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Microscopic models of traveling wave equations

Eric Brunet1, Bernard Derrida2

Laboratoire de Physique Statistique, ENS, 24 rue Lhomond, 75005 Paris, France3

Abstract

Reaction-diffusion problems are often described at a macroscopic scale by partial derivative equations of the type of the
Fisher or Kolmogorov–Petrovsky–Piscounov equation. These equations have a continuous family of front solutions, each of
them corresponding to a different velocity of the front. By simulating systems of size up toN = 1016 particles at the microscopic
scale, where particles react and diffuse according to some stochastic rules, we show that a single velocity is selected for the
front. This velocity converges logarithmically to the solution of the F-KPP equation with minimal velocity when the numberN

of particles increases. A simple calculation of the effect introduced by the cutoff due to the microscopic scale allows one to
understand the origin of the logarithmic correction. 1999 Published by Elsevier Science B.V. All rights reserved.

1. The Fisher equation

The Fisher equation [1], also called KPP equation
(for Kolmogorov–Petrovsky–Piscounov [2]) is widely
used to describe front propagation in many problems
of physics, chemistry and biology:

∂c

∂t
= ∂2c

∂x2
+ c− c2. (1)

Fisher first introduced this equation to represent “The
Wave of Advance of Advantageous Genes” [1] in a
population. The concentrationc(x, t) was the fraction
of individuals in a population at positionx and timet
that exhibit some benefit genes, and (1) was used to
describe how this favorable gene would spread in the
population. Eq. (1) can also model the dynamics of
sick individuals in a population during a viral conta-
gious infection, the proportion of burnt-out gases in
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a combustion [3], the concentration of some species
produced in a chemical reaction, etc. It also appears
in the mean field theory of directed polymers in a ran-
dom medium [4] and in the calculation of Lyapunov
exponents of large sparse random matrices [5,6].

In (1), c(x, t) represents a concentration, implying
that, for allx andt :

06 c(x, t)6 1. (2)

If we look at solutions constant in space (∂c/∂x =
0), Eq. (1) becomes simply:

∂c

∂t
= c− c2. (3)

There are two stationary solutions:c = 0 (unstable
fixed point) andc= 1 (stable fixed point).

The role of the diffusion term∂2c/∂x2 in (1)
is to spread any positive perturbation. Therefore, if
initially c(x,0) > 0 in some region of space and
c(x,0) = 0 elsewhere, the perturbation will grow,
reach asymptotically the stable fixed pointc = 1 and
spread throughout the whole space. Ultimately, the
stable valuec= 1 will be reached everywhere.
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To study how the stable region (wherec = 1)
invades the unstable one (wherec = 0), one can
consider an initial condition wherec(x,0) decreases
monotonically fromc(−∞,0)= 1 to c(+∞,0)= 0.
If at time t = 0 the initial conditionc(x,0) decreases
fast enough asx→∞ (in particular ifc(x,0) is a step
function), the front moves in the long time limit with
a well defined speedvmin [7]:

vmin= 2. (4)

To understand from (1) why the velocityvmin = 2
is selected looks a priori a very hard task. Eq. (1) is
a non-linear partial derivative equation and there is
no way of writing the full expression ofc(x, t) for
an arbitrary initial condition. However, the velocity
vmin= 2 can be understood easily without solving the
full non-linear problem: let us assume that the front
moves at some constant speedv. The concentration
profilec(x, t) takes then the form:

c(x, t)= Fv(x − vt), (5)

whereFv(z) is the solution of:

F ′′v + vF ′v + Fv − F 2
v = 0 (6)

with Fv(−∞) = 1 andFv(+∞) = 0. In the region
whereFv(z)� 1, i.e. far ahead of the front, one can
neglect in (6) the non-linear term. The general solution
of the linearized equation is a sum of two exponentials
so that forz→ +∞ one of these two exponentials
dominates:

Fv(z)'Ae−γ z, (7)

and, from the linearized version of (6), one finds that
v andγ are related by:

v(γ )= γ + 1

γ
. (8)

We see that the asymptotic decayγ in (7) determines
completely the velocityv(γ ) of the front.

What (8) tells us is that any velocityv > vmin
(vmin= 2) is possible for the front. (It should be noted
thatv < vmin would also be possible by allowingγ to
be complex. However, a front moving at such a speed
would take negative values in the tail, and this would
violate condition (2).)

The minimal speedvmin = 2 reached forγmin = 1
has a special status: it has been shown [8–12] that
if in its initial condition the front decays faster than

e−γminx (in particular, if c(x,0) is a step function),
then the front moves asymptotically with this minimal
speedvmin. Moreover, in the long time limit, the
positionX(t) of the front is given by

X(t)= 2t − 3

2
ln t +O(1). (9)

(In other words, the velocity of the front converges
to vmin = 2 with a leading correction [12] given by
−3/(2t). The presence of a logarithmic correction
in (9) makes often a precise determination of the
asymptotic velocity difficult.)

Most properties of (1) (selection of the minimal ve-
locity for steep enough initial conditions, logarithmic
corrections to the position as in (9)) can also be re-
covered in a whole class [10] of front equations where
a stable region invades an unstable one. An example
very different from (1) that we will consider below is:

c(x, t + 1)= 1−
[
1−

∫
dα ρ(α)c(x − α, t)

]2

, (10)

whereρ(α) can be any density function (ρ(α)> 0 and∫
dα ρ(α)= 1). As for (1), the uniform solutionsc =

0 andc = 1 are respectively unstable and stable and
the integral overα spreads any positive perturbation
as does the diffusion term in (1).

As for (1), the linearized version of (10) where
terms quadratic inc are neglected determines the
velocity. For an exponential decay (7) of the front, one
finds a dispersion relationv(γ ) generalizing (8):

v(γ )= 1

γ
ln

[
2
∫
dα ρ(α)eγα

]
, (11)

and for a steep enough initial condition the minimum
velocity

vmin=min
γ
v(γ )= v(γmin) (12)

is reached in the long time limit. The positionX(t) is
then given [11] for larget by:

X(t)= vmint − 3

2γmin
ln t +O(1). (13)

(Note that in generalγmin in (12) is finite except for
very particular choices ofρ(α).)

2. The microscopic stochastic model

Front equations of type (1) or (10) originate often
as the large-scale limit of microscopic stochastic mod-
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els [3,5,6,13–15]. Here we study a particular micro-
scopic model which, as we will see, is described in the
large scale limit by the front Eq. (10). We will compare
the velocity measured for this microscopic stochastic
problem with the velocity (11), (12) expected for the
traveling wave Eq. (10).

Our microscopic model [11] is defined as follows:
Imagine a population where each generation has ex-
actlyN individuals. Each individuali (16 i 6 N ) at
generationt (t is an integer) is characterized by its fit-
nessxi(t), a real number representing its adaptation to
the environment. The state of the system at any timet

is completely determined by theN numbersxi(t).
At time t = 0, we setxi(0) = 0 for all i (but this

choice of initial condition is actually unimportant in
the long-time limit). By definition of the model, the
xi(t) evolve from generationt to generationt+1 with
the following rule:

xi(t + 1)=max
[
xmi (t)+ αi, xfi (t)+ α′i

]
, (14)

wheremi andfi are the two parents of the new in-
dividual i, chosen at random in the previous genera-
tion t (in other words,mi andfi are random integers
uniformly distributed between 1 andN ), and where
αi andα′i are random numbers independently chosen
according to some probability distributionρ(α) repre-
senting random mutations. So at each generation, the
mi , fi , αi andα′i are independent and new values are
chosen at every time step.

Under the dynamics (14), the cloud ofN points
xi(t) moves along the line and we want to determine
its asymptotic velocityvN , that is:

vN = lim
t→+∞

X(t)

t
, (15)

where

X(t)= 1

N

N∑
i=1

xi(t). (16)

Let us now see how one can relate this microscopic
model to the traveling wave equation (10). We define
c(x, t) as the fraction of population which has a fitness
larger thanx:

c(x, t)= 1

N

N∑
i=1

Θ
(
xi(t)− x

)
. (17)

(By convention, we choose hereΘ(x) = 1 if x >
0 and Θ(x) = 0 if x 6 0.) Obviously, c(x, t) is

a monotonic decreasing function ofx going from
c(−∞, t) = 1 to c(+∞, t) = 0. At time t = 0, we
havec(x,0)= 1 for x < 0 andc(x,0)= 0 for x > 0,
so the initial condition is a step function. It should
be noted thatc(x, t) can only take values which are
integral multiples of 1/N .

Clearly from (17), the positionX(t) of the cloud of
points can be rewritten with the functionc(x, t) as:

X(t)=X(0)+
+∞∫
−∞

dx
[
c(x, t)− c(x,0)]. (18)

Given the positionsxi(t) of all the particles (or,
equivalently given the functionc(x, t)), thexi(t + 1)
obtained from (14) are independent random variables.
Therefore, if we fixc(x, t), the average〈c(x, t + 1)〉
over the dynamics between timet andt + 1 gives:〈
c(x, t + 1)

〉
= 1−

[
1−

∫
dα ρ(α)c(x − α, t)

]2
, (19)

which, except for the〈 〉, is exactly (10). However,
if we try to average over the whole history (i.e. over
all the timesteps), we need to average terms quadratic
in c on the right hand side of (19). This means
〈c(x, t + 1)〉 is not only related to〈c(x, t)〉, but also
to correlations like〈c(x, t)c(x ′, t)〉, and this makes the
problem very difficult for finiteN . On the other hand,
if we neglect these correlations (and one can argue
that these correlations are small for large enoughN )
and replace〈c(x, t)c(x ′, t)〉 with 〈c(x, t)〉〈c(x ′, t)〉,
then (19) reduces exactly to (10). So (10) can be
thought as the mean-field (or largeN ) version of the
microscopic model (14).

As the initial conditionc(x,0) given by (17) is
a step function, the mean field equation predicts a
front moving at the minimum velocityvmin given
by (11), (12).

3. Direct simulations

We have simulated the microscopic model (14) for
several choices of the distributionρ(α): the uniform
distribution in the range 06 α 6 1

ρuni(α)=Θ(α)Θ(1− α), (20)
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Table 1
Values ofγmin andvmin for different models

Model ρ = ρuni ρ = ρexp ρ = ρdisc Martian model

γmin 5.262 076. . . 0.626 635. . . 2.553 245. . . 8.133 004. . .

vmin 0.815 172. . . 2.678 347. . . 0.810 710. . . 0.877 338. . .

the exponential distribution

ρexp(α)=Θ(α)e−α, (21)

and a discrete distribution

ρdisc(α)= 0.25δ(1− α)+ 0.75δ(α). (22)

We have also simulated a generalization of the prob-
lem (Martian genetics) where each new individual at
time t +1 hasthreeparents, so that (14) is replaced by
the max over three terms, with the effect of mutations
distributed according to (20).

The minimal value of the speedvmin and the
corresponding decay rateγmin of the deterministic
front equations (10)–(12) for these four cases are given
in Table 1.

For these four models, we have simulated (14) for
T = 107 timesteps after a transient time ofT ′ = 106

timesteps to eliminate the effect of initial conditions.
For several choices ofN , we have measured the speed
as:

vN = X(T + T
′)−X(T ′)
T

. (23)

Fig. 1 represents the difference between the mean-
field speedvmin (given in Table 1) and the speedvN
measured in the simulation for several choices ofN

(16, 32, 64, 128, 256, 512, 1024, 2048 and 4096).
We see in Fig. 1 that a single speedvN is selected

in the microscopic model. This speed is always lower
than the speedvmin of the deterministic front equa-
tion, and the differencevmin − vN seems to decay
like N−1/3 for all the variants of the model. The effec-
tive power law exponent seems however to decrease
slowly asN increases.

In order to confirm theN−1/3 decay of Fig. 1, we
tried to increaseN , but as in the direct simulation
computer time scales likeN × T , it is very hard to
makeN much larger than 104 or 105 for a number
T = 107 of timesteps.

Fig. 1. Log–log plot of the difference between the speedvmin given
by the mean-field theory and the speedvN measured in Monte Carlo
simulations for the four models as a function of the numberN of
particles. The straight line representsN−1/3.

4. Highly parallel simulations

We are now going to describe a computational
trick which we developed [11] for some particular
distributionsρ(α) such as

ρ(α)= pδ(α − 1)+ (1− p)δ(α), (24)

allowing to simulate the microscopic model for a huge
number of points (N up to 1016). We restrictp to
the range 0< p < 0.5 (to avoid one of the rare cases
where (11) has no minimum for a finiteγmin).

For the distribution (24), thexi(t) are always inte-
gers if they are so att = 0 and the concentrationc(x, t)
as defined by (17) is constant between any pair of con-
secutive integers. We call respectivelyxmin andxmax
the positions of the leftmost and rightmost particles at
time t andw= xmax− xmin+ 1 the width of the front.
We observed in our simulations thatw is typically of
order lnN , so that even forN as huge as 1016, the
number of possible values of thexi(t) at a given time
is very limited, and the whole information inc(x, t)
is carried by the number of particles at each integerx

betweenxmin andxmax.
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Fig. 2. Differences between the speed obtained by the mean-field
theory and the speed measured in highly parallel simulations for
different values ofp as a function of the numberN of particles. The
lines represent for each value ofp the prediction (27).

Knowing the functionc(x, t) at time t , we gener-
atec(x, t + 1). As at timet , all thexi(t) satisfy

xmin6 xi(t)6 xmax,

from (14) and (24) the positionsxi(t + 1) will lie
betweenxmin and xmax+ 1. The probabilitypk that
a given particlei will be located at positionxmin+ k
at timet + 1 is

pk =
〈
c(xmin+ k − 1, t + 1)

〉− 〈c(xmin+ k, t + 1)
〉
(25)

with 〈c(x, t + 1)〉 given by (19). Obviously,pk 6= 0
only for 06 k 6w. The probability to have, for every
k, nk particles at locationxmin+k at timet+1 is given
by

P(n0, n1, . . . , nw)

= N !
n0!n1! . . .nw! p

n0
0 p

n1
1 . . .p

nw
l

× δ(N − n0− n1− · · · − nw). (26)

Using a random number generator for a binomial
distribution [16], expression (26) allows us to generate
the random numbersnk directly [11].

We have measured from (23) the velocityvN of the
front for several choices ofp (0.05, 0.25 and 0.45)
and forN ranging from 100 to 1016. Fig. 2 shows the
results together with functionsA(p)/ ln2N given in
the next section.

Clearly the apparent power law of Fig. 1 does not
persist asN increases and the simulations indicate that
vmin− vN ∼ ln−2N for largeN . We are going to see

Fig. 3. Comparison of the velocityvmin valid for infinite N (top
curve) with the velocity of the model with a cutoff 1/N for
N = 512 (middle curve) andN = 64 (bottom curve) as a function
of p.

in the next section that this logarithmic correction has
a simple origin.

5. Effect of the cutoff

The two main differences between the traveling
wave equation (10) and the microscopic model (14)
is that the microscopic model is stochastic and that
c(x, t) varies by steps multiple of 1/N (see (17)).

The effect of the noise is hard to treat analytically
and we have not succeeded yet to develop a satisfac-
tory theory for it. The effect of discretization can be
however understood rather simply: let us modify (10)
by imposing, after each timestep,c(x, t + 1) = 0 if
the value given by (10) is smaller than 1/N (in other
words, we put a cutoff in the deterministic model to
mimic the fact thatc(x, t) changes by steps of 1/N ).
The velocityv′N of this deterministic model with a cut-
off can be easily measured as under these dynamics
the front reaches rapidly a periodic regime [11]. As
the cutoff goes to zero (i.e. asN goes to infinity), the
speedv′N converges to the mean-field speedvmin given
by (11) and (12). In Fig. 3 we compare this speed for
N = 64 andN = 512 withvmin for ρ(α) given by (24)
with 06 p 6 0.5. (One can note that the speed gets
locked to rational values asp varies.)

The speedv′N of this new deterministic model can
be calculated analytically [11] for largeN :

v′N ' vmin− π
2γ 2

minv
′′(γmin)

2 ln2N
, (27)
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wherev(γ ) is given by (11). Comparing the predic-
tion (27) with the results of the simulations in Fig. 2
gives a good, though not perfect, agreement. This in-
dicates that the slow convergence of the velocity of the
stochastic model is controlled by the effect of the cut-
off.

6. Conclusion

We have seen that, for a very particular microscopic
stochastic model (14), it was possible to simulate
systems of 1016 particles. Our model is so particular
that there is no hope that our trick could be extended
to large classes of statistical physics problems. In
our case, however, going to very largeN enabled us
to clearly discriminate between a power law and a
logarithmic correction.

The fact that the microscopic scale selects a single
velocity [11,17,18] with a logarithmic correction due
to a cutoff seems to appear in several related prob-
lems (reaction-diffusion [3,19], kinetic theory [6]).
Even model (14) can be introduced in many different
contexts, like directed polymers in a random medium
(wherexi(t) would be the free energy of a polymer
of length t ending at positioni), or growth problems
(wherexi(t) would be the height variables). Still, we
do not know yet whether the prediction (27) based
simply on the effect of the cutoff gives the exact large-
N behavior of the model (14), or whether a more so-
phisticated theory is needed to explain the results of
Section 5.
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