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Abstract

Reaction-diffusion problems are often described at a macroscopic scale by partial derivative equations of the type of the
Fisher or Kolmogorov—Petrovsky—Piscounov equation. These equations have a continuous family of front solutions, each of
them corresponding to a different velocity of the front. By simulating systems of sizeNiptd 08 particles at the microscopic
scale, where particles react and diffuse according to some stochastic rules, we show that a single velocity is selected for the
front. This velocity converges logarithmically to the solution of the F-KPP equation with minimal velocity when the miimber
of particles increases. A simple calculation of the effect introduced by the cutoff due to the microscopic scale allows one to
understand the origin of the logarithmic correction1999 Published by Elsevier Science B.V. All rights reserved.

1. The Fisher equation a combustion [3], the concentration of some species
produced in a chemical reaction, etc. It also appears
The Fisher equation [1], also called KPP equation in the mean field theory of directed polymersin a ran-
(for Kolmogorov—Petrovsky—Piscounov [2]) is widely dom medium [4] and in the calculation of Lyapunov
used to describe front propagation in many problems exponents of large sparse random matrices [5,6].
of physics, chemistry and biology: In (1), c(x, t) represents a concentration, implying

2 that, for allx andr:
dc 04c 2

=z te—c M o<ew < 2

Fisher first introduced this equation to represent “The  If we look at solutions constant in spackc({dx =
Wave of Advance of Advantageous Genes” [1] in a 0), Eq. (1) becomes simply:
population. The concentratiafix, t) was the fraction .
of individuals in a population at positionand timer — =c—c2 3)
that exhibit some benefit genes, and (1) was used to !
describe how this favorable gene would spread in the There are two stationary solutions:= 0 (unstable
population. Eq. (1) can also model the dynamics of fixed point) and: = 1 (stable fixed point).
sick individuals in a population during a viral conta-  The role of the diffusion termi®c/ax? in (1)
gious infection, the proportion of burnt-out gases in IS to spread any positive perturbation. Therefore, if
initially ¢(x,0) > 0 in some region of space and
" TE-mail- eric.brunet@ens.fr. c(x,00=0 elsgwhere, the pertgrbatiop will grow,
2 E-mail: bernard.derrida@ens. . reach asymptotically the stable fixed point 1 and
3 Laboratoire associé au CNRS et aux Universités Paris VI et SPread throughout the whole space. Ultimately, the
Paris VII. stable value: = 1 will be reached everywhere.
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To study how the stable region (whete= 1)
invades the unstable one (whete= 0), one can
consider an initial condition wher&(x, 0) decreases
monotonically frome(—o0, 0) = 1 to ¢(4o00,0) = 0.

If at time r = 0 the initial conditionc(x, 0) decreases
fast enough as — oo (in particular ifc(x, 0) is a step
function), the front moves in the long time limit with
a well defined speethin [7]:

(4)

To understand from (1) why the velocityin = 2
is selected looks a priori a very hard task. Eq. (1) is
a non-linear partial derivative equation and there is
no way of writing the full expression of(x, r) for
an arbitrary initial condition. However, the velocity
vmin = 2 can be understood easily without solving the
full non-linear problem: let us assume that the front
moves at some constant speedThe concentration
profile c(x, t) takes then the form:

Umin = 2.

c(x,1) = Fy(x —vt), 5)
whereF, (z) is the solution of:
F! +vF,+F,—F>=0 (6)

with F,(—00) = 1 and F,(4+o0) = 0. In the region
whereF,(z) « 1, i.e. far ahead of the front, one can
neglectin (6) the non-linear term. The general solution
of the linearized equation is a sum of two exponentials
so that forz — +o0o one of these two exponentials
dominates:

Fy(z) > Ae7 V3, (7

and, from the linearized version of (6), one finds that
v andy are related by:

(8)

We see that the asymptotic decayn (7) determines
completely the velocity(y) of the front.

What (8) tells us is that any velocity > vmin
(vmin = 2) is possible for the front. (It should be noted
thatv < vmin would also be possible by allowing to

1
v(y)=y+—.
Y

be complex. However, a front moving at such a speed

would take negative values in the tail, and this would
violate condition (2).)
The minimal speedmin = 2 reached forymin =1

has a special status: it has been shown [8-12] that

if in its initial condition the front decays faster than
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e~ Ymin* (in particular, if ¢(x,0) is a step function),
then the front moves asymptotically with this minimal
speedvnmin. Moreover, in the long time limit, the
position X (¢) of the front is given by

9)

(In other words, the velocity of the front converges
to vmin = 2 with a leading correction [12] given by
—3/(2t). The presence of a logarithmic correction
in (9) makes often a precise determination of the
asymptotic velocity difficult.)

Most properties of (1) (selection of the minimal ve-
locity for steep enough initial conditions, logarithmic
corrections to the position as in (9)) can also be re-
covered in a whole class [10] of front equations where
a stable region invades an unstable one. An example
very different from (1) that we will consider below is:

X()=2t — glnt+0(1).

2
c(x,t+1)=1—|:1—/dap(a)c(x—a,t)i| , (10)

wherep (@) can be any density functiop (@) > 0 and
[da p(a) =1). As for (1), the uniform solutions =

0 andc =1 are respectively unstable and stable and
the integral ovewx spreads any positive perturbation
as does the diffusion term in (1).

As for (1), the linearized version of (10) where
terms quadratic inc are neglected determines the
velocity. For an exponential decay (7) of the front, one
finds a dispersion relation(y) generalizing (8):

v(y) = %ln[Z/doz p(oe)eV“:|,

and for a steep enough initial condition the minimum
velocity

(11)

Umin = myin v(y) = v(¥Ymin) (12)

is reached in the long time limit. The positidf(z) is
then given [11] for large by:

Int+ 0(1). (13)

X)) = inf —
(t) = vmin 2

(Note that in generaymin in (12) is finite except for
very particular choices gf («).)
2. The microscopic stochastic model

Front equations of type (1) or (10) originate often
as the large-scale limit of microscopic stochastic mod-



378

els [3,5,6,13-15]. Here we study a particular micro-
scopic model which, as we will see, is described in the
large scale limit by the front Eq. (10). We will compare
the velocity measured for this microscopic stochastic
problem with the velocity (11), (12) expected for the
traveling wave Eq. (10).

Our microscopic model [11] is defined as follows:

Imagine a population where each generation has ex-

actly N individuals. Each individual (1 <i < N) at
generation (¢ is an integer) is characterized by its fit-
nessy; (t), a real number representing its adaptation to
the environment. The state of the system at any time
is completely determined by thé numbers; (¢).

At time r = 0, we setx; (0) = 0 for all i (but this
choice of initial condition is actually unimportant in
the long-time limit). By definition of the model, the
x; (¢) evolve from generationto generation + 1 with
the following rule:

xi(t + 1) =max{xy, (1) +ai, x5 (1) + o], (14)

wherem; and f; are the two parents of the new in-
dividual i, chosen at random in the previous genera-
tion ¢ (in other wordsn; and f; are random integers
uniformly distributed between 1 an), and where

«; ande; are random numbers independently chosen
according to some probability distributigri«) repre-
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a monotonic decreasing function af going from
c(—00,t) =1 to c(+00,1) = 0. At time r = 0, we
havec(x,0) =1 for x <0 andc(x,0) =0 forx > 0,
so the initial condition is a step function. It should
be noted that(x, t) can only take values which are
integral multiples of IN.

Clearly from (17), the positioX (1) of the cloud of
points can be rewritten with the functieitx, ¢) as:

+00

/ dx [c(x, t) —c(x, 0)].

—00

X®)=X(©0 + (18)

Given the positionsy; (r) of all the particles (or,
equivalently given the function(x, 1)), thex; (r + 1)
obtained from (14) are independent random variables.
Therefore, if we fixc(x, t), the averagéc(x, t + 1))
over the dynamics between timandr + 1 gives:

(c(x, t+ 1))
2

=1- [1—/dotp(a)c(x —a,t)] , (19)
which, except for the ), is exactly (10). However,
if we try to average over the whole history (i.e. over
all the timesteps), we need to average terms quadratic
in ¢ on the right hand side of (19). This means

senting random mutations. So at each generation, the ., ; 1 1)) is not only related tac(x, 1)), but also

m;, f;, a; ande; are independent and new values are
chosen at every time step.

Under the dynamics (14), the cloud of points
x; () moves along the line and we want to determine
its asymptotic velocityy, that is:

o= im = )
where

1 N
X0 =+ > xi). (16)

Let us now see how one can relate this microscopic
model to the traveling wave equation (10). We define
c(x, t) as the fraction of population which has a fitness
larger than:

1 N
c(x,1) = NZ@()@(I) —Xx). (17)
i=1

(By convention, we choose he®@(x) = 1 if x >
0 and ®(x) = 0 if x < 0.) Obviously, c(x,t) is

to correlations likdc(x, t)c(x’, t)), and this makes the
problem very difficult for finiteN. On the other hand,
if we neglect these correlations (and one can argue
that these correlations are small for large enonh
and replace(c(x, t)c(x’, 1)) with (c(x, )){c(x', 1)),
then (19) reduces exactly to (10). So (10) can be
thought as the mean-field (or lar@é) version of the
microscopic model (14).

As the initial conditionc(x,0) given by (17) is
a step function, the mean field equation predicts a
front moving at the minimum velocitywmin given
by (11), (12).

3. Direct simulations

We have simulated the microscopic model (14) for
several choices of the distributigg(«): the uniform
distribution in the range & o < 1

puni(@) = O ()@ (1 —a), (20)
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Table 1
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Values ofymin andvmin for different models

Model

£ = Puni P = Pexp P = pPdisc Martian model
Ymin  5.262076... 0.626635... 2.553245...  8.133004...
vmin  0.815172... 2.678347... 0.810710... 0.877338...
the exponential distribution N O
1k ﬂ:_pdisc X ]
—a E + L P= pc‘lmi é
Pexp(a) = O ()e ", (21) + . martian moded 5
S + + + 1
and a discrete distribution o1k *
.E E
pdisc(@) = 0.258(1 — a) + 0.7558 (a). (22) ° ) y
a .3
. L L 8] __
We have also simulated a generalization of the prob- 001 GRE

lem (Martian genetics) where each new individual at
timet + 1 hasthreeparents, so that (14) is replaced by
the max over three terms, with the effect of mutations
distributed according to (20).

The minimal value of the speednin and the
corresponding decay ratgmin of the deterministic
front equations (10)—(12) for these four cases are given
in Table 1.

For these four models, we have simulated (14) for
T = 10’ timesteps after a transient time &f = 10°
timesteps to eliminate the effect of initial conditions.
For several choices d@¥, we have measured the speed
as:

X(T+T)—-X(T)
UN = T .

(23)

Fig. 1 represents the difference between the mean-

field speedvmin (given in Table 1) and the speeq
measured in the simulation for several choicesvof
(16, 32, 64, 128, 256, 512, 1024, 2048 and 4096).
We see in Fig. 1 that a single speeg is selected
in the microscopic model. This speed is always lower
than the speedanmin of the deterministic front equa-
tion, and the differencenmin — vy seems to decay
like N—1/3 for all the variants of the model. The effec-

l 1 1 1 1 1
16 32 64 128 256 512
N

I I 1
1024 2048 4096

Fig. 1. Log—log plot of the difference between the spegg, given
by the mean-field theory and the speggdmeasured in Monte Carlo
simulations for the four models as a function of the numieof
particles. The straight line represemts /3.

4. Highly parallel simulations

We are now going to describe a computational
trick which we developed [11] for some particular
distributionsp (o) such as

pl@)=péla—1+1A—-p)a),

allowing to simulate the microscopic model for a huge
number of points § up to 105). We restrictp to
the range O< p < 0.5 (to avoid one of the rare cases
where (11) has no minimum for a finiigin).

For the distribution (24), the; (r) are always inte-
gersifthey are so at= 0 and the concentratiarix, t)
as defined by (17) is constant between any pair of con-
secutive integers. We call respectivalyin and xmax
the positions of the leftmost and rightmost particles at

(24)

tive power law exponent seems however to decreasetimer andw = xmax— xmin + 1 the width of the front.

slowly asN increases.

In order to confirm thev—1/3 decay of Fig. 1, we
tried to increaseV, but as in the direct simulation
computer time scales lik&/ x T, it is very hard to
make N much larger than ¥Dor 1° for a number
T =10 of timesteps.

We observed in our simulations thatis typically of
order InN, so that even fov as huge as 1§, the
number of possible values of the(z) at a given time
is very limited, and the whole information i(x, )

is carried by the number of particles at each integer
betweentmin andxmax-
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Fig. 2. Differences between the speed obtained by the mean-field Fig. 3. Comparison of the velocitymin valid for infinite N' (top
theory and the speed measured in highly parallel simulations for curve) with the velocity of the model with a cutoff/& for

different values ofy as a function of the numbe¥ of particles. The
lines represent for each value pthe prediction (27).

Knowing the functionc(x, ¢) at timez, we gener-
atec(x,t +1). As at timer, all thex; (¢) satisfy

Xmin < X (1) < Xmax,

from (14) and (24) the positions; (r + 1) will lie
betweenxmin and xmax + 1. The probabilityp; that
a given particle will be located at positionmin + k&
attimer +1is

Pk = <C(Xmin +k—-11+ 1)) - (C(xmin +kt+ 1))

(25)
with (c(x,t + 1)) given by (19). Obviouslyp; # 0
only for 0< k < w. The probability to have, for every
k, ni particles at locatiommin+k attimer + 1 is given
by

P(”O,nl,-'-,nw)
N! no ni Ny
" nolnt!...ny! Po Py ---Pi
Xx8(N —ng—ny—---—ny). (26)

Using a random number generator for a binomial
distribution [16], expression (26) allows us to generate
the random numbers, directly [11].

We have measured from (23) the veloaity of the
front for several choices op (0.05, 0.25 and 0.45)
and forN ranging from 100 to 1¥. Fig. 2 shows the
results together with functiong(p)/In® N given in
the next section.

Clearly the apparent power law of Fig. 1 does not
persist agVv increases and the simulations indicate that
Umin — vy ~ In"2 N for large N. We are going to see

N =512 (middle curve) an&v = 64 (bottom curve) as a function
of p.

in the next section that this logarithmic correction has
a simple origin.

5. Effect of the cutoff

The two main differences between the traveling
wave equation (10) and the microscopic model (14)
is that the microscopic model is stochastic and that
c(x, t) varies by steps multiple of/IvV (see (17)).

The effect of the noise is hard to treat analytically
and we have not succeeded yet to develop a satisfac-
tory theory for it. The effect of discretization can be
however understood rather simply: let us modify (10)
by imposing, after each timestep(x,t + 1) =0 if
the value given by (10) is smaller thariX (in other
words, we put a cutoff in the deterministic model to
mimic the fact that:(x, r) changes by steps of/ V).
The velocityv), of this deterministic model with a cut-
off can be easily measured as under these dynamics
the front reaches rapidly a periodic regime [11]. As
the cutoff goes to zero (i.e. & goes to infinity), the
speed), converges to the mean-field speggh given
by (11) and (12). In Fig. 3 we compare this speed for
N =64 andN = 512 withvmin for p(«) given by (24)
with 0 < p < 0.5. (One can note that the speed gets
locked to rational values gsvaries.)

The speed, of this new deterministic model can
be calculated analytically [11] for largé:

NZVr%inv//()’min)

, 27
2In’ N 27)

/ ~ .
Uy = Umin —
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wherev(y) is given by (11). Comparing the predic-
tion (27) with the results of the simulations in Fig. 2
gives a good, though not perfect, agreement. This in-
dicates that the slow convergence of the velocity of the
stochastic model is controlled by the effect of the cut-
off.

6. Conclusion

We have seen that, for a very particular microscopic
stochastic model (14), it was possible to simulate
systems of 1¥ particles. Our model is so particular
that there is no hope that our trick could be extended
to large classes of statistical physics problems. In
our case, however, going to very largeenabled us
to clearly discriminate between a power law and a
logarithmic correction.

The fact that the microscopic scale selects a single

velocity [11,17,18] with a logarithmic correction due

to a cutoff seems to appear in several related prob-

lems (reaction-diffusion [3,19], kinetic theory [6]).
Even model (14) can be introduced in many different
contexts, like directed polymers in a random medium
(wherex; (r) would be the free energy of a polymer
of lengthr ending at position), or growth problems
(wherex; (t) would be the height variables). Still, we
do not know yet whether the prediction (27) based
simply on the effect of the cutoff gives the exact large-
N behavior of the model (14), or whether a more so-
phisticated theory is needed to explain the results of
Section 5.
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