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Presented here are two results concerning the interaction between vorticity and
strain. Both are obtained experimentally by investigating the hyperbolic flow created
in Taylor’s four-roll mill. It is first shown that this pure straining flow becomes
intrinsically unstable through a supercritical bifurcation to form an array of counter-
rotating vortices aligned in the stretching direction. The dimensionless parameter
characterizing the flow is the internal Reynolds number Re = γ∆2/ν based on the
velocity gradient γ and on the gap between the rollers ∆, and the threshold value
is Rec = 17. Near the threshold, the transverse velocity profiles of these vortices are
in excellent agreement with those predicted by the theory of Kerr & Dold (1994) in
the case of an infinite hyperbolic flow. A second result is obtained at high Reynolds
number. Measurements of the velocity profile in the direction parallel to the vortices
show that the velocity gradient (the stretching) is systematically weaker inside the
vortices than elsewhere. This demonstrates experimentally the existence of a negative
feedback of rotation on stretching. This effect is ascribed to the two-dimensionalization
due to the vortex fast rotation. An implication of these results for turbulent flows is
a nonlinear limitation of the vorticity stretching, an effect characterized recently by
Ohkitani 1998.

1. Introduction
The dynamics of three-dimensional turbulent flows is dominated by the interaction

between strain and vorticity (Taylor 1938). Here we investigate this interaction in
a model system, Taylor’s four-roll mill experiment (Taylor 1934), which generates a
strain-dominated hyperbolic flow.

The simplest example of a stagnation point flow belongs to the class of the two-
dimensional linear flows having a velocity field of the form

vx = γx+ Ωy, vy = −Ωx− γy. (1.1)

In the limit Ω = 0, the flow is irrotational with hyperbolic streamlines (figure 1).
Whereas many works have been devoted to the study of rotating flows (where locally
γ � Ω) and shear layers (where locally γ ' Ω), stretching flows (Ω ' 0) have received
relatively less attention from experimentalists, essentially because they are difficult to
generate and control.

The different investigations of the stability of three-dimensional stagnation point
flows can be classified into two distinct categories. Most works (see for instance
Criminale, Jackon & Lasseigne 1994 and references therein) are devoted to the
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Figure 1. The flow near an ideal stagnation line and the axes of reference used in this work.

problem of stagnation points located at boundaries. Others deal with the stability of
free stagnation lines located in the bulk of a fluid, the problem we are concerned with
in the present article.

The stability of such flows was investigated by several groups motivated by two
very different contexts. At very low values of the Reynolds number a hyperbolic
flow can be used to study e.g. the deformation of viscous drops subjected to a pure
strain. This was first carried out by G. I. Taylor in 1934. He showed that an excellent
approximation of a hyperbolic flow was obtained in the space located between four
counter-rotating cylinders, a geometry now called Taylor’s four-roll mill experiment.
This type of device has been used in various instances where a pure extensional flow
was needed. Such was the case for instance in the investigation of viscoelastic fluids
or in the study of the change of macromolecule conformation (Fuller et al. 1980;
Bentley & Leal 1986; Dunlap & Leal 1987). For the practical use of such devices it
is important to know in which domain of velocity the two-dimensional flow exists. A
linear stability analysis was achieved by Lagnado, Phan Thien & Leal (1984). In the
case of the pure extensional flow they concluded that the flow was unconditionally
unstable. For each flow strength they found a lower limit to the wavelength of
the unstable modes. This was in agreement with an earlier theoretical work on the
stability of colliding flows by Aryshev, Golovin & Ershin (1982) and also with results
obtained in the rapid distortion theory (Townsend 1976; Leblanc & Godeferd 1999).
Recently Kerr & Dold (1994) revisited this problem and showed that taking into
account the nonlinear terms there exist steady states which are exact (although non-
analytical) solutions of the Navier–Stokes equations. They are characterized by a
series of alternate vortices aligned in the extensional direction x of the flow.

Other studies were performed in the context of mixing layers. In this type of flow,
primary two-dimensional eddies are generated by the Kelvin–Helmholtz instability.
Each of them is separated from its neighbours by stagnation lines around which
secondary streamwise vortices appear. Lin & Corcos (1984) and Neu (1984) showed
that the primary vortices were subjected to a three-dimensional destabilization which
generated a small amount of streamwise vorticity. This vorticity, amplified by the
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stretching in the stagnation regions, rolls up into periodic streamwise alternate vortices.
This situation has been simulated experimentally by the flow between two rollers, and
has been captured on video by P. Carlotti, S. Obled & H. K. Moffatt (1998, personal
communication).

Our interest in hyperbolic flows is due to yet another reason. It is related to
the interaction between stretching and rotation in fully developed turbulence and
in particular to the relation between pressure fluctuations and coherent structures.
Though they may appear remote from the problem at hand it is worth summarizing
briefly some results in this field.

The local structure of a turbulent flow can be characterized by the spatial distri-
bution of strain tensor σij = (∂ivj + ∂jvi)/2 and vorticity ω = ∇× v. The evolution in
time of the vorticity ωi is governed by the equation

∂tωi + vj∂jωi = σijωj + ν∂j∂jωi (1.2)

where ν is the kinematic viscosity. The term σijωi means that vorticity is amplified by
a longitudinal stretching, corresponding to the conservation of angular momentum.
This phenomenon, which is thought to dominate the dynamics of 3D turbulence, is
not yet well described in terms of elementary processes. The situation is complicated
because the strain tensor obeys an even more complex equation of evolution (Ohkitani
& Kishiba 1995). It is not only advected and damped by viscosity but also evolves
under the complicated effects of vorticity, strain and pressure. The equation governing
its evolution is

∂tσij + vj∂jσij = 1
4
(ωkωkδij − ωiωj)− σikσkj − ∂ijp+ ν∂j∂jσij . (1.3)

It is crucial to note that (1.3) is a non-local equation since pressure depends on the
whole flow (in particular on boundary conditions) through the Poisson law

∆p = 1
2
ωiωi − σijσij . (1.4)

In reverse, relation (1.4) means that pressure measurements can be used to inves-
tigate the spatial distribution of vorticity and strain. The existence of low-pressure
filaments in turbulent flows was demonstrated experimentally by Douady, Coudet &
Brachet (1991). They correspond to rotating regions in which the vorticity is concen-
trated in a thin core while the strain is spread at the periphery, as in a Burgers vortex
(Burgers 1940). Correspondingly the fluctuations of pressure at one point were inves-
tigated by Fauve, Laroche & Castaing (1993) and Cadot, Doudy & Couder (1995).
Generally in these experiments as well as in previous numerical simulations (Brachet
1991; Métais & Lesieur 1992) the probability distribution function of pressure ex-
hibits a strong asymmetry with a long exponential tail towards the low pressures and
a shorter Gaussian tail towards the high pressures. The low-pressure troughs are the
signature of filaments passing the probe. The absence of corresponding high-pressure
peaks is a clue pointing to the absence of organized high strain regions.

Numerical simulations permit direct observation of the structures present in turbu-
lent flows. Since the initial work by Siggia (1981) a specific effort has been devoted
to the detection of vortices in simulations of increasing spatial resolution (Jimenez
et al. 1993; Jeong & Hussain 1995; Kida & Miura 1998). More generally the spatial
distribution of enstrophy ω2 = ωiωi and strain modulus σ2 = 2σijσij were investigated
by Tanaka & Kida (1993); Jimenez et al. (1993); Tsinober et al. (1997); Tsinober
(1998); Nomura & Post (1999). The joined probability density functions show that
there exist regions in which the vorticity is large and the strain small. When these
regions are singled out, they appear in the form of filaments. Similarly the regions
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where both ω2 and σ2 are large are observed to be in the shape of sheets. Finally, the
regions of large σ2 and small ω2 are far less probable and have no specific spatial
structure.

The first question that motivated the present work is thus: why are there no
organized regions of high strain and weak vorticity, i.e. no high-pressure structures?
The observations in the mixing layers suggest that this is linked with the instability
of hyperbolic regions. In between the main eddies there are stagnation lines which
should be high-pressure regions. Instead it is well known that this is the locus of
formation of secondary streamwise vortices. As observed by Douady et al. (1991),
these streamwise vortices are low-pressure filaments. The paradox is that where high
pressure is expected, low-pressure filaments form.

The second question is related to the enhancement of vorticity by stretching. Does
it occur mainly in strain-dominated regions or in organized vortices? In a preliminary
work (Andreotti, Doudy & Couder 1997) we showed, using two distinct experiments,
that the vorticity stretching occurs mostly before the vortices are formed but that
the stretching decreases after their formation. This effect was ascribed by Andreotti
et al. (1997) to the two-dimensionalization of the flow near the core of rapidly
rotating vortices, an effect which results in a reduction of the longitudinal velocity
gradient (Andreotti 1999). This observation is likely to be correlated with the results
obtained on the statistics of enstrophy production in turbulent flows. From various
conditional averaging Tsinober, Ortenberg & Shtillman (1999) have demonstrated
that the enstrophy production is much larger in the regions dominated by strain than
in those dominated by enstrophy.

For all these reasons we wanted to do a direct experimental investigation of the
stability of a pure strain flow in a model experiment and to observe the dynamics
of both stretching and vorticity in such regions. First aiming to obtain a well-
controlled hyperbolic flow we were brought back to Taylor’s (1938) four-roll mill
experiment. There is, to our knowledge, only one previous experimental investigation
of the stability in this geometrical configuration, by Lagnado & Leal (1990). They
found, over a certain threshold, the formation of vortices aligned in the stretching
direction. But in their experiment this array was limited to two vortices located
near the extremities of the cylinders with one single recirculation vortex in between.
This led them to conclude: ‘the vortices are primarily an end effect and a column
of alternate vortices does not appear throughout the entire vertical extent at larger
aspect ratio. . . ’. Our experiments, done in a different geometry, lead to a different
conclusion.

The first part of this article deals with the instability of a hyperbolic flow at low
Reynolds numbers. After a description of the experimental apparatus, we will discuss
the two-dimensional stagnation point flow obtained at very low Reynolds numbers
and describe its destabilization and the formation of a row of counter-rotating vortices
aligned in the stretching direction.

In the second part, we investigate the interaction between stretching and rotation
in the same experiment but at high Reynolds numbers. We will present evidence
that there is a negative feedback of the rotation of the vortices on the stretching to
which they are submitted. As a conclusion, the consequences of such a mechanism
for turbulent flows will be discussed.

2. Experimental set-up
The design of a cell in which the flow has a pure strain field appears, at first sight,

to be impossible. Indeed, integrating the Poisson equation (1.4), we obtain the equality
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Figure 2. (a) Sketch of the experimental Taylor’s four-roller mill. Two details can be seen. The
cylinders are terminated by circular end plates which reduce the recirculation in this region. Four
wedges are glued onto the outer boundary and reduce the minimum distance between the rollers
and the cell wall to d. They avoid the formation of Taylor–Couette rollers between the cylinders
and the outer walls. (b) Transverse section of the experimental set-up.

of enstrophy and strain, on the average:

〈ω2〉 = 〈σ2〉. (2.1)

In fact, as was pointed out by Raynal (1996) this relation does not necessarily hold in
a closed cell having moving boundaries. This is precisely the case in the four-rollers
geometry.

The core of the experiment is composed of four cylinders having parallel axes and
placed at the corners of a square (figure 2). The two cylinders placed on one diagonal
rotate at one velocity, the two others at a second velocity. As is well known, all the
linear flows of the form (1.1) can be obtained in the central region of this apparatus
when the fluid is very viscous and the rotation speed small. When the velocities of
the cylinders are opposite, the flow is very close to the ideal hyperbolic flow:

vx = γx, vy = −γy. (2.2)

In the outer region of the cell, bounded by the container’s wall, most of the flow
corresponds to four halves of hyperbolic flows. Thus, globally in the whole cell the
flow at low velocities is dominated by pure strain. The reason why it does not
contradict equation (2.1) is that the motion of the cylinders has to be taken into
account in the balance between strain and enstrophy. In these cells the vorticity could
be said to be frozen inside the rotating cylinders while the strain is in the flow.

In practice, the radius R of the rollers and the gap ∆ between them can be chosen
at will in order to obtain the best approximation of a hyperbolic flow. The distance
(R + r) of the rollers axis to the centre of the cell (figure 3) is given by

(R + r)2 = 2(R + ∆/2)2. (2.3)

The hyperbola tangent to the rollers (figure 3) has a radius of curvature r. If R
was chosen equal to r the hyperbola and the circle would have the same radius
of curvature at the point of tangency. Instead, we chose empirically a value of r
(r = 29 mm) slightly smaller than R (R = 35 mm). For these values the two curves
(the circle and the hyperbola) remain close to each other in a larger region (figure 3).
The minimum distance between two adjacent cylinders is thus ∆ = 21 mm. The four
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Figure 3. Scheme of the geometrical constraints leading to the choice of R and ∆. The radius of
curvature r of the hyperbola tangent to a roller has to be slightly smaller than R.

cylinders have a length h = 190 mm so that the aspect ratio of the gap separating
them is h/∆ ' 9.

Preliminary experiments demonstrated that the main problem of the set-up for a
stability study was to obtain a situation in which the inner flow was not disturbed by
inhomogeneities due to the structure of the flow in the outer region of the cell. These
structures are determined by the geometry of the space between the four rollers and
the container. The tank can be either square or circular in section. It can also be
either large compared to the central region or not. We performed several preliminary
experiments using Kalleiroscope to observe the structure of the flow in the whole
cell. We first eliminated the use of square containers as complex recirculations are
created in their corners. However, with cylindrical containers the situation is still
complex. At two locations the fluid expelled from the central region impinges on the
outer wall while it is pumped back into the central region at two other locations
(figure 2). Each of these four regions is half of a hyperbolic flow. They are separated
from each other by regions where the fluid is located between the rotating cylinder
and the external boundary. In these latter regions, the flow can be submitted to a
centrifugal instability. If the gap is wide, direct observation shows the formation of
Couette–Taylor-like structures in the shape of superposed sectors of tori with alternate
directions of rotations. The larger the gap between the rollers and the container the
lower the velocity at which these structures form. In the central region, the flow is
then complex with visible arrays of tori around each of the four rollers. A natural
solution to avoid this problem is to reduce the gap between the rollers and the outer
wall so as to increase the velocity for which the centrifugal instability will appear.
However if the four rollers are confined in too narrow a cylinder there is a drastic
reduction of the flux of fluid which is necessary both as the output and the input of
the hyperbolic inner flow. In such situations the flow in the central region consists of
complex recirculations and is no longer hyperbolic.

For these reasons we chose an intermediate configuration with a narrow container
120 mm in radius, only leaving a minimum gap of 21 mm between the cylinders and
the wall. Four protruding wedges parallel to the cylinders were glued onto the cell
wall in order to reduce locally by 2 (table 1) the minimum gap d between the cylinders
and the wall (figure 2). The formation of Couette structures in this region was thus
inhibited. This was systematically checked by direct visualizations in the range of
velocities of interest. In this configuration, below the instability threshold, the inner
flow is an excellent approximation of a hyperbolic flow. We note however that the
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Fluid ν (cm2 s−1) ρ (g cm−3) R (mm) ∆ (mm) d (mm) Anemometer Rec

Glycerol 0.956 1.24 35 21 15 DOP 18.8
Glycerol solution 0.154 1.24 35 21 10 PIV 15.8
Water 0.01 1 35 21 15 DOP

Table 1. Characteristics of our experiments. Three viscosities ν have been used. The geometrical
parameters (the rollers radius R and the gap ∆ between them) are kept constant and the minimum
distance d between the rollers and the external boundary is varied.

reduction of the outer gap results in a reduced stirring efficiency of the rollers, as will
be discussed below.

The length of the four rollers was only 5 mm shorter than that of the container.
When the rollers are simple cylinders, we observe, as Lagnado & Leal (1990) before
us, the formation of intense toroidal circulations at their extremities. This derives
from an Eckman effect. Its rotation being slowed down by the friction on the wall,
the fluid moves inwards at the extremity of a roller. In order to reduce these end
effects, thin disks of (larger) radius R + ∆/2 = 45 mm were added at the ends of the
cylinders (figure 2 and figure 3). The end effect is then reversed and considerably
reduced in intensity.

Three fluids were used in these experiments: a concentrated glycerol solution, a
diluted one and pure water (table 1). A visual observation of the flow could be
done using Kalleiroscope. For measurements of the velocity fields the fluid contained
neutrally buoyant particles of small size (100 µm). We videotaped cross-sections of the
flow lit with a planar laser beam. These images were then used in several ways. Images
of streaks were obtained by integrating the video images during 0.4 s (20 frames). It
was also possible to reconstruct the velocity field using the particle image velocimeter
described in Cardoso, Marteau & Tabeling (1994), which uses image intercorrelation.

We also used an ultrasonic Doppler anemometer (DOP 1000 constructed by Signal
Processing Co.) to measure various velocity profiles. This apparatus emits ultrasonic
pulses of frequency 4 MHz and the Doppler shift of the signal retrodiffused by the
passive particles gives the longitudinal component of the velocity at 114 equidistant
points located along the ultrasonic beam. An ‘instantaneous’ profile results from the
averaging of several consecutive pulses separated by a time interval of the order of
50 ms. The width of the ultrasonic beam is of the order of 2 mm and limits the spatial
resolution of this technique. It is worth noting that the two anemometers (DOP and
PIV) have their maximal resolution in different velocity ranges (around 100 mm s−1

and 10 mm s−1 respectively). We thus used the PIV method in the diluted glycerol
solution and the Doppler anemometer in water and in concentrated glycerol (see
table 1).

3. The instability of the hyperbolic flow: experimental results
3.1. The basic hyperbolic flow

Observation of the central region of the cell at low Reynolds number shows that a
good approximation of a hyperbolic flow is obtained. The velocity profile vx(x) along
the stretching axis x is approximately linear in the central region, the maximum being
achieved between the rollers (figure 4). The shape of the velocity profile does not
change much as the rollers frequency F increases and its amplitude is found to vary
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Figure 4. Rescaled velocity profile along the extensional axis x for various frequencies
between F = 0.5 s−1 and F = 3 s−1, for the glycerol.
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Figure 5. The stretching coefficient γ as a function of the roller frequency F ,
the working fluid being the glycerol.

proportionally to the cylinder frequency F . In particular the velocity gradient in the
central region scales as F:

∂vx

∂x
= γ = kF. (3.1)

The coefficients of proportionality in our experiments were k = 1.4 for the diluted
glycerol solution and k = 2.7 for the concentrated one (figure 5). These values are
approximately respectively a quarter and a half of that (k = 5.1) found by Taylor
(1934). This difference is due to the fact that the efficiency of the rollers in setting
the fluid into motion is a function of the geometry of the whole cell. In Taylor’s
experiment the four rollers are surrounded by a large tank. In ours the flow is forced
through narrow gaps d (see table 1) between the rollers and the walls of the container,
a hindrance to the stirring efficiency.

We will need a parameter to describe both the hyperbolic flow and its confinement.
Because of the variation of the stirring efficiency we cannot use directly the frequency
of the cylinders to describe the physical situation. In a different tank (e.g. for a
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Figure 6. Images of cross-sections of the flow in the plane (yOz) perpendicular to the stretching, for
the diluted glycerol solution. For each frequency, the whole field is shown on the left (visualization
using Kalleiroscope) and a close-up view is shown on the right (visualization with spherical particles,
integrating the video images for 0.4 s). (a) The hyperbolic flow at F = 0.3 Hz (or Re = 8.7) well
below the instability. (b) The flow at F = 0.55 Hz (or Re = 15.9) immediately above the threshold.
(c) The flow at F = 0.66 Hz (or Re = 19.1) with a periodic array of alternate vortices.

different parameter d) the same velocities of the cylinders produce a different flow.
The best parameter to describe the actual hyperbolic flow is thus the measured fluid
velocity gradient γ as given by equation (3.1). In particular, all the velocity profiles
along the extensional axis x collapse once rescaled using γ (figure 4). The flow being,
in the central region, geometrically bounded by the rollers themselves we will choose
as the typical length scale the gap ∆ between them. From these two quantities we
form a Reynolds number:

Re =
γ∆2

ν
. (3.2)

With this definition we find that below a critical value Rec the flow is stable (figure 6a).

3.2. Instability threshold

At the critical Reynolds number Rec ' 17, the central vertical line which separates
the two colliding jets destabilizes into a sinusoid (figure 6b). For a slightly larger
value the formation of an array of steady alternate vortices is observed (figure 6c). It
is important to note that in this velocity range no other structure is observed in the
cell. More specifically no tori due to a centrifugal instability exist near the cylinders.
The observed instability affects the core of the hyperbolic flow. For this reason we
are confident that the instability observed here is an intrinsic characteristic of the
hyperbolic region, even though the visual evidence may appear insufficient to rule out
completely any centrifugal effect. The distance separating two successive vortices in the
vertical direction is of the order of the gap ∆ between the cylinders. At approximately
Re ' 45 the vortices become chaotic. Well-defined vortices are observed in the whole
range of Reynolds numbers explored (up to 3000). It is worth noting that an internal
Reynolds number of 3000 (in water) corresponds to a Reynolds number based on
the rollers velocity and radius of 105.



160 B. Andreotti, S. Douady and Y. Couder

Just above threshold the velocity field can be decomposed into the sum of two
fields: one, vϕ, corresponding to the stretching part of the flow, the second, vψ , to the
array of vortices. Using the cut through the flow by the laser plane, we were able to
investigate the flow in several parallel planes x = cst. It turns out that the vortices
are mainly two-dimensional (invariant along x) at least in the central region. The
vortical part in the plane yOz can thus be associated with a streamfunction ψ. The
rest of the flow is associated to the colliding jets and corresponds to pure deformation
without vorticity. It can thus be associated with a potential ϕ. Globally the velocity
field in the central plane perpendicular to the stretching direction x is written as
v = vψ + vϕ:

vy = ∂zψ + ∂yϕ, vz = −∂yψ + ∂zϕ. (3.3)

It should be noted that the vx velocity component around the central plane
x = 0 is approximately equal to −∆ϕx. Well below the threshold the flow is purely
hyperbolic and corresponds to a constant streamfunction ψ and to a quadratic
potential ϕ = −γy2/2. In the more general case the main problem is that different
sets of functions ψ and ϕ can be chosen corresponding to the same physical flow.
Usually the particular choice of ψ and ϕ is imposed by the boundary conditions.
Here this would be arbitrary. We thus selected the decomposition which minimizes the
difference between the stretching part of the flow and a pure hyperbolic flow (between
ϕ and −γy2/2). The interested reader will find the details of the decomposition method
in the Appendix.

Four velocity fields are analysed in this way in figures 7 and 8. Well below
the threshold (figure 7a) there is only a stretching component and no vorticity.
Immediately below the threshold weak vortical regions appear near the extremity
of the cylinders (figure 7b). Immediately above the threshold the main characteristic
of the flow is the sinusoidal deformation of the convergence line. The decomposition of
the field reveals the presence of an array of small-amplitude counter-rotating vortices
(figure 8a). Finally, well above the threshold (figure 8b) the vortical component
dominates the flow. The contours of iso-value of the streamfunction show that the
vortices are elliptical, the large axis along y being approximately twice as long as
the short one. The stretching field is no longer constant in the spanwise direction,
particularly near the vortex cores.

In order to characterize the bifurcation we can use as the order parameter the
maximum ψM of the streamfunction as a function of the Reynolds number. Its
evolution (figure 9) is that of a supercritical transition. Above the threshold ψM varies
as (Re − Rec)1/2. The bifurcation, however, appears imperfect as ψM starts growing
below the threshold. This is due to the finite-amplitude perturbation created by the
end effects.

We measured the critical value of the stretching using two methods, PIV anemom-
etry and ultrasonic Doppler anemometry for the two different viscosities (see table 1)
and with different configurations of the external wedges (and thus a factor of 2
in the efficiency of stirring). The critical Reynolds number Rec is around 15.8 for
the glycerol with a small gap d. It is around 18.8 for the less viscous solution and
the larger gap d. In both cases, the threshold in frequency F is well defined: the
difference between the two values of Rec comes from the error on the velocity gra-
dient and on the viscosity, and perhaps from a small geometrical effect coming from
the wedges (actually from d). It is worth noting that the critical Reynolds numbers
based on the roller frequency F are far from each other, being respectively 15.4
and 7.3.



An experiment on two aspects of the interaction between strain and vorticity 161

1 cm s–1(a)

z

y

1 cm s–1(b)

v vã vu

Figure 7. The velocity field in the plane x = 0 for two rotation frequencies below the instability
threshold: (a) F = 0.25 Hz (Re = 7.2); (b) F = 0.50 Hz (Re = 14.5). In each case the actual velocity
field v is given on the left. It is decomposed into a two-dimensional vortical component vψ (centre)
and in an irrotational stretching part (right) vϕ.

4. The instability of the hyperbolic flow: theoretical aspects
4.1. Linear stability analysis

The linear stability analysis of the idealized hyperbolic flow (2.2) shows that it is
always unstable. Several variants of this analysis can be found in Aryshev et al.
(1982); Lagnado et al. (1984); Craik & Criminale (1986) (who use the growth of
Fourier modes), Leblanc & Godeferd (1999) (who use the rapid distortions theory),
Lin & Corcos (1984), Neu (1984) and Criminale et al. (1994). Basically the instability
is due to the amplification by stretching of vortical disturbances. This is particularly
easy to see at the stagnation point where the velocity is null so that the equation
governing the vorticity reduces to

∂tωx = γωx, ∂tωy = −γωy, ∂tωz = 0. (4.1)
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Figure 8. As figure 8 but for two rotation frequencies located above the threshold: (a) F = 0.55 Hz
(Re = 15.9); (b) F = 0.65 Hz (Re = 19.1). The streamlines (iso ψ) are shown on the right.

Of particular interest for comparison with the experimental results is the work
of Kerr & Dold (1994) who obtained by semi-analytical means a family of exact
stationary solutions. They correspond to a periodic array of counter-rotating vortices
aligned in the stretching direction x. The class of solution has two free parameters:
the amplitude ω0 and the wavenumber k of the fundamental mode. This calculation
demonstrates that the nonlinearities do not change the flow fundamentally: the
solutions of the linearized problem are very close to being exact solutions of the full
Navier–Stokes equation. It should be understood that neither the amplitude nor the
wavelength are selected by nonlinearities: they only induce the growth of harmonics.

For this reason we will limit ourselves here to the solutions of the linearized
equations, emphasizing the parameters relevant for comparison with the experimental
results. We also propose an explicit solution of the equation, which had not been given
by the previous authors. The interested reader should consult Kerr & Dold’s (1994)



An experiment on two aspects of the interaction between strain and vorticity 163

1

0

ãM (cm2 s–1)
2

3

4

F (s–1)

0.45 0.50 0.55 0.60 0.65 0.700.40

Figure 9. The instability threshold. The evolution of an order parameter (the maximum ψM of the
streamfunction) as a function of the control parameter, the rotation frequency of the rollers.

article for the nonlinear analysis of the problem and the asymptotic development of
the solutions.

4.2. Explicit solution of the linearized problem

The unstable modes are invariants along x and can be written using a streamfunc-
tion ψ:

vx = γx, vy = −γy + ∂zψ, vz = −∂yψ. (4.2)

Neglecting the advection generated by the disturbances themselves the equation for
the x-component of the vorticity is

∂tωx = γ∂x(xωx) + ν∆ωx. (4.3)

Since there is no advection of the vorticity along the z-axis the disturbance can be
developed in Fourier modes along this direction:

ωx = ω0f
(y
`

)
cos(kz) (4.4)

with f(0) = 1 and f′′(0) = −1.
As in the experiment the disturbance is thus a periodic array of counter-rotating

vortices aligned along x, the stretching direction; ω0 is the vorticity at the core of
the vortices, k the wavenumber in the z-direction and ` the vortex typical size in the
direction of the compression y. The vorticity is the opposite of the streamfunction’s
Laplacian. We can write:

ψ = `2ω0g
(y
`

)
cos(kz) (4.5)

with g′′ − (k`)2g = −f. While g is defined up to a hyperbolic cosine it becomes unique
if it has to vanish at infinity: g(+∞) = 0. We first seek stationary solutions. Inserting
ωx of the form (4.4) in the vorticity equation (4.3) we get a differential equation for f:

f′′(ζ) +
γ`2

ν
ζf′(ζ) + `2

(γ
ν
− k2

)
f(ζ) = 0. (4.6)

Using the condition defining `, f′′(0) = −1, we get a relation among the stretching γ,
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the viscosity ν, the core size ` and the core’s ellipticity k`:

ν

γ
=

`2

1 + k2`2
. (4.7)

This relation is an expression of the equilibrium between the stretching which tends
to concentrate the vortices and the viscosity which tends to diffuse their core. The
size of the core is thus the length scale based on the stretching γ and the viscosity ν.
With this constraint the differential equation for f depends on one single parameter,
a Reynolds number Re∗ based on the stretching and on the core size `:

Re∗ ≡ γ`2

ν
= 1 + k2`2. (4.8)

Because of the viscous equilibrium there can only be solutions for Reynolds number
larger than 1. Introducing Re∗, the vorticity equation reduces to

f′′(ζ) + Re∗ζf′(ζ) + f(ζ) = 0. (4.9)

As shown by H. K. Moffatt (private communication), with the change of variable
ξ = − 1

2
Re∗ζ2, equation (4.9) reduces to the confluent hypergeometric equation:

d2f

dξ2
+

(
1

2
− ξ
)

df

dξ
− 1

2Re∗
f = 0, (4.10)

whose solution is the confluent hypergeometric function:

f(ζ) = Φ

(
1

2Re∗
,
1

2
,−Re

∗

2
ζ2

)
. (4.11)

The limit Re = 1 corresponds to a wavenumber k = 0, i.e. to a constant-
vorticity layer along the z-direction. The solution is then simply Gaussian, since
Φ
(

1
2
, 1

2
,− 1

2
ζ2
)

= exp
(− 1

2
ζ2
)
. We thus recover the Burgers shear layer as a limit case.

For Re > 1 both the velocity and the vorticity tend to zero at infinity. Far from
the core the vorticity results from an equilibrium between stretching which tends to
amplify it and advection which brings in weak vorticity from the outer regions:

f(ζ) ∝ ζ−1/Re. (4.12)

For large values of the Reynolds number, i.e. for large aspect ratio k`, the flow
should tend towards an array of vortices strongly elliptical along y. Note that the
streamlines have a larger ellipticity than the isovorticity contours. This effect becomes
stronger when the Reynolds number is close to 1. A complete discussion of the
topology difference between the streamlines and the vorticity contours can be found
in Moffatt, Kida & Ohkitani (1994). Experimentally, we measured a streamline aspect
ratio of 1.75.

4.3. Comparison with the experiment

The results of this linear stability analysis can now be compared to the experimental
results. The analysis of the infinite hyperbolic flow predicts its instability whatever
the stretching γ. The eigenmodes are formed of arrays of vortices aligned in the
direction of the stretching, as observed in the experiment. In the experiment however
the instability exhibits a well-defined threshold which does not show up in this linear
analysis where the unstable modes are subjected to only one constraint: the core size
has to be larger than the viscous size. In the experiment, a geometrical constraint
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Figure 10. Evolution of the vortex positions zM , defined by the streamfunctions extrema, as a
function of the roller frequency F . Above the threshold, a well-defined wavelength is selected, which
is of the order of the gap ∆ between the rollers.

naturally appears: the transverse size of the vortex in the y-direction has to be smaller
than the gap ∆ and the transverse size in the z-direction smaller than the cell height
h. The first mode which can appear, given these conditions, is thus ` ' ∆ and kh ' π
and corresponds to a very elliptical vortex of aspect ratio k` ' πδ/h ' 0.3, a vortex
so elliptical that it would be close to a shear layer along the z-axis.

In reality several vortices are formed at threshold showing that the constraining
length-scale is the distance ∆ separating the rollers and that vortex aspect ratio
k` ' 1 is selected. Globally, the wavelength is selected similar to that observed in the
Taylor–Couette flow: k has to be of the order of π/∆ (figure 10). Using the viscous
equilibrium relation (4.7), the critical stretching has to satisfy approximately

ν

γc
=

`2

1 + k2`2
' 1

2k2
' ∆2

2π2
. (4.13)

Or equivalently, the critical Reynolds number Rec has to be of the order of

Rec ' 2π2 ' 19.7, (4.14)

which is close to the measured one (Rec = 17.3± 1.5).
In order to compare the shape of the vortices observed experimentally to that

predicted by the linear theory, we have to introduce the amplitude (figure 9), the
measured wavenumber k (figure 10), the viscosity ν and the stretching γ in the
previous formulas. The shape along the y-direction is then determined (` is not
to be adjusted). The velocity fields predicted by the linear theory are plotted in
figure 11 for the same values of γ as in figure 8. Just above the critical Reynolds
number, the middle line appears to be sinusoidal and, far above, the flow becomes
dominated by the array of vortices. The shapes of the streamlines agree remarkably
well with those measured experimentally. In particular, the vortex core aspect ratio,
which is determined by the viscous equilibrium (and is thus not fitted) appears
to be the same as that observed experimentally. This means essentially that the
actual flow is determined by the competition between vortex stretching and viscous
diffusion.
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Figure 11. Velocity fields in the plane x = 0 predicted by the linear analysis for two Reynolds
numbers located above the threshold: (a) Re = 15.9 (F = 0.55 Hz); (b) Re = 19.1 (F = 0.65 Hz).
As for the experimental fields the velocity field v is given on the left and decomposed into a
two-dimensional vortical component vψ (centre left) and an irrotational stretching part vϕ (centre
right). The streamlines (iso-ψ) are shown on the right.

5. High Reynolds number experiments: the interaction between strain and
vorticity in rotating regions

At high Reynolds number (in water), direct observation shows a turbulent flow
which remains very anisotropic, at least at large scale. Coherent structures are still
observed but they are much more intense, now looking like strong vortices preferen-
tially aligned in the stretching direction. These vortices are disordered and transient,
constantly forming and vanishing. A photograph of a cross-section of the flow in the
plane perpendicular to the stretching direction is given in figure 12.

It is worth noting that the internal Reynolds number Re based on the stretching
and on the gap ∆ between the roller (equation (3.2)) is not very high but the external
Reynolds number is. The maximum frequency we could achieve was F = 12 Hz. For
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Figure 12. Close-up view of a cross-section of the flow in the median plane yOz of the cell
(perpendicular to the stretching direction x) in the turbulent regime at Re ' 1600. Two vortices and
a stagnation point can be seen.

this value, the internal Reynolds number is slightly larger 3000 while the Reynolds
number based on the roller velocities and on their radius is of the order of 105.

We performed a series of measurements of the velocity profile vx(x) across the whole
cell, in the stretching direction x (the measurement which gave us the value of the
parameter γ (figure 4)). Below the instability threshold it is steady and independent
of the position on the z-axis. At high Reynolds number the profile vx(x) fluctuates.
For most of the time it is noisy due only to the turbulence of the fluid but retains a
similar global profile. However, intermittently, the whole velocity gradient is strongly
reduced for a short time. Since particles are present in the flow for the ultrasonic
anemometry, it is possible to simultaneously measure the velocity profile and visualize
the flow. This systematic comparison of the visual appearance of the flow with the
corresponding measurements requires two observers: one to watch the flow itself, the
second to look at the fluctuating profile on the computer screen. We were able in this
way to observe that all the profiles having a weak gradient were those obtained at the
precise moment when the core of a vortex passed in front of the probe (with its axis
along the direction of measurement). In reverse we also checked that all the vortices
passing the probe generated a weakening of the gradient.

The average profile is well defined: it is shown (at F = 6 Hz) by the open circles
on the four plots of figure 13. The velocity gradient induced by the rollers is clearly
visible; it is practically constant from z = −45 mm to z = +45 mm, i.e. in the whole
central region of the cell. Its value is γ = 3.6 s−1, i.e. 0.6F . Two instantaneous profiles
taken at random times are shown for comparison on figure 13(a) (black circles). In
spite of local turbulent fluctuations they exhibit the same global velocity gradient.

Since we could visualize the flow during the measurements, we also triggered instan-
taneous measurements of vx(x) at the exact moment when the axis of one of the turbu-
lent vortices coincided with the axis of the ultrasonic probe. Two examples of such pro-
files are shown on figure 13(b) (black circles). The velocity gradient along the axis of a
vortex is clearly weaker than the average gradient and of the order of γ = 0.7 s−1 only.

6. Discussion: the dynamics of interaction between strain and vorticity
We can now return to turbulence. Our present results can contribute to a phe-

nomenological interpretation of recently observed characteristics of turbulent flows.
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Figure 13. Longitudinal velocity profiles in the stretching direction at a rotation frequency of
F = 6 Hz corresponding to a Reynolds number Re ' 1600. The origin of the abscissa is chosen
in the centre of the cell and the narrowest gap between the cylinders is at z = 4.5 cm. The open
circles show the mean velocity profile, obtained by averaging 1024 instantaneous profiles. (a) The
black circles are two instantaneous profiles chosen at random times. (b) The black circles are two
instantaneous profiles chosen at the precise time where the axis of a vortex coincided with the axis
of the ultrasonic beam.

They are particularly related to the recently investigated pressure fluctuations and to
the existence and dynamics of coherent structures. Statistically, a well-documented
result is that the pressure fluctuations in a fully developed turbulent flow have an
asymmetric distribution (Brachet 1991; Métais & Lesieur 1992; Fauve et al. 1993;
Cadot et al. 1995). On the low-pressure side the probability distribution function
has a long exponential tail due to rare events with large depressions. In contrast
the high-pressure side has a shorter Gaussian tail. Because of the Poisson law (1.4)
the pressure field reflects the spatial distribution of vorticity and strain. As shown
experimentally by Cadot et al. (1995) the large depressions which are observed (at
one point) as intermittent bursts are associated with intense vorticity filaments which
have been observed directly both numerically (Siggia 1981; Tanaka & Kida 1993;
Jimenez et al. 1993) and experimentally (Douady et al. 1991; Cadot et al. 1995). These
structures form in a region with large stretching. Briefly they are coherent and rather
straight, before finally disappearing in a kind of vortex breakdown.

6.1. Regions of large strain and weak vorticity

The intrinsic instability of the regions of pure strain had already been observed in the
context of the formation of the secondary streamwise vortices of mixing layers (Lin
& Corcos 1984; Neu 1984). Here we have investigated this instability in a controlled
system and most of the characteristics that had been predicted theoretically have
been observed. We thus have a situation in which vortices (low-pressure structures)
are spontaneously formed in the regions of pure strain (high-pressure regions). While
in such regions, the initial viscous flow contains almost no vorticity, it is unstable and
transforms into a flow dominated by vortices. Where does the vorticity come from?
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This paradox is only an apparent one: the hyperbolic flows are opened and suck in
perturbations from the outside. Vorticity is thus captured, stretched and amplified,
and feeds the instability.

The existence of a finite threshold in our experiment is directly linked with the
finite extension of the experimental domain and with the corresponding limitation in
wavenumber k. We believe that, in turbulence, whenever a region of nearly pure pure
strain forms (by the interaction of neighbouring structures) it is intrinsically unstable.
This instability process is likely to be responsible for the short lifetime and thus the
scarcity of regions of pure strain and high pressure in turbulence.

This observation is in very good agreement with the results obtained on the statistics
of enstrophy production in turbulent flows. From various conditional averaging
Tsinober et al. (1999) have demonstrated that the enstrophy production is much
larger in the regions dominated by strain than in those dominated by enstrophy.

6.2. Regions of large vorticity and weak strain

Our experiment, because of its geometry, seems to impose a well-determined longitu-
dinal velocity gradient in the central region of the cell. This reproduces the conditions
imposed on the theoretical solutions by Kerr & Dold (1994). In these solutions, as in
all Burgers-like models (Burgers 1940), the stretching is an imposed field. The excel-
lent agreement obtained between the experimentally observed flow and the theoretical
one seems to validate this assumption in the low Reynolds number range.

At high Reynolds numbers however, as demonstrated in the previous section, the
longitudinal velocity gradient is observed to be reduced in the vortex core region. Our
hypothesis is that this effect is related to the two-dimensionalization due to the fast
rotation near the core of axisymmetric vortices. In order to check this hypothesis we
also investigated vortex stretching in a different configuration (Andreotti et al. 1997).
We performed a variant of a classical experiment (Escudier 1984) in which a vortex is
created in a cylindrical tank having a rotating disk at one end. In this experiment we
introduced the possibility of pumping the fluid out of the cell through a hole located
along the cell axis (the fluid being reinjected beneath the disk). When this suction is
activated there is a transitory formation of a longitudinal velocity gradient along the
vortex axis and intensification of this vortex. When the flow has become steady the
vortex is very intense, and the velocity along its axis is large but the gradient of this
velocity is drastically reduced (Andreotti et al. 1997).

In this latter experiment as well as in Taylor’s four-roll mill, the observed effect is
the same. The stretching of a vortex results in an intensification of its rotation. In
turn this rotation tends to make the flow two-dimensional in the core and thus to
oppose the variations of velocity in this region. This effect, as it reduces the velocity
gradients, diminishes the stretching. There is thus a negative feedback of the vortices
on the stretching which has generated them. This is a kind of Lenz law which had
not been considered before.

The feedback mechanism is mainly that of Eckman pumping: when the stretching
is inhomogeneous, it induces variations of the vortex rotation along its axis. The
pressure gradient cannot balance the centrifugal force anymore, the latter having
solenoidal part. As a consequence, the centrifugal force induces a radial flow in the
part of the vortex where the rotation is the fastest and thus reduces the stretching
in the vortex core. Globally, the vortex tends to reduce the stretching to which it
is submitted, as soon as the stretching is localized in space. In another paper, we
have investigated numerically (Abid et al. 2001) this mechanism of interaction. In
particular, we have shown that the typical timescale of the feedback of rotation on
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stretching scales as L/Urotation where L is the characteristic length over which the
stretching is inhomogeneous (it is also the length of the vortex) and Urotation is the
typical rotation velocity. The characteristic timescale of the vortex stretching is the
inverse of the stretching γ. The ratio of the two,

B =
Urotation

γL
, (6.1)

gives a non-dimensional parameter which characterizes the relative importance of the
feedback mechanism and of the stretching process. For small B, the reaction can be
neglected. In the limit case of homogeneous stretching, i.e. for Burgers-like vortices
(Burgers 1940), L tends to infinity and B tends to zero: there is strictly no reaction. As
soon as the rotation becomes important when compared to the stretching (if B � 1),
the negative feedback of rotation on stretching must play a crucial role.

As a result, though the analytical solutions are good descriptions of the structures
observed near the instability threshold, they fail to describe the situation at high
Reynolds number because they do not take into account the negative feedback of
rotation on stretching. In more recent models (Donaldson & Sullivan 1960; Gibbon,
Fokas & Doering 1999; and Khomenko & Babiano 1999) the spatial homogeneity of
the stretching has been relaxed, but it remains an imposed field. Our results show that
in experimental situations the stretching is of finite extension and that the negative
feedback of the vorticity on the stretching has drastic consequences. This effect should
be taken into account in more realistic models of vortices.

This new mechanism has implications for turbulent flows. In all regions where
vorticity is much larger than strain there is necessarily rotation, and this effect should
appear. It is now well established by numerical simulations and experiments that
most of the intense vorticity is concentrated in filament-like rotating structures. The
two-dimensionalization of these vortices linked to their rotation provides a physical
interpretation of the straightness of the vortex filaments observed in turbulent flows.
This was observed experimentally by Cadot et al. (1995), demonstrated on theoretical
grounds by Constantin, Procaccia & Segel (1995) and observed numerically by Galanti,
Procaccia & Segel (1996). The corresponding reduction of the strain along the axis
could also be responsible for the breakdown of the filaments which occurs ultimately.

It is often believed that the amplification of vorticity in turbulent flows is en-
hanced by nonlinear effects. This was proved wrong by Ohkitani (1998) who recently
compared the stretching of a passive vector and that of the vorticity. The equations
governing these two effects have similar linear terms and different nonlinear terms.
The results of his numerical simulations demonstrate that, in a turbulent flow, the
stretching of the vorticity is much weaker than that of passive vectors. The essential
difference between the two is related to the relative orientations of the observed
vector with the axes of strain. During its evolution the direction of the passive vector
has no particular relation with the direction of the strain. In contrast, vorticity and
strain being both constructed from the velocity derivatives have directions which are
strongly related. Corresponding, as shown by Ohkitani (1998), the equation governing
the passive vector evolution is linear while that concerning vorticity is nonlinear. In
both cases the linear term has the same stretching effect on the passive vector and
on vorticity. The weaker stretching of vorticity means that the nonlinear effects due
to the alignments limit the stretching. We propose that the processes that we observe
are the basis of the reduction of the vorticity stretching by nonlinearities. In the
regions of high strain there is spontaneous collection and intensification of vorticity
resulting in the formation of rotating regions. The rotation of these vortices generates
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a negative feedback on stretching. These two effects could be the basic processes
explaining Okhitani’s result.

Finally, the negative feedback of rotation on stretching is a mechanism present in
turbulence at all scales. At any scale, a coarse-grained vorticity and a coarse-grained
strain tensor can be defined using for instance the velocity at the vertex of a tetrad
(Chertkov, Pumir & Shraiman 1999). Like the actual vorticity and strain, the inertial
effects can be interpreted as vortex stretching and centrifugal force at the scale under
consideration. It was shown numerically by Chertkov et al. (1999) that at all scales,
on the average, the pressure tends to counteract the effect of inertia but balances only
part of it. This means that in rotating regions, the centrifugal force tends to expel the
fluid from the centre of rotation and thus to reduce the stretching.

7. Conclusion
The instability of hyperbolic flows had already been investigated theoretically and

was known to occur in the secondary instabilities of mixing layers. Here we have
shown that a controlled version of this instability could be obtained in Taylor’s four-
roll mill experiment. In this set-up the flow which is stable at low Reynolds numbers,
destabilizes by a supercritical bifurcation at a well-defined threshold and forms an
array of counter-rotating vortices. The transverse velocity profiles of these vortices are
in excellent agreement with those predicted by the theory of Kerr & Dold (1994). The
instability threshold is well understood as resulting from the geometrical confinement
of the flow.

We have also investigated this flow at high Reynolds number and the results thus
obtained are relevant to the dynamics of the stretching of vorticity in turbulent flows.
They can be summarized as follows:

(i) The regions of pure strain are highly unstable and are the locus of formation of
organized vortices. This result is in good agreement with the observation by Tsinober
et al. (1999) that these regions are statistically those of largest enstrophy production.

(ii) When strong vortices have formed the two-dimensionalization due to rotation
reacts to reduce the stretching in their core. This nonlinear effect is in agreement with
the weak enstrophy production observed in these regions by Tsinober (1998), with
the alignments observed by Nomura & Post (1998) and with the results by Ohkitani
(1998) on the nonlinear limitation of vortex stretching.
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Theoretical Physics in Santa Barbara. Both institutes are thanked for their hospitality.
This research was supported in part by the National Science Foundation under Grant
No. PHY94-07194.

Appendix. Decomposition of the velocity field into a vortical and a
stretching part

We want to decompose the velocity field in the central plane into a rotational part
and a potential part:

vy = ∂zψ + ∂yϕ, vz = −∂yψ + ∂zϕ. (A 1)
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The main problem is that different sets of functions ψ and ϕ can be chosen corre-
sponding to the same physical flow. If we consider a different potential ϕ′ which has
the same Laplacian as ϕ (so that ∆(ϕ′ −ϕ) = 0), there exists a second streamfunction
ψ′ which satisfies ∂z(ψ

′ − ψ) = −∂y(ϕ′ − ϕ) and ∂y(ψ
′ − ψ) = ∂x(ϕ

′ − ϕ). As a con-
sequence, (ϕ, ψ) and (ϕ′, ψ′) correspond to the same velocity field. In this particular
experiment, it would be arbitrary to use boundary conditions to determine ψ and ϕ.

Specifically, we wish to compare the velocity field measured experimentally to a
hyperbolic flow disturbed by an array of vortices. This would mean a field of the
form

vy = ∂zψ − γy, vz = −∂yψ. (A 2)

The best choice among the possible couples (ϕ, ψ) is that which minimizes the
difference between the stretching part of the flow and a pure hyperbolic flow. Suppose
that we know the couple (ϕ0, ψ0) which satisfies (A 1) in a rectangular region S
together with the boundary condition ϕ0 = 0. We want to find the potential ϕ and
the stretching γ which minimizes the surface integral:∫

S

[(∂yϕ+ γy)2 + (∂zϕ)2]ds (A 3)

under the constraint that everywhere in the rectangle ∆(ϕ − ϕ0) = 0. The solution
is easy to obtain: ϕ is the solution of ∆ϕ = ∆ϕ0 with the boundary condition
ϕ = −γy2/2 and γ is given by the integral relation

γ =

∫
S

−y∂yϕds∫
S

y2ds

. (A 4)

In practice, an iterative procedure can be used to solve these coupled equations. A
regular grid is used and the velocity derivatives are estimated by finite differences. We
first find the field of the form (A 2) closest to the experimental measurements. To do
this, we minimize with respect to ψj,k and γ the usual likelihood functional L based
on the differences between the model velocity field and the experimental one:

L =
1

2

∑
j,k

(v
j,k+1/2
y − (ψj,k+1 − ψj,k) + γj)2 + (v

j+1/2,k
z + (ψj+1,k − ψj,k))2

σ2
j,k

. (A 5)

Note that each velocity measurement is weighted by the experimental standard
deviation σj,k measured for each mesh point. Note also that ψj,k is defined up to a
constant. We chose this constant in order that the maximum and minimum values of
ψj,k be opposite. This leads to a system of linear equations coupling the values of ψ
at each grid point and γ which is solved numerically by a simple matrix inversion.

After this first step, we obtain an approximation of the measured velocity field in
which the stretching field is spatially homogeneous. We then compute the difference
δv between the initial field and its projection:

δvy = vy − ∂zψ + γy, δvz = vz + ∂yψ. (A 6)

In most of the cases, this difference is already small compared to the velocity itself,
meaning that expression (A 2) is a good approximation of the actual flow. We then
find the potential field ∇ε closest to δv (in the least-square sense) and satisfying the
boundary condition ε = ϕ+ γy2/2 = 0 derived above.
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Again we compute the difference between the total velocity field v and ∇ε and
seek ψj,k and γ minimizing the likelihood functional L. And again the best potential
ε is determined. This process is iterated until convergence is achieved. In practice
only three iterations of the type described above are necessary before obtaining a
satisfactory decomposition (the rest being of the order of the noise). Adding the γ
and ε contributions, the potential is finally ϕ = −γy2/2 + ε.
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