analytical solutions of Navier—Stokes equationstretching tends to concentrate the vorticity while the viscos-
and of taking into account the effect of the stretching. Somdty diffuses it. The viscous equilibrium between these pro-
of the properties of the vorticity, the vortex stretching vector,cesses fixes the size of the core which scales on the viscous
the strain rate and the pressure Hessian in these particull?r”gthL:(V/Y)llz- The stretching is constant in space and

flows have already been studied in two previous works. For M€ This can be interpreted as an equilibrium between two
vortex layer, Brachegt al*4 computed the three strain eigen- effects. The stretching is injected at infinity and advected

. . . . towards the center, while the stretching induction tends to
values as functions of the ratio between the local vorticity : ; . L : ;
reduce it. This uniform stretching is the main unphysical

and ghe stretching. In the case of a Burgers layer, Okh'tanbroperty of these models, because the velocity and the pres-
etal. showed that the two smallest elgen_ve_zct(_)rs O_f the pre_zséure do not converge at infinity. A usual trick to escape this
sure Hessian are equal and that the vorticity is aligned W'“?)roblem is to consider that in a large Reynolds number flow
one of them. Furthermore, when the vorticity is larger thanthe stretching part can be neglected. However the stretching

the stretchinge.g., near the center of a strong shear Iyer is negligible neither in the center of the structure nor far from
the remaining principal axis of andII are at an angle of it. Thus, we will not neglect it.

7/ 4 from each other. In the present work, we will complete Using the turnover tim@ = wgl as a characteristic time,
these two studies of Burgers’ models, by computing systemthe Reynolds number is ReL?/vT=wo/y. For conve-
atically the alignments between, w, ¢ and the eigenvalues Nence in the drawing of the figures, we introduce quantities

of o and IT. We will then show that the main dynamical made dimensionless usihgandT and noted with a star. The

properties of these flows can be deduced from these propeg_lmensmnless velocity field for the Burgers’ vortex is

ties of alignment. Our aim is then to give a physical inter- o 1— exq—r*2/4) 7*
pretation of the alignments statistically observed in turbulent v™=| — SRe' 1  'Re , (4)
flows, following the same method of deduction. Since the (r.0.2)
relation between real turbulence and analytical vortices iand for the Burgers’ layer is
quite vague, our interest in computing the alignments in . v x

; : T y y* z
model flows is only to make the physical contents of these ( - \/: erf( ) )
statistical tools clearer. 2

A short presentation of Burgers’ models is made in . - .
short presentation of Burgers’ models is made in Sec For the two Burgers’ models, the axis is a principal

”IA of this artu;le.hs_ecn;)n !l Bl '.S devoted_to the EtUdy of t:el direction of both the pressure Hessidrand the strain tensor
alignments and their physical interpretation in these models, 11q corresponding eigenvalues are, respectively,

Following these simple examples, a new interpretation of the’T'Z: — 32 (7 =—1/R&) ando,= y (¢F =1/Re). By con-
results obtained in real turbulent flows is proposed in Secyention, we can definer, as the largest remaining eigen-
II'C. In Sec. Ill, the problems linked with the classification yalue of IT and _ as the smallest and similarty, as the

of the eigenvalues ofr and those ofll (Sec. Il A) is dis-  largest remainingr eigenvalue and-_ as the smallest. This
cussed and an alternative procedure for these classificatiostassification has a clear physical meaning singceand o,

is suggestedSec. Il B). only depend on the stretching part of the flow. However, the

v =

W ®)

' Re’'Re '
(x.y,2)
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FIG. 2. Profiles of the dimensionless pressure Hessian eigenvalues for a
Re=50 Burgers’ vortex,rs (solid line), 7% (dotted—dashed lineand *
(dashed ling 7% is constant and equal te 1/R€ - «* and * tend to

— 1/4R¢€ at infinity. Note the two crossovers betweeti and =¥ , one near

the core and the other far from it.

(and maximum atthe center: it corresponds to the curvature
around the axis of revolution of this cylindrical surface. Far
from the core, there remains only the stretching part of the
flow so that bothw, and 7w_ converges to— y?/4. The
description in terms ofr,=mw,=m5 is thus slightly more
complicated because, and_ can cross each othefr; is
always equal tor, , but 7, (and 7r3) can be eitherr, or

7_ . Near and far from the core the smallest eigenvatye

FIG. 1. Sketches showing the velocity (solid vectors, the vorticity @ 'S thus equal tor, and 7, |s.equal tor_ . For SUff'C'ently_
(dashed vectojsthe pressure Hessian eigenvectsts 7, andx_ (dotted high Reynolds number vortices, between these two regions,

vectors and the strain rate eigenvectoss, . and o (dotted—dashed 73 becomes equal tor_ (and m, to ). Following the

vectors for a Burgers’ vortexa) and a Burgers' layetb). same approach as used for the pressure Hessian, we now
consider the correspondence between the two classifications
of the eigenvectors of the strain rate. For both the Burgers’

notation which is generally used for turbulent flows is toyortex and the Burgers’ layer, Fig. 3 shows the profile of the

order the eigenvalues dfl and o by increasing values:  ejgenvalues. For the smallest eigenvalue, there is no am-

m=m=my and 0=0,=03. We will thus first describe  piguity: o, is always equal tar_ . In both cases, far from

the correspondence between these two classifications.  the center it only remains the stretching part of the flow: the

For the two Burgers’ modeld]l is already diagonal in  |argest eigenvaluer, is equal too, and the intermediate

the simplest basigssee Fig. 1 In the vortex casesr_ and  eigenvalueo, is equal too, . Elsewhere in the flow, the

., are, respectively, radial and tangential. In the layer casegesult depends both on the model and on the Reynolds num-

m_ and, are aligned with thex andy axis. For the Bur- ber. We reduce the discussion to vortices and layers of large

gers’ layer, the pressure Hessian is rather simple: the eige,quculation. In the Burgers’ vortex, without the stretching
values are constant in space and the largest one Rar, the core is a quasi-solid-body rotation, i.e. without
m =, =0, the two others being equat,= 3= 7,=m_ strain. Thuso; is also equal too, (and o, also equal to

= _»)/2 (W*:_llRé) For the Burgers’ vortex, F|g 2 O'Jr) around the Origin and far from the core. The compo-
shows the profile of the eigenvalues of the pressure Hessiaf€nts due to the vortex or to the layer dominates in the in-
., andw_ are related to the radial variation of the pressure fermediate region, so that in these places the highest eigen-
In the Burgers’ vortex, at a fixez, the value of the pressure Valueoy is o, (and the intermediate; is o).

as a function ofr and ¢ is, near the core, an inverted bell g ajignments in Burgers’ solutions

shaped surfacer, and#_ at a point are linked to the two o .

principal curvatures of this surfacgadially and tangen- _ 1h€ question is now to look at the alignment between
tially). The intersection of this surface with a meridian plane®, W, ¢ and the eigenvalues ef andIl. In both Burgers’

is a bell curve(the generating curyew_ corresponds to its models, the vorticityf) is everywhere aligned with theaxis
curvature: it is maximum and positive at the center and negaand is thus an eigenvector of the pressure Hesdiamd of
tive around it(Fig. 2). On the contraryr, is positive around the strain tensoo. There is thus a strict alignment between

(b)
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FIG. 3. Profiles of the dimensionless strain rate eigenvalues for=a5Re
Burgers’ vortex(a) and for a Re=50 Burgers' layer(b), o3 (solid line),
o (dotted—dashed lineand o* (dashed ling In both modelsg? is con-
stant and equal to 1/Re. In the Burgers’ vorteX, ando* tend to—1/2Re
in 0 and at infinity. In the Burgers’ layeg tends to 0 and™* to —1/Re at
infinity. Note the crossovers betweerf ando} .

the vorticity w, the vortex stretching vecter (W= yw) and

the stretching induction vectaf (J= — y2w).
The case of the eigenvalues @fandIl, as seen in Sec.

1A, is less simple.c3 is aligned either Withz;z or 7;3 and is
orthogonal everywhere ta; . In order to quantify this, we
study the respective probabiliip spaceto havew aligned
with the smallest eigenvector; or the intermediatesr,.

P(®/I7,)

T
0 0,5 1
o

FIG. 4. Probability in spacé’a(cf)//%3) of alignment between the vorticity

o and the smallest pressure Hessian eigenvaiye This probability is
computed for a Burgers’ vortex on the set of points definedbyaw,, for
Re=3 (dotted ling, Re=5 (dashed ling and Re=+« (solid ling). For a
Burgers’ layer(BL) this probability is 1(dotted—dashed line This prob-
ability tends to 1 whernx tends both to Qall the flow) and to 1(near the
core. Note that the complementary to 1 is the probability of alignment with

.

number, the largest probability is to finel aligned withzrs .
However, this probability is not equal to one as we always
found a region far from the center where it is probable to find

o aligned with7,. o is aligned with the largest eigenvector
o, both close to the center and far from it and is aligned with
the intermediate eigenvaluéz in the tubular region in be-
tween. For a Burgers’ IayerZ) is aligned with the interme-
diate eigenvalue;z around the center and aligned with the
largest eigenvector; far from it. In both modelsp is al-
ways perpendicular te;s. As for the pressure Hessian, we
present in Fig. 5 the probability @b being aligned with the

intermediate eigenvecta?z on the set of points defined by
w>awq as a function ofe. In both cases, this probability
tends rapidly towards 1 when the Reynolds number in-
creases. The vorticity is thus mainly aligned with the inter-

mediate eigenvectar,.

C. Interpretation of turbulence results with the help
of the interpretation of Burgers’ models results

Before revisiting the alignments obtained in turbulent

Since the velocity field of these model flows extends to in-flows, it is interesting to notice that the main physical prop-
finity, we limited our average to a region around the centelerties of the Burgers’ vortex and the Burgers’ layer can be
of the structure. We define this region, using the modulus ofjeduced from these alignments. Indeed, they first show that

the vorticity, as the set of points where>aw,. For the

these model flows are structured, in the sense that the vortic-

Burgers’ vortex, this set corresponds to the zone whergy and the strain are strongly correlated. The alignment be-

r* <r*=(—4In(a))¥? and for the Burgers layer to the zone
wherey* <y* =(—2In())"2. When « tends to 1, we just
consider the core. On the contrary, whentends to 0, we

consider all the flow. Figure 4 shows the probability(f»f
being aligned with the smallest eigenvectey as a function

tweenw, w and ¢ reveals that they correspond to regions
where the vorticity stretching and the stretching induction
are important. The vorticity is aligned with one eigenvector
of o and one ofll. The corresponding eigenvalues are thus
linked to the stretching while the remaining eigenvalues are

of a for various Reynolds numbers. For a large Reynoldsnactive and thus almost linked to the shear due to the vor-
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diate value: this property can be interpreted as a mixing of

alignment and orthogonality betweenand ;.  has thus

a strong tendency to be aligned with a strain rate eigenvector
(51 or &2). On the contrary, for an artificial random field,
e.g., where the one point distribution of the velocity is
Gaussiart? there is strictly no correlation between the vor-

ticity and the strain. In this case, all the directionsfin
comparison to the strain rate eigenvectors basis are equally

probable and the pdfs of the angles betweeand &1, 52

and o5 are symmetrical and almost flat. Moreover, Nomura
and Post compared in a NSE simulated turbulence, the av-
erage cosines of the angles between the vorticity and the
three eigenvectors of the pressure Hessian on regions of high
vorticity and for the whole flow. While there is no strong
tendency for alignment in the whole flow, in regions of high

: vorticity, there is a trend for alignment between and

: and for orthogonality between; and .

: Our aim is to propose a physical interpretation of the gap

. between the results obtained in real turbulent flows and for

P(&//G,)

an artificial random field. Indeed, in our opinion, these re-
. sults correspond to a statistical mixing between regions
g / ) where the flow is quasi-random and coherent regions where
/ y; ; o and ¢ are correlated. The alignment betweenand o
’ 4 indicates that the vorticity is driven by the stretching in these
7 3.," coherent regions. v is roughly aligned withe, we can
7 .’ deduce fromw;= o7 o; that  (andw) is close to be an
: eigenvector of the strain. As this eigenvector of the strain is
aligned with @, the corresponding eigenvalue can thus be
0 0,5 1 interpreted as the real stretching appliedcfto On the con-
() « trary, the two other eigenvectofperpendicular taf)) are
almost inactive and thus correspond to “shear” strain eigen-
o and the intermediate strain rate eigenvad?t&e This probability is com- Yalues' .If ”:es.e two “Sh?a.r” EIgenvalues are Iarger'than' the
puted on the set of points defined by> aw,, for a Burgers’ vortexa) for stretchlng elgenvalue(lt is the case when the vo_rt_|C|ty_ 1S
Re=12.5 (dotted ling, Re=25 (dashed ling Re=50 (dotted—dashed line  large compared to the stretchingthen the vorticity is

and Re=500(solid line) and for a Burgers’ layefb) for Re=3 (dotted ling, aIigned With(;z. The important point is thus more the a”gn_
Re=5 (dashed ling and Re=10 (dotted—dashed lineand Re=50 (solid S . . -
line). This probability tends to 1 everywhere, except in 0 for both modelsment of w with one of the strain eigenvectors than having

and in 1 for the Burgers’ vortex. Note that the complementary to 1 is thethis alignment witho, rather thano, or o5. The alignment

probability of alignment witho, . of » with the smallest absolute eigenvalue of betandI1
may in fact be interpreted as small variations along the vor-
ticity direction and as the signature of the local quasi-

ticity concentration. Finally, the “stretching” eigenvalues bjidimensionality of the flow.

are small compared to the “shear” ones, indicating a local  There is not enough available information on the pres-

quasi-bidimensionality. sure Hessian to give a similar interpretation. However, we

We can now turn to the alignments statistically observedyill give in Sec. Il B some predictions on its behavior

experimentally” and numerically***? in turbulent flows. which are coherent with the existing measurements but

Let us first summarise these results. It is found both in reajvhich should be checked in numerical and laboratory experi-

and simulated flow§'*! that the vortex stretching vectov ~ ments.

and the vorticityaj have a strong tendency for alignmétite

probability density distribution(pdf) of the cosine of the Ill. FOR' A NEW CLASSIFICATION OF STRAIN RATE

angle betweemw andw has a strong maximum for the value AND PRESSURE HESSIAN EIGENVALUES

1). The vorticity also exhibits a strong tendency for align- A. Problems

ment with o2, gnd 02 is most often positivé!° Further- The physical interpretation of the alignments between

more, the vorticity exhibits a strong tendency for orthogonale yorticity and the eigenvectors of the pressure Hessian and
ity to o3 and there is almost no correlation at first sightthe strain tensor gives some feedback for the construction of
betweenw and 51. This last pdf has a slight double well these tools. We found that some problems arise from the
shape(a cosine of 0 or 1 is more probable than an interme-classification of the eigenvalues by order: there can be a

P, (5//5,)
N\

FIG. 5. Probability in spacé’(,(i)/l&z) of alignment between the vorticity
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crossover between two eigenvalues with different physical 1/4
meanings. For instance in the Burgers’ mod&se Sec.

Il B), there are crossovers between and o; and between

73 and m, for large Reynolds numbers. This type of eigen-

value ordering can have even more disastrous consequences.

Let us consider for instance the pressure Hessian terms ex-
pressed in the strain rate eigenvectors bXsi§e express the

pressure Hessian in theorthonormal basisd¢;,c,,03):
11 T12 T3

m=| ™12 T22 723 ) (6)

0

T13 723 T33 /Rz
-1/Re

(0'1'0'2,0'3)

I
These pressure Hessian terms can be expressed as func- 0 2

tions of the eigenvectors and eigenvaluesibfind o. We

;h#s arl]so ConSICE)er thél k:)lrthonor?:al baSIS 7_(-1’77-?’:3)'_ FIG. 6. Profiles of the dimensionless pressure Hessian terms expressed in
en there may be a problem on the orientation of the eigeny, g in rate basiso( ,0,,03) for a Re=50 Burgers’ vortex:r?; (solid

vectors. Take for examplery, for the diagonal terms and jine), x, (dashed ling =}; (dotted—dashed lin@nd %, (doted ling. Note
71, for the non-diagonal oneg&he others are obtained by the discontinuity of this curves at the radius where the strain eigenvalues

replacing, respectively, the indexes cross over.
m11=(01.70) 2T+ (01.75) 2o+ (01.m9) w3, (7)
0= 1= (01. 1) (0. 7)1+ (01 7) (0. 75) 73 Il B. We thus propose an alternative classification of the ei-
.. L genvalues which is the equivalent for turbulent flows. The
+(01.73)(02.73) 3. (8)  construction will be explained in the case of the strain basis

The diagonal termsmyy, my,, s are defined in a but can sim'ilarly be applie_d to the pressure Hessian one.
univocal way. On the other hand, the signs of the non-  Our main assumption is t_rlat the vor'F|C|ty locally orien-
diagonal terms depend on the construction of the basitates the space. We thus defimgas the eigenvector which
(‘;115'2#;3) [but not on (7;'1,7;'2,7;3)]. There are in fact mMakes the smallest angle with the vortici®y;, o, as the
eight possibilities for defining the strain eigenvectors basislargest remaining eigenvector amd. as the smallest. To
depending on the directions chosen for these eigenvectorerientate the basis, we can choose the cosine of the angle
(*01,%0,,%a3). If the direction of the basis vectors are betweens, and  positive. We have seen in the previous
arbitrarily chosen, the average over a homogeneous turbuleparagraph that the orientation of the whole base can be im-
flow of the non-diagonal terms should be zero. Indepenportant, so we propose to construct by convention
dently of the classificgtion chosen, a univocal construction ot&f oy ,(}Z) as a direct basis. With this convention, the
the eigenvectors basis must be chosen. o range of the cosine of the angle betweenand o, is

In order to investigate the impact of the classification by > > > > .

) ) : : [1/y/3, 1] and betweenw and o, or » and o_ will be
order, we return to the Burgers’ vortex: the radial profile of . .
) ) é—ll\/i, 1//2]. The natural point of comparison to study
the pressure Hessian terms, expressed in the ba e ali : X )
the alignment in a real flow is the case of a random field

(01,02,03),_are plotted in F'g‘ 6. The profiles of these termswherecf) and o are perfectly decoupled. The pdf of the co-
are not continuous at the point whesg and oy cross each T - -
sine of the angle between the vorticidyando,, or w and

other: there is an inversion between, and 75, and be-

tweenyz and,; (3 falls to zero after the crossing point o in this case, is plotted in Fig. 7. By construction, these

More generally, with the classification by order, the eigen-pdfs are not flat anymores tends to align withr, and to be

values are continuous in space and time even at some crossithogonal to&+ ando_ . In the case of the Burgers’ mod-

ing point, but not the eigenvectors. This evidently reacts ony|s, these pdfs are a Dirac distribution in 1 forand a Dirac

all the statistics based on the eigenvectors. distribution in 0 foro, ando_ . By construction, there will
also be a correlation between the alignmentodnd o, and

B. Alternative classification of the eigenvalues the alignment ofw andw since

It is thus better, in order to do statistics, to find a crite-
rion of classification of the eigenvalues with a constant w=o,(c,.0)0,+0.(0s.0)0,+0_(0_.0)o. (9)
physical meaning. The case of the Burgers’ models is rather
simple because the vorticity is an eigenvector of both the e advantage of this classification is to solve the prob-
strain rate and the pressure Hessian (v and ¢ are thus  |ems of spatial discontinuity and of physical meaning in the

strictly aligned. The o and IT physical bases are in these coherent regions, where the statistics of alignment are non-
cases §_,o0,,0,) and (m_,w,,m,) as defined in Sec. random. These problems are thus pushed back to quasi-inco-
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3] — have been computed in Burgers’ models, in order to investi-
gate the physical meaning of such statistics. We showed that
a1 | i=z it is possible to deduce their physical nature from these prop-
erties of alignment. Following the same method, we have
proposed a new interpretation of the alignments observed in
turbulent flows. The gap between the results obtained in real
flows and those obtained in an artificial random flow is a
proof of the local coherence of the former. So, we assumed
that this difference is concentrated in the coherent regions. In

3/4- g _i_=i _____ those regions, the vorticity tends to align with the vortex
/ i=- stretching vectow and the “stretching” eigenvalue of the

! \ strain (;Z, and to be perpendicular to two “shear” eigenvec-
tors of the straing_ and o, . o, and 7,, the pressure

Hessian eigenvalue aligned with, are small, indicating a
local quasi-bidimensionality. This interpretation of turbu-
FIG. 7. Probability density distributions of the cosine of the angle betweenler:;:e riswt;mdl&ced .a test Ifor _the u$ua|dC|€;\]SS|flﬁat|0n by
the vorticitya? and the eigenvectors of the strain tensi;r (solid line), Or_ er O the an o elge_n\_/a l:|7e_S. We_ O_un t fat there 1s,
o, andg_ (dashed lingfor a random Gaussian field, using the convention W'th_ this ?Onvemlon' a mixing _m statistics of e_|genvalues
cose " 5)>|cos " )|, cose ? 5)>cose )| ande, > o . having different physical meanings. We thus introduced a
new and safer classification of the eigenvalues,
(0_,0.,0,) and (w_,m . ,m,), which is based on the
alignments with the vorticity. We finally made some predic-
herent regions where there is no strong tendency for alignions for the alignments which have not yet been computed:

ment but where the statistics should be comparable to thod8€re should be, in some coherent regions of turbulent flows,
obtained for a random field. a strong tendency for alignment between w, «, o, and

This new classification of the strain and the pressurer,. If this was verified in further numerical simulations, the
Hessian eigenvalues, strongly linked to the physical interpremain problem would be to explain the mechanisms which
tation proposed in Sec. Il C, should be validated by furthelead to these alignments.
studies. In particular, we can make some predictions on the
alignments which have not been measured yet. Indeed, there
should be a strong tendency for alignment between the vVolaCKNOWLEDGMENTS
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