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Abstract: We study the critical point of directed pinning/wetting models with quenched
disorder. The distribution K (-) of the location of the first contact of the (free) polymer
with the defect line is assumed to be of the form K (n) = n=®~!L(n), with @ > 0 and
L(-) slowly varying. The model undergoes a (de)-localization phase transition: the free
energy (per unit length) is zero in the delocalized phase and positive in the localized
phase. For @ < 1/2 disorder is irrelevant: quenched and annealed critical points coin-
cide for small disorder, as well as quenched and annealed critical exponents [3,28]. The
same has been proven also for « = 1/2, but under the assumption that L(-) diverges
sufficiently fast at infinity, a hypothesis that is not satisfied in the (1 + 1)-dimensional
wetting model considered in [12,17], where L(-) is asymptotically constant. Here we
prove that, if 1/2 < @ < 1 or @ > 1, then quenched and annealed critical points differ
whenever disorder is present, and we give the scaling form of their difference for small
disorder. In agreement with the so-called Harris criterion, disorder is therefore relevant
in this case. In the marginal case « = 1/2, under the assumption that L(-) vanishes
sufficiently fast at infinity, we prove that the difference between quenched and annealed
critical points, which is smaller than any power of the disorder strength, is positive: dis-
order is marginally relevant. Again, the case considered in [12,17] is out of our analysis
and remains open.

The results are achieved by setting the parameters of the model so that the annealed
system is localized, but close to criticality, and by first considering a quenched system of
size that does not exceed the correlation length of the annealed model. In such a regime
we can show that the expectation of the partition function raised to a suitably chosen
power y € (0, 1) is small. We then exploit such an information to prove that the expec-
tation of the same fractional power of the partition function goes to zero with the size
of the system, a fact that immediately entails that the quenched system is delocalized.
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1. Introduction

Pinning/wetting models with quenched disorder describe the random interaction between
adirected polymer and a one-dimensional defect line. In absence of interaction, a typical
polymer configuration is given by {(n, S,)}s>0, where {S,},>0 is a Markov Chain on
some state space ¥ (for instance, ¥ = Z¢ for (1 + d)-dimensional directed polymers),
and the initial condition Sy is some fixed element of ¥ which by convention we call 0.
The defect line, on the other hand, is just {(n, 0)},>0. The polymer-line interaction is
introduced as follows: each time S, = O (i.e., the polymer touches the line at step n) the
polymer gets an energy reward/penalty €,, which can be either positive or negative. In
the situation we consider here, the €,,’s are independent and identically distributed (IID)
random variables, with positive or negative mean /4 and variance 82 > 0.

Up to now, we have made no assumption on the Markov Chain. The physically most
interesting case is the one where the distribution K (-) of the first return time, call it
71, of S, to 0 has a power-law tail: K(n) := P(1; = n) = n~"! with @ > 0. This
framework allows to cover various situations motivated by (bio)-physics: for instance,
(1 + 1)-dimensional wetting models [12,17] (@ = 1/2; in this case S,, > 0, and the line
represents an impenetrable wall), pinning of (1 +d)-dimensional directed polymers on a
columnar defect (« = 1/2ifd = 1 ando = d/2 — 1 if d > 2), and the Poland-Scheraga
model of DNA denaturation (here, « =~ 1.15 [27]). This is a very active field of research,
and not only from the point of view of mathematical physics, see. e.g. [11] and references
therein. We refer to [20, Ch. 1] and references therein for further discussion.

The model undergoes a localization/delocalization phase transition: for any given
value B of the disorder strength, if the average pinning intensity . exceeds some critical
value &.(B) then the polymer typically stays tightly close to the defect line and the free
energy is positive. On the contrary, for 7 < h.(8) the free energy vanishes and the
polymer has only few contacts with the defect: entropic effects prevail. The annealed
model, obtained by averaging the Boltzmann weight with respect to disorder, is exactly
solvable, and near its critical point 22" () one finds that the annealed free energy van-
ishes like (h — h2"™" (B))max(1.1/@) 116]. In particular, the annealed phase transition is
first order for @ > 1 and second order for @ < 1, and it gets smoother and smoother as
o approaches 0.

A very natural and intriguing question is whether and how randomness affects critical
properties. The scenario suggested by the Harris criterion [26] is the following: disor-
der should be irrelevant for « < 1/2, meaning that quenched critical point and critical
exponents should coincide with the annealed ones if 8 is small enough, and relevant
for « > 1/2: they should differ for every § > 0. In the marginal case « = 1/2, the
Harris criterion gives no prediction and there is no general consensus on what to expect:
renormalization-group considerations led Forgacs et al. [17] to predict that disorder is
irrelevant (see also the recent [18]), while Derrida et al. [12] concluded for marginal
relevance: quenched and annealed critical points should differ for every g > 0, even if
the difference is zero at every perturbative order in S.

The mathematical understanding of these questions witnessed remarkable progress
recently, and we summarize here the state of the art (prior to the present contribution).

(1) Alotis now known on the irrelevant-disorder regime. In particular, it was proven in
[3] (see [28] for an alternative proof) that quenched and annealed critical points and
critical exponents coincide for 8 small enough. Moreover, in [25] a small-disorder
expansion of the free energy, worked out in [17], was rigorously justified.

(2) In the strong-disorder regime, for which the Harris criterion makes no predic-
tion, a few results were obtained recently. In particular, in [29] it was proven that
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for any given « > 0 and, say, for Gaussian randomness, h.(8) # hi""(B) for B
large enough, and the asymptotic behavior of h.(8) for § — oo was computed.
These results were obtained through upper bounds on fractional moments of the
partition function. Let us mention by the way that the fractional moment method
allowed also to compute exactly [29] the quenched critical point of a diluted wetting
model (a model with a built-in strong-disorder limit); the same result was obtained
in [8] via a rigorous implementation of renormalization-group ideas. Fractional
moment methods have proven to be useful also for other classes of disordered
models [1,2,9,15].

(3) The relevant-disorder regime is only partly understood. In [24] it was proven that
the free-energy critical exponent differs from the quenched one whenever 8 > 0
and o > 1/2. However, the arguments in [24] do not imply the critical point shift.
Nonetheless, the critical point shift issue has been recently solved for a hierarchical
version of the model, introduced in [12]. The hierarchical model also depends on
the parameter o, and in [21] it was shown that i.(8) — hi""(B) ~ p2e/Qe=1) for
B small (upper and lower bounds of the same order are proven).

(4) In the marginal case o = 1/2 it was proven in [3,28] that the difference h.(8) —
h&"(B) vanishes faster than any power of 8, for 8 — 0. Before discussing lower
bounds on this difference, one has to be more precise on the tail behavior of K (n),
the probability that the first return to zero of the Markov Chain {S,}, occurs at n:
if K(n) = n=U*1/2 L (n) with L(-) slowly varying (say, a logarithm raised to a
positive or negative power), then the two critical points coincide for 8 small [3,28]
if L(-) diverges sufficiently fast at infinity so that

o0

1
ZW < 0. (1.1)

n=1

The case of the (1 + 1)-dimensional wetting model [12] corresponds however to the
case where L(-) behaves like a constant at infinity, and the result just mentioned
does not apply.

The case @ = 1/2 is open also for the hierarchical model mentioned above.

In the present work we prove that if « € (1/2,1) or « > 1 then quenched and
annealed critical points differ for every 8 > 0, and h.(8) — h%""(B) ~ B2/ Qe=1) for
B 4 0 (¢f. Theorem 2.3 for a more precise statement). In the case « = 1/2, while we
do not prove that 4.(8) # h%"(B) in all cases in which condition (1.1) fails, we do
prove such a result if the function L(-) vanishes sufficiently fast at infinity. Of course,
he(B) — hi™ (B) turns out to be exponentially small for 8 N\ 0.

We wish to emphasize that, although the Harris criterion is expected to be applicable
to a large variety of disordered models, rigorous results are very rare: let us mention
however [10,14].

Starting from the next section, we will forget the full Markov structure of the poly-
mer, and retain only the fact that the set of points of contact with the defect line, v :=
{n > 0:8, =0}, is arenewal process under the law P of the Markov Chain.

2. Model and Main Results

Let v := {1, 71, ...} be a renewal sequence started from 7o = 0 and with inter-arrival
law K (-), i.e., {ti — Ti—1}ieN:=(1,2,...) are IID integer-valued random variables with law
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P(r1 = n) = K(n) for every n € N. We assume that ZneN K (n) = 1 (the renewal is
recurrent) and that there exists o« > 0 such that

L(n)

nl+oz

K(n) = (2.1)
with L(-) a function that varies slowly at infinity, i.e., L : (0, co) — (0, c0) is measur-
able and such that L(rx)/L(x) — 1 when x — oo, for every r > 0. We refer to [6] for
an extended treatment of slowly varying functions, recalling just that examples of L (x)
include (log(1 + x))b, any b € R, and any (positive, measurable) function admitting a
positive limit at infinity (in this case we say that L(-) is trivial). Dwelling a bit more on
nomenclature, x — x?L(x) is a regularly varying function of exponent p, so K (-) is
just the restriction to the natural numbers of a regularly varying function of exponent
—(1+a).

Welet 8 > 0,h € Rand w := {w,},>1 be a sequence of IID centered random
variables with unit variance and finite exponential moments. The law of w is denoted by
P and the corresponding expectation by E.

Fora,b € {0, 1, ...} witha < bwelet Z,  , be the partition function for the system
on the interval {a, a + 1, ..., b}, with zero boundary conditions at both endpoints:

Zabw=E (eZﬁ:uH(ﬁwn+h)1(ner}1{ber} ‘ ac .[) i (2.2)

where E denotes expectation with respect to the law P of the renewal. One may rewrite
Z4.b.0 more explicitly as

b—a 4
. . he ¢ i
Zovw=>, > JIKG —ij-neFZmen, (2.3)

(=1 ip=a<ij<--<ig=b j=1

with the convention that Z, , ., = 1. Notice that, when writing n € t, we are interpreting
T as a subset of N U {0} rather than as a sequence of random variables. We will write
for simplicity Zy ,, for Zg y,, (and in that case the conditioning on 0 € 7 in (2.2) is
superfluous since 79 = 0). In absence of disorder (8 = 0), it is convenient to use the
notation

N
ZN(h) —E (eh Zn:l l(ner)l{Nef}) —E (eh‘tﬂ{],...‘NHl{Ner}) , (24)

for the partition function.

We mention that the recurrence assumption >, .y K (n) = 1 entails no loss of gen-
erality, since one can always reduce to this situation via a redefinition of & (cf. [20,
Ch. 1]).

As usual the quenched free energy is defined as

) 1
F(B. h) = lim —logZy . (2.5)

It is well known (cf. for instance [20, Ch. 4]) that the limit (2.5) exists P(dw)-almost
surely and in L' (P), and that it is almost-surely independent of w. Another well-estab-
lished factis thatF(8, h) > 0, whichimmediately follows from Zy , > K(N) exp(Boy+
h). This allows to define, for a given 8 > 0, the critical point 4.(8) as

he(B) :=sup{h € R: F(B, h) =0}. (2.6)
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It is well known that & > h.(B) corresponds to the localized phase where typically ©
occupies a non-zero fraction of {1, ..., N} while, for h < h.(8), t N{l,..., N} con-
tains with large probability at most O (log N) points [23]. We refer to [20, Chs. 7 and 8]
for further literature and discussion on this point.

In analogy with the quenched free energy, the annealed free energy is defined by

1
" (B, h) = Nh_r)nOO I logEZy o, = F(0, h +logM(B)), 2.7)

with
M(B) := E(eP). (2.8)

We see therefore that the annealed free energy is just the free energy of the pure model
(B = 0) with a different value of /. The pure model is exactly solvable [16], and we
collect here a few facts we will need in the course of the paper.

Theorem 2.1 [20, Th. 2.1]. For the pure model h.(0) = 0. Moreover, there exists a
slowly varying function L(-) such that for h > 0 one has

F(0, h) = h'/ MO 1/ p). (2.9)
In particular,

~ AN
(1) ifE(r)) = ZneNn K (n) < oo (for instance, if « > 1) then L(1/h) ~ 1/E(t1);
2) ifae0,1), then L(1/h) = Coh~ V2R, (h), where Cy, is an explicit constant and
Ry (+) is the function, unique up to asymptotic equivalence, that satisfies

b\0
Ra (b L(1/b)) "~ b.
As aconsequence of Theorem 2.1 and (2.7), the annealed critical point is simply given by

he"™(B) := sup{h : """ (B, h) = 0} = —log M(B). (2.10)
Via Jensen’s inequality one has immediately that F(8, h) < F*"" (8, h) and as a con-
sequence h.(B) > h%""(B), and the point of the present paper is to understand when
this last inequality is strict. In this respect, let us recall that the following is known:
if o € (0,1/2), then h.(B) = hi"*(B) for B small enough [3,28]. Also for o = 1/2
it has been shown that i.(8) = hi"™(B) if L(-) diverges sufficiently fast (see below).
Moreover, assuming that P(w; > t) > 0 for every ¢ > 0, one has that for every o > 0
and L(-) there exists By < oo such that i.(8) # h&"(B) for B > By [29]: quenched
and annealed critical points differ for strong disorder. The strategy we develop here
addresses the complementary situations: o > 1/2 and small disorder (and also the case
o = 1/2 as we shall see below).

Our first result concerns the case o > 1:

Theorem 2.2. Let o > 1. There exists a > 0 such that for every < 1,
he(B) = h™ () = ap?. @11

Moreover;, he(B) > hi™ (B) for every p > 0.
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0
Since h.(B) < ho(0) = 0 and h2"" (B) Py —pB2/2, we conclude that the inequality
(2.11) is, in a sense, of the optimal order in 8. Note that i.(8) < h.(0) is just a conse-
quence of Jensen’s inequality:

E (62,1,\;1 (ﬂwn+h)1(ner} l{Ner})

ZNw=Zn(h)
E (eh ZI]lV:l 1{"€T)1{N€T})
N hltn{l,...,N}|
E (1jyerje Iivery)
>Zyhexp|B ) , (2.12)
2 T AT )

from which F(8, h) > F(0, h) and therefore h.(8) < h.(0) immediately follows from
E(w,) = 0. This can be made sharper in the sense that from the explicit bound in [20,
Th. 5.2(1)] one directly extracts also that h.(8) < —bB? for a suitable b € (0, 1/2) and
every B < l,sothat —h.(B)/ ﬂz € (b, 1/2—a). Werecall also that the (strict) inequality
he(B) < h.(0) has been established in great generality in [4].

In the case o € (1/2, 1) we have the following:

Theorem 2.3. Let « € (1/2, 1). For every € > O there exists a(e) > 0 such that
he(B) — he"™ (B) = a(e) pE4/Ge= e, (2.13)
for B < 1. Moreover, h.(B) > h&""(B) for every g > 0.

To appreciate this result, recall that in [3,28] it was proven that

he(B) — hé™(B) < L(1/p)p>/ =D, (2.14)

for some (rather explicit, ¢f. in particular [3]) slowly varying function L(). Notably,
L () is trivial if L(-) is. The conclusion of Theorem 2.3 can actually be strengthened and
we are able to replace the right-hand side of (2.13) with L(1/B)p**/ =D with L(-)
another slowly varying function, but on one hand L (-) does not match the bound in (2.14)
and on the other hand it is rather clear that it reflects more a limit of our technique than
the actual behavior of the model; therefore, we decided to present the simpler argument
leading to the slightly weaker result (2.13).

The case o = 1/2 is the most delicate, and whether quenched and annealed critical
points coincide or not crucially depends on the slowly varying function L(-). In [3,28]
it was proven that, whenever

1
Z TTo < (2.15)

n>1

there exists B > 0 such that h.(8) = h&""(B) for B < o, and that when the same sum
diverges then h.(B) — hi""(B) is bounded above by some function of 8 which vanishes
faster than any power for 8 ~\ 0. For instance, if L(-) is asymptotically constant then

he(B) — ™ (B) < cre” /P, (2.16)

for B < 1. While we are not able to prove that quenched and annealed critical points
differ as soon as condition (2.15) fails (in particular not when L(-) is asymptotically
constant), our method can be pushed further to prove this if L(-) vanishes sufficiently
fast at infinity:
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Fig. 1. The decomposition of the partition function is simply obtained by fixing a value of k and summing
over the values of the last contact (or renewal epoch) before N — k and the first after N — k. In the drawing the
two contacts are respectively N —n and N — j and arcs of course identify steps between successive contacts

Theorem 2.4. Assume that for every n € N,

n=3/2
K(n) <c

(Togn)" 2.17)

for some ¢ > 0 and n > 1/2. Then for every 0 < ¢ < n — 1/2 there exists a(¢) > 0
such that

1
he(B) — h¢™ (B) = a(e) exp (——.) (2.18)
BT

Moreover, ho(B) > hi"(B) for every B > 0.

2.1. Fractional moment method. In order to introduce our basic idea and, effectively,
start the proof, we need some additional notation. We fix some k € N and we set for
neN

Zn = PO, (2.19)
Then, the following identity holds for N > k:

N k—1
INw = D ZN-no D Kt — )N jZN_jN.o- (2.20)
n=k j=0

This is simply obtained by decomposing the partition function (2.2) according to the
value N — n of the last point of T which does not exceed N — k (whence the condition
0 < N —n < N —kin the sum), and to the value N — j of the first point of 7 to the right
of N—k(sothat N —k < N — j < N). Itis important to notice that Zy_; ., has the
same law as Z; ,, and that the three random variables Zy_, o, zy—j and Zy_; v« are
independent, provided that n > k and j < k.

Let0 <y < land Ay := E[(Zn »)"], with Ag := 1. Then, from (2.20) and using
the elementary inequality

Y

(a1+...+an)7/§a1+...+a’);’ 2.21)

which holds for a; > 0, one deduces

N k—1
Ay <E[Z]]D Avon D K — j)7A;. (2.22)
n=k j=0

The basic principle is the following:
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Proposition 2.5. Fix 8 and h. If there exists k € N and y < 1 such that

oo k—1

p=E[]D D K- j7A; <1, (2.23)

n=k j=0
then ¥(B, h) = 0. Moreover if p < 1 there exists C = C(p, v, k, K(-)) > O such that

Ay < C(K(N)), (2.24)
for every N.

Of course, in view of the results we want to prove, the main result of Proposition 2.5
is the first one. The second one, namely (2.24), is however of independent interest and
may be used to obtain path estimates on the process (using for example the techniques
in [23] and [20, Ch. 8]).

Proof of Proposition 2.5. Let A := max{Ao, Ay, ..., Ax—1}. From (2.22) it follows that
forevery N > k

Ay =< pmax{Ag,..., AN ¢}, (2.25)

from which one sees by induction that, since p < 1, for every n one has A, < A. The
statement F(8, h) = 0 follows then from Jensen’s inequality:

1 1
F = lim —[Elog(Z V' < lim —logAy =0. 2.2
(B 1) = Jim - Elog(Zn,)” < lim < logdy =0, (226)

In order to prove (2.24) we introduce

Bl 13520 K(n— )Y Ay, ifn >k,

n) = J= - 2.27

Qi) [0 ifn=1,.. k-1 (227

Since p = >, Q(n), the assumption p < 1 tells us that Qk(-) is a sub-probability dis-

tribution and it becomes a probability distribution if we set, as we do, Q¢ (0c0) := 1 — p.

Therefore the renewal process T with inter-arrival law Qy(-) is terminating, that is T

contains, almost surely, only a finite number of points. A particularity of terminating

renewals with regularly varying inter-arrival distribution is the asymptotic equivalence,

up to a multiplicative factor, of inter-arrival distribution and mass renewal function ([20,
Th. A.4]), namely

N—o00 1

uy ~ ka(N), (2.28)

where uy := P(N € 7) and it satisfies the renewal equation uy = Zflvzl UN—n Qr(n)
for N > 1 (and ug = 1). Since Qr(n) =0forn =1, ...,k — 1, for the same values of
n we have u, = 0 too. Therefore the renewal equation may be rewritten, for N > k, as

N—k

uy = D un—nQi(n) + Qi(N). (2.29)

n=1
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Let us observe now that if we set A N = Ay1y> then (2.22) implies that for N > k,

N—k k—1
AN < DL AN-nQi(n) + Pu(N), with P(N) := D" A, Qx(N —n), (2.30)
n=1 n=0

and observe that Py (N) < ¢ Qx(N), with ¢ that depends on p, y, k and K (-) (and on &
and B, but these variables are kept fixed). Therefore
~ N—k ~

A AN_n
T D>k + Qi) @2.31)
n=1

c c

for N > k. By comparing (2.29) and (2.31), and by using (2.28) and Q(N) "~
K(N)"ElZ/] z’;;}) Aj, one directly obtains (2.24). O

2.2. Disorder relevance: sketch of the proof. Letus consider for instance the case o > 1,
which is technically less involved than the others, but still fully representative of our strat-
egy. Take (B, h) such that 8 is small and i = A" (B) + A, with A = ap?. We are there-
fore considering the system inside the annealed localized phase, but close to the annealed
critical point (at a distance A from it), and we want to show that F(8, ) = 0. In view of
Proposition 2.5, it is sufficient to show that p in (2.23) is sufficiently small, and we have
the freedom to choose a suitable k. Specifically, we choose & to be of the order of the cor-
relation length of the annealed system: k = 1/F*"" (8, h) = 1/F(0, A) ~ const./(af?),
where the last estimate holds since the phase transition of the annealed system is first
order for & > 1. Note that k diverges for g small.

For the purpose of this informal discussion, assume that K (n) = cn~ (%) j.e., the
slowly varying function L(-) is constant. The sum over # in the right-hand side of (2.23)
is then immediately performed and (up to a multiplicative constant) one is left with
estimating

S # (2.32)
2 T '
— (k= ey

~

One can choose y < 1 such that (1 + )y — 1 > 1 and it is actually not difficult
to show that sup; ; A; is bounded by a constant uniformly in k. On one hand in fact
A; <[EZ;,]" =[Z;(A)]”, where the first step follows from Jensen’s inequality and
the second one from the definition of the model (recall (2.4)). On the other hand for
Jj <k, i.e., for j smaller than the correlation length of the annealed model, one has that
the annealed partition function Z;(A) is bounded above by a constant, independently
of how small A is, i.e., of how large the correlation length is. This just establishes that
the quantity in (2.32) is bounded, so we need to go beyond and show that A ; is small:
this of course is not true unless j is large, but if we restrict the sum in (2.32) to j < k
what we obtain is small, since the denominator is approximately k'+®7 =1 that is k to
a power larger than 1.

In order to control the terms for which k — j is of order 1 a new ingredient is clearly
needed, and we really have to estimate the fractional moment of the partition function
without resorting to Jensen’s inequality. To this purpose, we apply an idea which was
introduced in [21]. Specifically, we change the law [P of the disorder in such a way that
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under the new law, P, the system is delocalized and E(Z; ,,)” is small. The change of
measure corresponds to tilting negatively the law of w;,i < j, ¢f. (A.l), so that the
system is more delocalized than under P. The non-trivial fact is that with our choice

= aﬂ2 and j < 1/F(0, A), one can guarantee on one hand that Z; ,, is typically small
under P, and on the other that P and P are close (their mutual density is bounded, in
a suitable sense), so that the same statement about Z; ,, holds also under the original
measure [P. At this point, we have that all terms in (2.32) are small: actually, as we will
see, the whole sum is as small as we wish if we choose a small. The fact that F(8, h) = 0
then follows from Proposition 2.5.

As we have mentioned above, the case @ € [1/2, 1) is not much harder, at least on a
conceptual level, but this time it is not sufficient to establish bounds on A that do not
depend on j: the exponent in the denominator of the summand in (2.32) is in any case
smaller than 1 and one has to exploit the decay in j of A;: with respect to the & > 1
case, here one can exploit the decay of P(j € t) as j grows, while such a quantity
converges to a positive constant if « > 1. Once again the case of j < k can be dealt
with by direct annealed estimates, while when one gets close to k a finer argument, direct
generalization of the one used for the @ > 1 case, is needed.

3. The Casea > 1

In order to avoid repetitions let us establish that, in this and the next sections,
R;,i = 1,2, ... denote (large) constants, L;(-) are slowly varying functions and C;
positive constants (not necessarily large).

Proof of Theorem 2.2. Fix By > 0 and let B < Bo, h = h&""(B) + ap?and y < 1
sufficiently close to 1 so that

(1+a)y > 2. (3.1)

It is sufficient to show that the sum in (2.23) can be made arbitrarily small (for some suit-
able choice of k) by choosing a small, since E[z)f] can be bounded above by a constant
independent of a (for a small).
We choose k = k() = 1/(aﬁ2), sothat 8 = 1/4/ak(B). In order to avoid a plethora
of |-], we will assume that k() is integer. Note that k(8) is large if B or a are small.
First of all note that, thanks to Egs. (A.21) and (A.24), the sum in the r.h.s. of (2.23)
is bounded above by

k(B)—1 ol
Z /fl(k(ﬂ)~ (113[)1:11 : (3.2)
= (k(B) = J)
We split this sum as
KOS Lk -pa; ST Lk - A, a3

Sies= 2 *k(B) — Hrr—T " 2 (k(B) — j)d+er =1

j=0 J=k(B)—R

To estimate Sy, note that by Jensen’s inequality A; < (EZ; )" < C; with C; a con-
stant independent of j as long as j < k(). Indeed, from (2.2) and the definition of the
annealed critical point one sees that (recall (2.4))

2 .
EZjo = 7(ap?) = E (#1000l ey) (3.4)
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and the last term is clearly smaller than e. Therefore, using again (A.21)

Ly(Ry)

< = 7
St = R§1+oz)y—2’

(3.5)

which can be made small with R large in view of the choice (3.1). As for S>, one has

Sy < (Cy max Aj. 3.6)
k(B)—Ri1=j<k(B)

We apply now Lemma A.1 (note also the definitionin (A.1)) with N = jand A = 1/4/j
so that we have

Y
A; = (B (Ziw) ] exptey/a =y, (3.7)

for 1/4/j < min(1, (1 — y)/y), that is for a sufficiently small, since we are in any case
assuming j > k(B) —

We are therefore left with showing thatE; |, [Zj,w] is small for the range of j’s
we are considering. For such an estimate it is convenient to recall (2.10) and to observe
that for any given values of 8, h and A and for any j,

M — 3y \ Ll
EjlZjol =E |:(exp (h — h&"(B)) W) 1{jer}:| . (3.8)

In order to exploit such a formula let us observe that

M = exp / dx/ dy logM(t)
M(B)M(-2)

< eGP (3.9
t=x+y

which holds for 0 < A < 8 < Bp and C3 := minse[—gy, gy dz(log M(r))/dt? > 0.If a
is sufficiently small, for j < k(8) = 1/(ap?) we have

CiB _ 1[1_c3]§_ Cs

ap? — < = —
N N RN

(3.10)

As a consequence,

max E. (Z:
k(B)—Ri1<j<k(B) JiZje)

< cC3VaB*RI/2 [exp ( [t N{1,. k(ﬂ)}|)] . (3.11)

2/ak(B) k(ﬁ)
The right-hand side in (3.11) can be made small by choosing a small (and this is uniform
on B < Bo) because of

lim limsup E (e_(c/N)lm{l ~~~~~ N}‘) —0, (3.12)

c—>+00 N—00

that we are going to prove just below. Putting everything together, we have shown that
both S and S, can be made small via a suitable choice of R; and a, and the theorem is
proven.
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To prove (3.12), since the function under expectation is bounded by 1 it is sufficient
to observe that

N
1 N—oo l 1
— 1 — = > 0, (3.13)
N n; tneed > nnK@n)  E(m)

almost surely (with respect to P) by the classical Renewal Theorem (or by the strong
law of large numbers).
The claim h.(B) > h%""(B) for every § follows from the arbitrariness of By. O

4. The Case1/2 <a <1

Proof of Theorem 2.3. To make things clear, we fix now ¢ > Osmalland 0 < y < 1
such that

)/{(1+a)+(1—82)[1—a+(8/2)(a—1/2)]} > 2, @.1)
and
y[(]+a)+(1 e —a)] > 2 g2 4.2)
Moreover we take 8 < So and
b= h" () + A = h&™ (B) +ap %11+, (4.3)
We notice that it is crucial that (¢ — 1/2) > 0 for (4.1) to be satisfied. We will take &

sufficiently small (so that (4.1) and (4.2) can occur) and then, once € and y are fixed, a
also small. We set moreover

1

k(B) = F0. )

4.4

and we notice that k(8) can be made large by choosing a small, uniformly for 8 < By.
As in the previous section, we assume for ease of notation that k(8) € N (and we write
just k for k(B)).

Our aim is to show that F(8, ) = 0 if a is chosen sufficiently small in (4.3). We
recall that, thanks to Proposition 2.5, the result is proven if we show that (3.2) is o(1)
for k large. In order to estimate this sum, we need a couple of technical estimates which
are proven at the end of this section (Lemma 4.2) and in Appendix 5 (Lemma 4.1).

Lemma 4.1. Let « € (0, 1). There exists a constant C4 such that for every 0 < h < 1
and every j < 1/F(0, h),

Cy
JITULG)
In view of Z;(h(0)) = Z;(0) = P(j € 1) and (A.8), this means that as long as

Jj < 1/F(0, h) the partition function of the homogeneous model behaves essentially like
in the (homogeneous) critical case.

Zi(h) < 4.5)
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Lemma 4.2. There exists g > 0 such that, if ¢ < gy (¢ being the same one which
appears in (4.3)),

Cs

E;i vilZjel < et e/ =172 (4.6)

for some constant Cs (depending on ¢ but not on B or a), uniformly in 0 < 8 < Bo and
ink1=¢) < j < k.

In order to bound above (3.2), we split it as

k(=)

k—1 .
) Litk—j)A; Litk—j)A;
S3 + S4 = Z (k _ j)(1+a)y—1 + Z (k _ j)(l+a)y—1 : (4’7)
Jj=0 j=Lk=¢D )41

For S3 we use simply A; <(EZ; )" = [Z;(A)]” and Lemma 4.1, together with (A.21)
and (A.24):

L3 (k) 1
S3 < )
= kla+)y =11 p(—e2)((1-a)y—1)

(4.8)

where L3(-) can depend on ¢ but not on a. The second condition (4.2) imposed on y
guarantees that S3 is arbitrarily small for k large, i.e., for a small.

As for S4, we use Lemma A.1 with N = j and A = 1/4/J to estimate A (recall the
definition in (A.1)). We get

Ay =B 5Z50)] expler /-y, 49)

provided that 1/4/j < min(1, (1 — y)/y), which is true for all j > k1=¢" if @ is small.
Then, provided we have chosen ¢ < gp, Lemma 4.2 gives for every k(1—52) <j<k,

Ce
Al = SareD@ 171 - (*+10)

Note that Cg is large for ¢ small (since from (4.1)—(4.2) it is clear that y must be close
to 1 for ¢ small) but it is independent of a. As a consequence, using (A.22),

Li(r) L(k)

Sy < max Aj X < max A; X ———
4 = k(1—52)§j<k Z rl+a)y—1 — k('—52)§j<k J k(+a)y =2
S C6 L4(k) k2—(l+oz)y—(1—£ 1—0{+(8/2)(0t—1/2)]}/. (411)

Then, the first condition (4.1) imposed on y guarantees that S4 tends to zero when k
tends to infinity. O

Proof of Lemma 4.2. Using (3.8) together with the observation (3.9), the definition of A
and of k = k() in terms of F(0, A) (plus the behavior of F(0, A) for A small described
in Theorem 2.1 (2)) one sees that for j < k(f),

—C7 L (1.
Ej,l/ﬁ[zj,w]SE(e 77 1T 1{.,6,}), (4.12)



880 B. Derrida, G. Giacomin, H. Lacoin, F. L. Toninelli

uniformly for 0 < 8 < Bo. If moreover j > k(l_ez) one has

LA Cs > Cs (4.13)
ﬁ = j1/2+(a—1/2)(1+252)/(1+s) - ja—(s/2)(a—1/2)’ ’

with Cg independent of a for a small. The condition that ¢ is small has been used, say,
to neglect &2 with respect to &. Going back to (4.12) and using Proposition A.2 one has
then

Co
EJ’I/\H[ZNU] < m (414)

with Cy depending on € but notona. O

5. The Case x =1/2

Proof of Theorem 2.4. The proof is not conceptually different from that of Theorem 2.3,
but here we have to carefully keep track of the slowly varying functions, and we have
to choose y (< 1) as a function of k. Under our assumption (2.17) on L(-), it is easy to
deduce from Theorem 2.1 (2) that (say, for 0 < A < 1)

F(0, A) = A’L(1/A) = C(c, n)A” |log A*". (5.1)
We take B < Bo and

h = h%(B)+ A = h™™(B) +aexp (—,8‘1/(”_1/2_8)), (5.2)

and, as in the last section, k = 1/F(0, A) = A’Q/Z(I/A). ‘We note also that (fora < 1)
B = |log A| /e, (5.3)

Weset y = y(k) = 1 — 1/(logk). As y is k—dependent one cannot use (A.21) and
(A.24) without care to pass from (2.23) to (3.2), since one could in principle have
y-dependent (and therefore k-dependent) constants in front. Therefore, our first aim
will be to (partly) get rid of y in (2.23). We notice that for any j < k — 1, for k such
that y (k) > 5/6,

k6

ZK(n — )Y < Z K(n)exp[(3/2logn — log L(n))/logk|
n=k n=k—j
+ > K. (5.4)
n=kO0+1

Now, properties of slowly varying functions guarantee that the quantity in the exponen-
tial in the first sum is bounded (uniformly in j and k). As for the second sum, (A.21)
guarantees it is smaller than k~%/> for k large. Since by Lemma 4.1 the A ;j are bounded
by a constant in the regime we are considering, when we reinsert this term in (2.23)
and we sum over j < k we obtain a contribution which vanishes at least like k~!/° for
k — oo. We will therefore forget from now on the second sum in (5.4).
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Therefore one has

oo k—1 L(k ])A
p<Ciy D Kin—jA; <Cn Z SR (5.5)
n=k j=0

where we have safely used (A.21) to get the second expression and now y appears only
(implicitly) in the fractional moment A ; but not in the constants C;.
Once again, it is convenient to split this sum into

k/Ry . k—1 .
_ Aj Lk —j) Aj Lk —j)
S5 + S(, = E —(k — j)]/2 + - E —(k — j)1/2 , (5.6)
j=0 J=(k/R2)+1

with R; a large constant. To bound S5 we simply use Jensen inequality to estimate A ;.
Lemma 4.1 gives that for all j < k,

A< Cui
P YRLGY T VTLG)Y

(5.7)

where the second inequality comes from our choice y = 1 — 1/(log k). Knowing this,
we can use (A.21) to compute S5 and get

S5 < Cig L(k(1 —1/R2))

< (5.8)
Ry  L(k/R2)

We see that S5 can be made small choosing R; large. It is important for the following
to note that it is sufficient to choose R, large but independent of k; in particular, for k
large at R; fixed the last factor in (5.8) approaches 1 by the property of slow variation
of L(-). As for Sg,

Se < Cis o max Aj x Vk L(k). (5.9)
<J<

In order to estimate this maximum, we need to refine Lemma 4.2:

Lemma 5.1. There exists a constant C1¢ := C16(R2) such that for y = 1 — 1/(logk)
andk/Ry < j <k,

-1
= Cio (LG g )*) . (5.10)

Given this, we obtain immediately

k —2¢e
Se < C17(R2) [log (R_z)} ) (5.11)

It is then clear that S¢ can be made arbitrarily small with k large, i.e., with a small. O
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Proof of Lemma 5.1. Once again, we use Lemma A.1 with N = j but this time
A = (jlog j)~'/2. Recalling that y = 1 — 1/(logk) we obtain

logk
14
Aj < [Ej(jlogj)fl/z(zl’w)] eXp (Clog]) s (512)

for all j such that (jlog j)!/? > logk. The latter condition is satisfied for all k/R> <
Jj < k if k is large enough. Note that, since j > k/R», the exponential factor in (5.12)
is bounded by a constant Cg := C13(R2).

Furthermore, for j < k, Egs. (3.8), (3.9) combined give

Ej (g - 21Z50] = Z; (~CroB(jlog p7'72), (5.13)

for some positive constant Ci9, provided a is small (here we have used (5.1) and the
definition k = 1/F(0, A)).

In view of j > k/R», the definition of k in terms of § and assumption (2.17), we see
that

C
B = Callog j) T2 = ZZLL(j)(og j)/>*, (5.14)
c
so that the r.h.s. of (5.13) is bounded above by

L(j) 8) (log j)~%*
C I g— 5.15
( 21 \/_(og ) L(j)ﬁ (5.15)

where in the last inequality we used Lemma A.2. The result is obtained by re-injecting
this in (5.12), and using the value of y (k). O

Appendix A. Frequently Used Bounds

A.l. Bounding the partition function via tilting. For A € R and N € N consider the
probability measure Py , defined by

dPM 1
@) = v exp( Azw,) (A.1)

where M(-) was defined in (2.8). Note that under Py ; the random variables w; are still
independent but no longer identically distributed: the law of w;,i < N is tilted while
w;, i > N are distributed exactly like under P.

Lemma A.1. There exists ¢ > 0 such that, for every N € Nand y € (0, 1),

Y ) ,\2N) , (A2)
l—y

E[(Zn.0)"] = [Ens (Zw.o)]” exp ((

for |A] < min(1, (1 —y)/y).
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Proof. We have

dP
E[(Zn.)"] = Ena [(ZN,w)y Pr s (w)]

e (s dP ya-nT\'7
[En. (Znw)] N (dPN,A(w))

N
[Evi (Zno)] (MEOMGy/a=y)'7) " (A3)

IA

where in the second step we have used Holder inequality and the last step is a direct
computation. The proof is complete once we observe that 0 < logM(x) < cx? for
|x| < 1if ¢ is the maximum of the second derivative of (1/2)logM(:) over [—1,1]. O

A.2. Estimates on the renewal process. With the notation (2.4) one has

Proposition A.2. Let « € (0, 1) and r(-) be a function diverging at infinity and such

that
N)L(N
m LN g (A4)
N—o00 N¢*
For the homogeneous pinning model,
N—o00 Ne—l

ZN(=N"“L(N)r(N ~— A5
N Nr) "R s (A.5)

To prove this result we use:

Proposition A.3 ([13, Theorems A & B]). Let o € (0, 1). There exists a function o (+)
satisfying

lim o(x) =0, (A.6)
X—>+00
and such that for alln, N € N,
P(t, =N N
Pa=N) 1_ (M), (A7)
nK(N) a(n)
where a(-) is an asymptotic inverse of x — x%/L(x).
Moreover,
Nooo {asin(ra)) N¢!
P(Netr) ~ . A8
( ) ( - ) L) (A.8)

We observe that by [6, Th. 1.5.12] we have that a(-) is regularly varying of exponent
1/e, in particular lim,,_, o a(n)/n® = 0ifb > 1/a. We point out also that (A.8) has
been first established for « € (1/2, 1) in [19].
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Proof of Proposition A.2. We put for simplicity of notation v(N) := N%/L(N).
Decomposing Zy with respect to the cardinality of T N {1, ..., N},

Zn(—=r(N)/v(N)) = ZP(|I N{l,...,N}|=n,N e€1)e "N/

N
— ZP(TH — N)e—nr(N)/v(N)
n=1
v(N)
— 0 al 0
= T, = e v + T = e v . .
D P =N "™+ > Py =N)e " (A9)
=1 __v(N)
n n_mﬂ

Observe now that one can rewrite the first term in the last line of (A.9) as
v(N)//r(N)
(A+o(INKN) D ne M, (A.10)
n=1
and o(1) is a quantity which vanishes for N — oo (this follows from Proposition A.3,
which applies uniformly over all terms of the sum in view of limy r(N) = 00). Thanks
to condition (A.4), one can estimate this sum by an integral:
v(N)//r(N)

—nr(N)/u(N) _ v(N)? / v(N)?
> ne (N)2(1+0(1)) dx x (N)2(1+ o(1)).

n=1

As for the second sum in (A.9), observing that ZnEN P(t, = N) =P(N € 1), we can
bound it above by

P(N € 1)e V'™, (A.11)

In view of (A.8), the last term is negligible with respect to Ne-l /(L(N) r(N)?) and our
result is proved. O

Proof of Lemma 4.1. Recalling the notation (2.4), point (2) of Theorem 2.1 (see in par-
ticular the definition of L(-)) and (A.8), we see that the result we are looking for follows
if we can show that for every ¢ > 0 there exists Co3 = C23(c) > 0 such that

E [edm{l ..... MILMN/N® | N ¢ 1] < Cps, (A.12)

uniformly in N. Let us assume that N /4 € N; by Cauchy-Schwarz inequality the result
follows if we can show that

E [eZC'f”“v~~’N/2}'L<N>/N“ IN € 1] < Ca. (A.13)

Let us define Xy :=max{n =0,1,..., N/2: n € t} (last renewal epoch up to N/2).
By the renewal property we have

N2
= DE [T NRAILOONT |y = ] P (Xy =n|N € 7). (A14)
n=0
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If we can show that for everyn =0, 1,..., N/2,
P(Xy=n|N e1) <CsP(Xy=n), (A.15)

then we are reduced to proving (A.13) with E[-|N € 7] replaced by E[-].
Let us then observe that

PXy=n Netr)=Pmner)P(r; >(N/2)—n, N—ner)

N-—n
=Pner) > P =j)P(N-n—jer). (Al6)
j=(N/2)—n+1
We are done if we can show that
N—n 00
> Pm=j)PW-n—jer) < CxP(Ner) > Pm=j),
j=(N/2)—n+1 j=(N/2)—n+l

(A.17)

because the mass renewal function P(N € 1) cancels when we consider the conditioned
probability and, recovering P(n € 1) from (A.16) we rebuild P(Xy = n). We split
the sum in the left-hand side of (A.17) in two terms. By using (A.8) (but just as upper
bound) and the fact that the inter-arrival distribution is regularly varying we obtain

N—n
> Pm=j)P(N-n-jen)
J=(N/4)—n+1
LNy = 1
< Oyt 2 (N—n—j+D“L(N—n—j+1)
J=(GN/4)—n+l
LV Y3 1 Cs
= Cy N(1+‘3 > L) S - (A.18)

j=1

Since the right-hand side of (A.17) is bounded below by 1/N times a suitable constant
(of course if n is close to N /2 this quantity is sensibly larger) this first term of the
splitting is under control. Now the other term: since the renewal function is regularly
varying

(BN/4)—n (BN/4)—n
>, Pm=j)PN-n—jer) <CoP(Ner) D P=j),
Jj=(N/2)—n+1 Jj=(N/2)—n+1

(A.19)

that gives what we wanted.
It remains to show that (A.13) holds without conditioning. For this we use the asymp-

X —l-a

ANO
totic estimate — logE[exp(—At1)] N cg *L(1/A), with ¢, = fo r
(1 —exp(—r))dr =T'(1 — @)/, and the Markov inequality to get that if x > O,

P(ltN{l,...,N}|L(N)/N* > x) =P (1, < N) < exp (—%caAO‘L(l/k)n +AN),
(A.20)
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with n the integer part of xN*/L(N) and X € (0, Ag) for some 1y > 0. If one chooses
A = y/N, y a positive number, then for x > 1 and N sufficiently large (depending on
Ao and y) we have that the quantity at the exponent in the right-most term in (A.20) is
bounded above by —(cy/3)y*x + y. The proof is then complete if we select y such that
(ca/3)y* > 2c¢ (c appears in (A.13)) since if X is a non-negative random variable and
q is a real number E[exp(¢X)] =1+¢ fooo eP(X > x)dx.

A.3. Some basic facts about slowly varying functions. We recall here some of the ele-
mentary properties of slowly varying functions which we repeatedly use, and we refer
to [6] for a complete treatment of slow variation.

The first two well-known facts are that, if U () is slowly varying at infinity,

U N NIi-m
> () N2 1 vy , (A21)
nm m—1
n>N
if m > 1 and
N 1-m
U N
() N2 17 , (A22)
o nm 1—m

if m < 1 (c¢f. for instance [20, Sect. A.4]). The second two facts are that (cf. [6, Th.
1.5.3])

inf U " NZ® Uy N (A.23)
ifm > 0, and

sup Umyn™ "2 u(ny N, (A.24)

n>N

ifm<0. O
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Note added in proof. After this work appeared in preprint form (arXiv:0712.2515 [math.PR]), several new
results have been proven. In [5] it has been shown in particular that when L(-) is trivial, then ¢ in Theorem 2.3
can be chosen equal to zero, with a(0) > 0. The case « = 1 is also treated in [5]. The fractional moment
method we have developed here may be adapted to deal with the « = 1 case too: this has been done in [7],
where a related model is treated. Finally, the controversy concerning the case « = 1/2 and L(-) asymptotically
constant has been solved in [22], where it was shown that A.(8) > k%" (B) for every g > 0.
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